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ABSTRACT

We formulate the problems of water wave radiation (both heave and surge) by
a submerged circular cylinder in water of uniform finite depth with an ice-
cover by using the method of multipoles, the ice-cover being modelled as an
elastic plate of very small thickness. The added mass and damping coefficients
for a heaving and surge problems are obtained and depicted graphically
against the wave number for various values of flexural rigidity of the ice-cover
to show the effect of the presence of ice-cover on these quantities. When the
flexural rigidity and surface density of ice-cover are taken to be zero, then the
curves for added-mass and damping coefficients almost coincide with the
curves for the case of uniform finite depth water with free surface. Also, it is
observed that the added-mass and damping coefficients for the heave modes of
motion are different from those for surge modes but for the case of radiation
by cylinder submerged in deep water with ice-cover, the forces of heave
problem are equal to the forces for the surge problem.

Key words- Water wave radiation, uniform finite depth, circular cylinder, ice-
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1. INTRODUCTION

Problems concerning the radiation of water waves by spherical objects have received
extensive study, beginning with Havelock [1] who solved the heave radiation problem
for a half-immersed sphere in deep water. Hulme [2] improved and extended it to the
case of sway. Ursell [3] solved the problem of surface waves on deep water in the
presence of a submerged circular cylinder by using the method of multipoles. This
method has been used in various fields of theoretical physics (cf. Jackson [4], Morse
and Feshbach [5]). Problems concerning the radiation of waves by spherical objects
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fully submerged in deep water with a free surface were investigated by Srokosz [6].
Wang [7] used the method of Havelock [1] to examine the radiation and diffraction
problems for a submerged sphere in deep water. Evans and Linton [8] used the
multipole method to solve the two-dimensional problems of radiation and scattering
of water waves by a submerged horizontal circular cylinder in finite depth water as
part of a need to determine accurately the natural frequencies of oscillation of a highly
buoyant tethered cylinder. Linton [9] considered the problems of radiation (both
heave and sway) and scattering of water waves by a sphere submerged in finite depth
water using the same method. Also, one of the attractive features of multipole
expansion methods for this type of problem is that the evaluation of added-mass and
damping coefficients on a submerged circular cylinder in infinite depth water (both
heave and surge) is investigated (cf. Linton and Mclver [10] and Eatock Taylor and
Hu [11].

Recently, Das and Mandal [12] studied the wave radiation by a sphere submerged in
water with an ice-cover to obtain the added-mass and damping coefficients. Sturova
[13] also considered the problem of hydrodynamic loads acting on an oscillating
cylinder submerged in a stratified fluid with ice-cover. Thakur and Das[14]
investigated the problem of hydrodynamic forces on a submerged horizontal circular
cylinder in water with ice-cover. Li et.all [15] considered the wave radiation and
diffraction by a circular cylinder submerged below an ice-sheet with a crack. They
used the multipole expansion method and the solution was obtained for a fluid of both
finite and infinite depth. Das and Sahu [16] recently studied the wave radiation by a
horizontal circular cylinder submerged in deep water with ice-cover. Thus we extend
the problem of Das and Sahu [16] to examine the radiation for a submerged circular
cylinder in uniform finite depth water with an ice-cover. The added-mass and
damping coefficients for a heaving and surge mode circular cylinder are obtained and
depicted graphically against the wave number for various values of flexural rigidity of
the ice-cover and depth of water to show the effect of the presence of ice-cover. When
the flexural rigidity and surface density of ice-cover are taken to be zero, so that the
ice-cover tends to a free-surface. Then the curves for added-mass and damping
coefficients almost coincide with the curves for the case of water with free surface (cf.
Eatock Taylor and Hu [11]). Also it is observed here that the added-mass and
damping coefficients for the heave modes of motion are different from those for surge
modes but for the case of radiation by cylinder submerged in deep water with ice-
cover, the forces of heave problem are equal to the forces for the surge problem (cf.
Das and Sahu [16]).

