Study on Water Quality of Kaveri River near Bhavani, Tamil Nadu, India

Pinki Jain and Vishvajit Singh*

Department of Mathematics
PDM University, Bahadurgarh, Haryana
Emails: pinkijain47@gmail.com; vishvajit73.sheoran@gmail.com
*Corresponding author

Abstract:

The present study is enfolded on the tenacity of Physico-Chemical Parameters such as Chloride (Cl), Total solids (TS), Total Suspended Solids (TSS), pH (pH), Electric Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), Phosphet (P), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Sulphate (S) of water samples from various sampling points near Bhavana.

Upsurge of impurity absorption demonstrate the upsurge of desecration load due to domestic sewage and industrial waste and anthropogenic exercises and freed of wastes into river. Statistical analysis like Pearson Correlation matrix and Factor loadings were implemented to the data set to know the relationship among the studied parameters.

Key words: Kaveri River, Bhavani, WHO.

Introduction:

Water is one of the most plausible and pivotal wealth on earth ^{1,2,5,6,8,9}. Water exiguity is accumulating worldwide and burden on the actual water resources is increasing due to thriving exaction of diverse category such as domiciliary, agronomy etc. Lakes are one of the relevant water resources used for irrigation, drinking, fisheries and flood control prospect^{6,13}.

A correlation matrix is simply a table which exhibits the <u>correlation</u> coefficients for different variables. The matrix represents the correlation between all the possible pairs of values in a table. It is a vivid tool to summarize a large dataset and to identify and visualize patterns in the given data. A correlation matrix contains of rows and

columns that show the variables. Each cell in a table contains the correlation coefficient.

Cluster Analysis is the method to find similar groups of objects in order to form clusters. It is an unsupervised machine learning-based algorithm that acts on unlabelled data. A group of data points would incorporate together to form a cluster in which all the objects would belong to the same group

Study Area:

Bhavani is located at 11.45°N 77.68°E. It has an average elevation of 193 metres (633 feet). It lies at the confluence of the rivers <u>Kaveri</u>, the largest river in Tamil Nadu and <u>Bhavani</u>, the second largest river in Tamil Nadu, with the invisible mystic <u>Sarasvati River</u>. Hence this place is known as the <u>Triveni Sangam</u> of South.

Sample collection:

Water samples were collected from four sampling stations namely Bhavani, Komarpalayam, Lakshmi Nagar and Pallipalayam. Samples were collected in sterile glass bottles to avoid unforeseeable changes in characteristic as per standard procedure American Public Health Association (APHA, 1998).

Investigation of Samples:

The collected samples were analyzed for different physico-chemical parameters such as Chloride(Cl), Total solids(TS), Total Suspended Solids(TSS), pH(pH), Electric Conductivity(EC), Total Dissolved Solids (TDS), Total Hardness(TH), Phosphet(P), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand(COD) and Sulphate (S) as per the standard methods (APHA, 1998)^{10,11}.

Results and discussion:

The diversification of various attributes such as Chloride(Cl), Total solids(TS), Total Suspended Solids(TSS), pH(pH), Electric Conductivity(EC), Total Dissolved Solids (TDS), Total Hardness(TH), Phosphet(P), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand(COD) and Sulphate (S) concentrations at the diverse locations along the Kaveri river water are listed in Table 1 and shown in Fig. 1. Agglomeration Schedule has adapted using IBM SPSS 21 software and tabulated in Table 3. Cluster analysis has performed by IBM SPSS 21 software and a Dendogram is shown in Fig 2. There are two statistically significant clusters are formed. Present study reveals that there is a difference in the physicochemical properties of cluster 2 and cluster 1. Correlation matrix has performed within the studied attributes using Microsoft Excel 7 software and tabulated in Table 2 for determining the relationship between the physico-chemical variables. The analysis yielded positive correlations occurred between some attributes and negative correlations occurred between some attributes.

