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Abstract:

The surface water bodies are one of the essential sources of water for human
activities. Unfortunately, they are under severe stress because of
anthropogenic activities, so it is necessary to maintain their quality. This
study assesses the Yamuna River's water quality during pre- and post-
COVID-19. A model is developed using a combination of measured
parameters and satellite image-derived indices to analyze the impact of
COVID-19 on the water quality status after a year. Five major water quality
parameters (WQPs), such as turbidity, dissolved organic matter (DOM),
dissolved oxygen (DO), the potential of hydrogen (pH), and suspended
particulate matter (SPM), are considered in this study. The samples were
collected from Wazirabad (Ram Ghat) to Okhla barrage (20 locations) from
December 2019 to December 2020. The results revealed that the indices
derived from remote sensing (RS) data and the in situ data obtained
throughout the study had varying degrees of accuracy. Actual DO
measurements demonstrated a strong correlation with estimated MNDWI
mean values, with an R? of 0.27; actual pH concentration demonstrated a
strong correlation with estimated GNDVI mean values; actual DOM
measurements demonstrated a strong correlation with estimated SWIR_B12
mean values; actual SPM measurements demonstrated a strong correlation
with estimated SWIR_B11 mean values, and actual water turbidity
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measurements demonstrated a strong correlation with estimated normalized
difference turbidity index (NDTI) mean values, with an R? of 0.34. The
research's conclusions support estimating water quality parameters in dry
regions using RS data from Sentinel-2.

Keywords: Remote sensing Water quality parameters Yamuna river
COVID-19

1. INTRODUCTION

All living things depend on water for their survival and nourishment. Due to the
accessibility and abundance, rivers are the most frequently used surface water
sources, which has sped up human population growth and development close to
watercourses [1]. Rivers have seen considerable environmental challenges due to
contamination from heavy agricultural pesticide drainage and sewage from production
processes, garbage, and other urban waste sources, especially in developing countries.
The Ganga River starts at Saptarishi Kund on the Yamunotri glacial mass in the
Himalayas, flows 1376 kilometers to Allahabad, and is the Ganges' largest water
contributor. One of the primary Ganga tributaries and source of fresh water, the
Yamuna, flows through India's capital city of Delhi. It has recently been regarded as
one of India's most polluted rivers. The river's water quality has declined over the last
few years as it gets much garbage from homes and farms, hazardous waste
contaminants [2], and government releases. The water quality is degrading and
becoming unfit for any use due to the water contamination, which is a major cause for
concern.

One of the most virulent diseases to have ever afflicted Mankind is thought to be
the Novel Coronavirus-driven COVID-19 worldwide pandemic. To stop the spread of
the disease, the Indian government has instituted a total lockdown as of midnight on
March 24, 2020 [3]. An obvious outcome of the lockdown was improving
environmental quality across India's megacities, with work ceasing in factories and
industries, the shutdown of commercial establishments, and transportation systems
nearly at a standstill [4-6]. The second most evident effect is a potential purging of the
country's waterways, particularly those that flow through significant urban areas [7-
8]. There has not been much in-depth research on this topic; however, the physical
and chemical properties can reveal water characteristics and factors to assess water
quality [9].

Water quality indices (WQIs) are among the best ways to describe water quality
[10-11]. Because they combine data from a variety of water quality metrics into a
single number that can be used to understand water quality overall at various
monitoring sites at a given time [12-13] and support strategic planning for water
quality management programs through numerical index values [14-15]. Using a
modified version of the multicriteria decision-making technique for Order of
Preference by Similarity to Ideal Solution, river sections were ranked according to
their waterquality by coupling water-quality indicators with the corresponding
standards [16]. Research literature indicated GIS techniques for distinguishing the
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potential zones of water quality using the inverse distance weighting [17-19], an
interpolation technique for analyzing the spatial distribution of various physio-
chemical parameters. These parameters include Total Solids, Total Dissolved Solids,
Total Suspended Solids, Hydrogen lon Concentration, Chemical Oxygen Demand,
Biochemical Oxygen Demand, Dissolved Oxygen, Salinity, Chloride, and Alkalinity
(TH) [20-22]. GIS techniques distinguishing the potential zones of drinking water
quality for measured GIS-surface variation of water quality at Yamuna river using the
kriging interpolation method and the weighted arithmetic index method have been
used for calculating WQIs [23]. An integrated approach to measure water quality has
been proposed by [24] to analyze 13 physical-chemicals properties using the
Canadian Council of Ministers of the Environment Water Quality Index and
Weighted Arithmetic Water Quality Index. The water quality of Base, India, has been
determined by nine water quality parameters in a study conducted by [25]. GIS with
RS was found to be very effective in estimating WQPs.