2. MATHEMATICAL FORMULATION

A rectangular Cartesian co-ordinate systems are chosen such thaty = 0 is the
undisturbed position of the ice-cover, y being measured vertically downwards. The
central axis of the cylinder with radius ais taken to bex = 0,y = f(f >
a). Assuming linear theory, the velocity potential function describing the resulting
motion can  be  represented by Re {¢(x,y)e""'},  where the time-
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independent complex valued potential function ¢ (x, y) satisfies
V2¢ = 0 in the fluid region, Q)

the linearized ice-cover condition (cf. Fox and Squire[17] )

4
(Do +1—eK)py + Kp =0 on y = 0. )
Eh3
12(1-v2)p1g
density of ice, p; is the density of water, h is the small thickness of the ice-cover,
and E,v are the Young’s modulus, and Poisson’s ratio of the ice. The boundary

conditions on the cylinder surface are

2
Where K = %, g being the gravity, D = and €= %ho . po is the
1

a , a
9%s _ sin® and 9bn _ cosO atr =a
or or

The bottom condition is given by

a9 _
g—Oasy—h. (3)

Where h is the depth of the water.

3. METHOD OF SOLUTION

Here r and 6 are polar coordinates defined by x = rsinf,y = f +rcosf (—mr <
0 < m).

Let ¢, and ¢ denote the symmetric (heave potential) and antisymmetric (surge
potential) multipoles satisfy (1) except at (0, f) with boundary conditions (3),(2).

The multipoles are (cf. Thorne [18])

s = “’::9 + 6 °[A; (k) sinh ky + B, (k) cosh k(h — y)]k"*cos kx dk, (4)
P2 = Si;‘j]a + 6 °[A,(k) sinh ky + B, (k) cosh k(h — y)]k™ *sin kx dk, (5)
1 e-k(-p

A1(k) = Az(k) = )

(n—1)! coshkh

-n* k(Dk*+1—€eK)+ K
By (k) = e S :
(n—1)! k(Dk* + 1 — €K) sinh kh — Kcosh kh
4 —
N 1 ok (h=1) k(Dk* +1 —€K)

(n—1)! coshkh[k(Dk* + 1 — €K) sinh kh — Kcosh kh]
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B, (k) = O™y k(Dk*+1-€eK)+K
2 T (-1 k(Dk*+1—¢€K) sinh kh—Kcosh kh
1 o—k(h—1) k(Dk*+1—€K)
(n-1)! coshkh[k(Dk*+1—€K) sinh kh—Kcosh kh]

Where the contour is intended below the pole k = A on the real k-axis, A being the
only real positive root of the dispersion equation

k(Dk* + 1 — €k) sinh kh = K cosh kh. (6)

This accounts for outgoing behaviour of ¢, and ¢Z at infinity.
A power series expansion can be obtained from (4) and (5) as

¢S = CO::H + X o Amnr™ cosmé (")
and
9 = T+ B Byt ™ sinme ®
Where
1 1 . m+n—1
wn=p jE k1[4, (k) C, (k) + By (k) G, (k)1dk,
)]
11 (®
B = 5 K™ ARG (60 + B, (G (]
]
Where

Ci3(k) = e F (—1)"me ™M,

Cya(k) = e k(h=1) 4 (_1)mek(h—f).

Let us now consider the heave and surge radiation problems for the cylinder. The
surge problem is anti-symmetric about x = 0, whereas the heave problem is
symmetric and so we can write (cf. Das and Sahu [16])

s = Z‘;.lo=1 an+1an¢7cll 9)
bn = Zn=1a"" Budbn (10)

for some set of unknowns «,, ,5,, and here , ¢, and ¢;, denotes the potential functions
for the surge and heave problems respectively.

Now using (7) and (8) in (9) and (10) respectively and using structural boundary
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conditions

P . P
?s _ sind and 2% = cosO at r=a
or ar

and using the orthogonal property of trigonometry, we obtained two infinite system of
equations

Ay — 2o A" "By = =81 ,m =1,2,3, ..., (11)
Bm — Zn=1a™ M A = —01n ,m =123, ..., (12)

Where 6,,, is the kronecker delta function.

These systems can be solved numerically by truncating the infinite series and solving
an N x N system of equations.