Table 1. Water Quality at different locations of Kaveri River (Laboratory Analysis)

Name of Area	Cl	TS	TSS	pН	EC	TDS	TH
	(mg/L)	(mg/L)	(mg/L)		(mS/cm)	(mg/L)	(mg/L)
Bhavani	260	1488	630	7.68	694	904	220
Komarpalayam	240	1460	558	7.54	704	908	180
Lakshmi Nagar	220	1500	530	7.36	674	1006	170
Pallipalayam	300	1520	670	7.84	894	1002	260

Name of Area	P	DO	BOD	COD	S
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Bhavani	5.06	5.08	24	266	28.56
Komarpalayam	5.36	5.42	22	288	36.42
Lakshmi Nagar	5.44	5.56	25	268	32.56
Pallipalayam	6.00	5.44	35	308	58.44

Table 2. Pearson Correlation Matrix for the Samples

	Cl	TS	TSS	pН	EC	TDS	TH	P	DO	BOD	COD	S
C1	1											П
TS	0.5601798	1										П
TSS	0.9673553	0.5417042	1									П
pН	0.9796957	0.416438	0.9784372	1								
EC	0.9098849	0.6641805	0.7862251	0.8167372	1							
TDS	0.1344228	0.8053019	0.0149988	-0.0639936	0.4545756	1						
TH	0.9846821	0.6461167	0.9859233	0.9624209	0.8683677	0.1731729	1					
P	0.6093377	0.6691323	0.4152256	0.4505322	0.8828539	0.7419807	0.5545648	1				
DO	-0.2698272	0.1959375	-0.4808241	-0.4362826	0.1539099	0.7258267	-0.3321877	0.5970893	1			
BOD	0.8241407	0.8702057	0.726546	0.6948765	0.9450534	0.6715986	0.8310712	0.8886976	0.2257196	1		
COD	0.7385202	0.3293282	0.5455295	0.6590959	0.899964	0.3115231	0.6277142	0.8676573	0.3358755	0.7440286	1	
S	0.7941155	0.6140117	0.6230777	0.6760444	0.9727702	0.5460983	0.729782	0.9580175	0.3675703	0.9145997	0.9471911	1

 Table 3. Agglomeration Schedule for the Samples

Agglomeration Schedule									
Stage	Cluster Combined		Coefficients	Stage Cluster	First Appears	Next Stage			
	Cluster 1	Cluster 2		Cluster 1	Cluster 2				
1	8	9	.166	0	0	2			
2	4	8	13.092	0	1	5			
3	10	12	430.750	0	0	5			
4	1	11	2784.750	0	0	6			
5	4	10	6486.160	2	3	9			
6	1	7	17364.160	4	0	9			
7	3	5	65526.160	0	0	8			
8	3	6	296798.827	7	0	10			
9	1	4	702874.298	6	5	11			
10	2	3	2294868.631	0	8	11			
11	1	2	9882935.042	9	10	0			