RS data have the potential to provide knowledge of broad-scale changes and the
link between offshore and near-shore waters [26]. For empirical modeling, the authors
developed statistical relationships between measured spectral and water quality
characteristics. Using principal component analysis, surface water quality is
determined by factors such as pH, temperature, electrical conductivity, dissolved
oxygen, turbidity, total dissolved solids, salinity, chloride, acidity, total alkalinity,
total hardness, nitrate ions, and the total amount of coliform bacteria, in the study
conducted by [27]. Based on measurements taken at Palla station in Delhi between
2009 and 2019, [28] analyzed the physio-chemical and biological parameters such as
total alkalinity, total dissolved solids, total coliform, and chemical oxygen demand of
the Yamuna river. The change in water quality of the river Ganga in terms of total
suspended solids and turbidity has been assessed through Landsat-8 multispectral RS
data and in situ observations. The authors analyzed the change in spectral reflectance
of the water along the river in the visible region [29]. A hybrid machine learning
technique, including a relief-based feature selector and decision tree classifier, has
been used to predict the water quality of the Yamuna river [30]. The Yamuna River's
water quality variables were forecasted by the deep learning-based Bi-LSTM model
(DLBL-WQA) [31]. The suggested model demonstrates a novel approach
incorporating missing value imputation in the first phase. Feature maps are generated
from the input data in the second phase, and a Bi-LSTM architecture is used in the
third phase to enhance learning. The training error is minimized by applying an
optimal loss function, which helped in a forecasting accuracy improvement. This
work aims to construct a linear regression model between WQPs and S2-based
spectral bands and Indices for monitoring water quality. Therefore, the best R? values
and overall accuracy will be the emphasis. Sentinel-2 provides great geographical
resolution data that supports identifying these factors using spectral bands and indices.
The current study uses regression analysis to identify the connection between the
estimated and real water quality indicators.

The rest of the paper is organized as follows: section two presents materials and
methodology, section three gives results and discussion, and section five concludes
the paper.
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2. MATERIALS AND METHODS

2.1 Study Area

The water samples were collected at equivocal distances, incorporating 20 unique
places covering 21 km from Wazirabad to Okhla Barrage, Delhi (Fig. 1). The samples
were collected in the corrosive washed polyethylene before and after 12 months of
COVID-19. The samples are analyzed based on the following properties turbidity,
DOM, SPM, pH, and DO. In Delhi, the average annual rainfall is 714 mm, with three-
quarters of that falling in July, August, and September. Temperatures can reach 40-45
°C in the summer, and winters are usually cold, with temperatures dropping to 4 to 5
°C in December and January.

2.2 Water Sample Collection and Lab Testing

Water samples were collected monthly from the site from December 2019 to
December 2020, using a 2L container. The sampling containers were washed
carefully before sampling to remove any type of solids or impurities. The sample
temperatures were recorded and collected well away from the edges of the water
body. All the experiments were carried out as per the method specified in standard
methods [32].
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Fig. 1. The AOI indicates Yamuna River and in situ survey locations.
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2.3 Remote Sensing Data

Spectral bands from Sentinel-2 were obtained from the Copernicus open access hub.
These images were acquired and preprocessed between December 2019 and
December 2020 to convert pixel values to reflectance. This time frame represents the
first corona wave's pre- lockdown and post-lockdown stages. Consequently, 11
images (One month each) were collected and used to build a correlation and
regression model utilizing in-situ data. Due to a high amount of cloud cover, suitable
images for August and September 2020 could not be taken. The vegetation indices
and raw bands used for correlating with water quality metrics are shown in Table 1
and 2 respectively. Modified normalized difference water index (MNDWI), green
normalized difference vegetation index (GNDVI), and NDTI are three separate
remotely sensed indices that were obtained to reflect three different water quality
factors.

Table 1. List of Sentinel 2 vegetation indices used in this study

Index Vegetation Index Formula Reference
GNDVI <pnir - pgreen) [33]
Pnir T pgreen
NDTI <pred - pgreen) [34]
Pred + pgreen
MNDWI <pgreen - pswir) [35]
pgreen + Pswir

Table 2. List of Sentinel 2 bands used in this study

Sentinel Bands Central Wavelength Band- Spatial

2A Wavelength Range (um) Width resolution
(nm) (nm) (m)

B2 Blue 490 0.439-0.535 0.096 10

B3 Green 560 0.537-0.582 0.045 10

B4 Red 665 0.646-0.685 0.039 10

B8 NIR 842 0.767-0.908 0.141 10

B11 SWIR_B11 1610 1.539-1.681 0.142 20

B12 SWIR B12 2190 2.100-2.280 0.180 20

Correlations between the water quality index and S2 spectral bands:

Water quality data were analyzed for WQPs for nine monitoring sites. Data received
in December 2019 was used to represent the situation before the lockdown period,
while data obtained in December 2020 was used to represent the situation following
the lockdown phase. For the same period as the river dataset, the Delhi Pollution
Control Committee was also used to obtain information about the water quality status
of the 20 drains in Delhi that run into the Yamuna. This research was investigated to
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determine the effluent quality flowing into the river and whether the lockdown had
any other effects besides those on the main waterway on the area's drains. As few
indices are sensitive to water bodies, such as MNDWI and NDTI were utilized for
correlating with the WQPs.

2.4 Flow of the methodology
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Figure 2. Flow chart of the research methodology
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3. RESULT AND DISCUSSION
First, a correlation matrix was developed to understand the variability between the
spectral bands and WQPs. After that, a linear regression was established between
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correlated S2 bands and indices with WQPs, followed by the accuracy assessment and
conclusions.

3.1 Correlation matrix of water quality parameters, indices, and reflectance
SWIR bands

Correlations were determined on cumulatively collected parameters to understand the
variability within the WQPs. Fig. 3 indicates the correlation between WQPs and
sentinel-2-based spectral bands and indices. A good correlation between MNDWI
with DO can be observed in Fig. 3.

PH  Turbidity SPM DOM DO NDTI MNDWI GNDVI SWIR Bll SWIR Bl2
PH 1
Turbidity 0417 1
SPM -0.114 0.456 1
DOM 0.0009 0.523 0.728 1
DO 0.4 0.137  -0.485 -0.2212 1
NDTI 0.194 0.225 0.0139 -0.1105 0.143 1
MNDWI -0.0185 0.255 0.5986 0.7674 -0.2174 0.2473 1
GNDVI 0.0114 -0.255 -0.5627 -0.7804 0.1561 -0.2178 | -0.9876 1
SWIR BI11| -0.241 -0.28 -0.1646  -0.358 -0.1802 -0.5087 -0.584 0.5859 1
SWIR _BI2 -0.1 -0.175  0.0475 -0.1707 -0.2845 -0.3383 -0.3303 0.3344 0.7649 1

Figure 3. Correlation matrix of WQPs and RS based spectral bands and indices

3.2  WQPs modeling using linear regression

To assess and realize the consistent correlations between the actual WQPs
concentrations gathered on-site and the corresponding WQPs in reflectance values
calculated from remote sensing data, linear regression analyses were used. There was
no time gap between the in-situ sampling and the RS data acquisition because both the
sentinel-2 data acquisition and the in-situ water quality parameters were carried out on
the same day. The average, linear and nonlinear regressions were calculated as part of
the statistical analyses. The power of the link between the two variables was
examined using R? analysis. A t-test was used to determine whether a significance
level was significant (p 0.05) or not significant (p > 0.05), indicating that there was a
link between the two variables. To assess the analysis consistency of linear and
nonlinear regressions, statistical analyses were conducted using the mean values of
ground measurements compared to the statistical values of RS data. A significant
association between the variables was defined as a p-value of 0.05 or less, and an
absence of a significant association as one with a p-value of more than 0.05. The
linear regression analysis of the variables DOM, DO, turbidity, pH, and SPM with
GNDVI and NDTI, respectively, is shown in Fig. 4. In each tested water quality
measure (SWIR B11, SWIR B12, MNDWI, GNDVI, and NDTI), the linear regression
model's findings indicated that mean pixel values were the best for demonstrating a
coherent link between the WQPs and the remotely sensed estimated ones. Based on
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the summary of the fit analysis [36-37] (Fig. 4), the R? reported in Table 3
demonstrates the strong correlation between the mean value of the in-situ water
quality measurements and the conducted values from RS data.
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Figure 4 The linear regression model (a) DOM vs SWIR_12, (b) MNDW!I vs DO, (c)
Turbidity vs NDTI (d) pH vs GNDVI (e) SPM vs SWIR_B11.
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Table 3. Accuracy of the correlated regression model

SI No. Predicted Water Quality Overall Accuracy R2
Parameters

1 DOM 51 0.27

2 DO 60 0.26

3 pH 48 0.29

4 Turbidity 55 0.34

5 SPM 70 0.32

Four distinct zonal statistic types underwent regression analysis between the WQPs
concentration and the calculated spectral bands and indices. The DO in the dam lake
has decreased (Fig. 5), indicating less pollution impact on the water quality on the
watershed scale [38,39]. Carpenter [40] first investigated water turbidity as an
indication of sedimentation processes using data from the Landsat TM sensor images.
As a result, the method was created to consider modifying the current sensors' center
bandwidth, as Doxaran [41] reported utilizing (SPOT) images. Particularly in inland
water, the duality of the bands at SWIR_B11 and SWIR_B12 for suspended
particulate matter and DO prove useful in detecting turbidity [42]. Sentinel-2's core
band wavelengths in the near-infrared range also cover the approved bands for
suspended particle detection, enabling the sensor to estimate water turbidity with high
precision.
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Figure 5. Pre and post COVID-19 changes in (a) Turbidity (b) SPM (c) DO (d) pH
(e) DOM

4.  CONCLUSIONS

Costly laboratory materials and ongoing labor are needed to monitor water quality
indicators. The applied approaches and thorough evaluations provided answers to the
issues surrounding the viability of estimating the defined water quality parameters
utilizing a linear empirical approach across temporal remote sensing data. Sentinel-2
remote sensing data were effectively used to estimate dissolved oxygen, dissolved
organic matter, pH, suspended particle matter, and water turbidity. Sentinel- 2's
SWIR_B11 and SWIR_12 bands are the sensor's important characteristics for
accurately calculating the targeted water quality metrics. Additionally, there was a
strong connection between the mean values of the raster data and the actual data from
the performed laboratory exams.

Conflicts of Interest: The authors declare no conflict of interest.
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