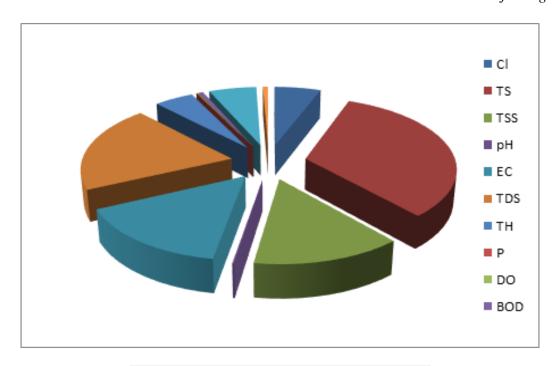


Figure 1: Graphical representation of Samples

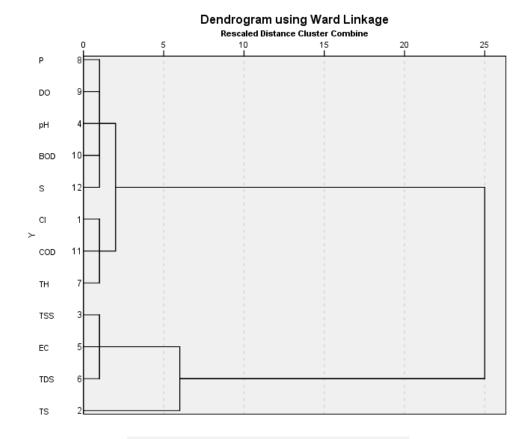


Figure 2: Dendrogram using Ward Linkage

REFERENCES

- [1] Anita. and Salahuddin.(2019). Analysis of Electrical conductivity of Ground water at different locations of Phooli of U.P, India. *International Journal of Emerging Trends in Engineering and Development*, 3, 1-5.
- [2] Ansari, Farid. and Salahuddin. (2013). Groundwater Temperature Variation Analysis of Industrial Area Nandganj, Ghazipur (India). *Australian Journal of Basic and Applied Sciences*, 7 (14),539-542.
- [3] APHA. (1998). Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF, Washington D.C.
- [4] Babu, Y. S. and Mohan, M.R. (2018). A study on Physico-Chemical parameters of Errarajan of Bangalore Rural. *International Journal of Scientific Research*, 7(2), 401-402.
- [5] Chaudhary, M. P. and Salahuddin (2014). Analysis of COD in water at different locations of upper lake in Madhya Pradesh. *European Journal of Applied Engineering and Scientific Research*, 3(2), 37-39.
- [6] Chaudhary, M. P. and Salahuddin. (2015). Physico-Chemical analysis in winter season of Bhojtal water in Bhopal region of Madhya Pradesh, India. *International Journal of Mathematical Archive*, 6 (4),78-81.
- [7] Salahuddin. (2013). Analysis of Chloride Content in the Surface of water at different locations of Madhya Pradesh. *International Journal for Pharmaceutical Research Scholars*, 2(4), 107-109.
- [8] Salahuddin.(2014). Physico-chemical analysis of upper lake water in Bhopal region of Madhya Pradesh, India. *Advances in Applied Science Research*, 5(5), 165-169.
- [9] Salahuddin.(2015). Analysis of electrical conductivity of ground water at different locations of Dildar Nagar of U.P, India, *Advances in Applied Science Research*, 6(7), 137-140.
- [10] Salahuddin. (2020). Analysis of Magnesium contents of Ground water at surrounding areas of Dildar Nagar of U.P. India. *International Journal of Innovative Research in Science, Engineering and Technology*, 9(4), 1607-1610.
- [11] Salahuddin. and Ansari, Farid.(2013). Statistical Analysis for the Presence of pH Content of Ground Water at Different Locations of Industrial area at Ghazipur in India. *Global Journal of Science Frontier Research (F)*, 13 (9),55-59.
- [12] Salahuddin. and Husain, Intazar.(2020). Analysis of Lower Lake Water in Bhopal Region of Madhya Pradesh, India. *International Journal of Lakes and Rivers*.13(1), 17-25.
- [13] Salahuddin. Khola, R. K.(2014). Physico-Chemical Analysis for the Presence of Oxygen Content of Ground Water at Different Locations of Dildar Nagar of U.P, India. *Global Journal of Science Frontier Research (B)*, 14 (6),01-03.
- [14] Salahuddin and Khola, R. K. (2013). Analysis of Chloride Content in the Surface of water using two way Anova. *International Journal for Pharmaceutical Research Scholars*, 2(4), 51-53.
- [15] Salla, S. and Ghosh, S. (2014). Assessment of water quality parameters of lower lake, Bhopal. *Advances in Applied Science Research*, 6, 8-11.

- [16] Bhavani(2022, December). Retrived https://en.wikipedia.org/wiki/Bhavani,_Tamil_Nadu.
- [17] Sirajudeen., Mohidheen, M. K., and Vahith, R. A.(2014). Physico-chemical contamination of groundwater in and around Tirunelveli district, Tamil Nadu. *Advances in Applied Science Research*, 5(2), 49-54.