The hydrodynamic forces on the cylinder in the direction of motion is
F™ = Re{f™e~t}, (m = 0 surge and m = 1 for heave problems ), where the time-
independent part f™ is given by

fO=fi=wp foa ffn ¢ sin 6 rdédr,
for surge problem and
fl=fu=wpf, J" ¢ycosOrdodr,

for heave problem.

Using (9) and (10) and orthogonal properties of trigonometry, one can reduces it to

fs = mpwa*[a; + X5z Binan 1, (13)
fo= npwaz [B1 + Xn=1A1nPn ], (14)

The forces are non-dimesionalized with respect to the mass of fluid displaced by the
cylinder, we get the simplified expansion for the non-dimensional added-mass and
damping coefficients u>" and vS" respectively, by using (11) and (12) respectively
withm = 1. These are given by

i +ivi =1+ 2a, , (15)
pt+ivh =1+ 2B, . (16)

The constants @, and B, appearing in (15) and (16) respectively can be obtained
numerically by solving the linear system (11) and (12) after truncation. Here (11) and
(12) are truncated up to five terms and added-mass and damping coefficients for the
surge and heave problems are depicted graphically against the wave number for



6 Manomita Sahu and Dilip Das

various values of flexural rigidity of the ice-cover to show the effect of the presence
of ice-cover on these quantities.

4. NUMERICAL RESULTS

Curves for the added-mass u and damping coefficients v for both the cases (surge and
heave) are shown in figures 1 to 12.

Figs. 1-6 show u®,vS (surge mode) and Figs. 7-12 for u™, v (heave mode) plotted
against Ka for different values of f/a,Viz. f/a = 1.5,1.2,1.05 and different values
of D/a*. In the Figs. 1,7and Figs. 2, 8for added-mass and damping coefficient
respectively, D/a* = 0,e/a = 0. Here we observed that the curves are almost
coincides with the curves for the case of water with free surface (cf. Eatock Taylor
and Hu, [11].

In the Figs. 3,4 and 9,10, D/a* = 1,¢/a = 0.01,h/a = 3, Figs. 5, 6 and 11, 12,
f/a* =1.5,e/a =0.01,h/a = 4 and different values of D/a*. It is observed that
added-mass and damping coefficients first increase as Ka increases; each attains a
maximum value and then decrease as Ka further increases for all cases except added-
mass of the heave problem. Here added-mass gradually decrease as increases of Ka.
Also we noticed that due to the presence of ice-cover, the non-dimensional u and v
get reduced.

The damping coefficients here are always non-negative while the added-mass can be
negative. This occurs for a submerged cylinder, while it is very closed to the ice-cover
surface. Here it is also observed that the forces of the heave problem have significant
change, where as those for surge rather smoothly but for the case of radiation by
submerged circular cylinder in deep water (cf. Das and Sahu [16]), the forces of heave
problem are equal to the forces for the surge problem.

3
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Fig.1 Added mass against the wave number ka
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Fig.5 Added mass against the wave
number ka

2
—D/a*=0.01
= e 4_
15} D/a4—0.2
........... D/a%=05
T €/a=0.01,f/la=1.5 h/a=4
s
05+ e 1
N
0 ; R
0 0.5 1 1:5 2
ka
Fig.6 Damping coefficient against the wave
number ka
4
fla=1.5
3 —-—-fla=1.2 | |
= emunue fla=1.05

Fig.7 Added mass against the wave
number ka



Water Wave Radiation by a Submerged Circular Cylinder in Uniform...

2
fla=1.5
- —-fla=1.2
125 ........... f/la=1.05| 1
Tl AT oS D/a*=0,e/a=0,h/a=3

Fig.8 Damping coefficient against the wave
number ka

fla=1.5
———fla=1.2
........... fla=1.05 1

D/a*=1,¢/a=0.01,h/a=3

T — o —— o — ——

0 3 i {
0 0.5 1 15 2
ka
Fig.9 Added mass against the wave
number ka
2
fla=1.5
——-—fla=1.2
i.5¢ . f/la=1.05 1
gl Thg D/a*=1,6/a=0.01,h/a=3

ka

Fig.10 Damping coefficient against the wave
number ka



10 Manomita Sahu and Dilip Das

2
——D/a*=0.01
PR o 4_
isl D/a*=0.2
1 L
-c\‘;
0.5
O 1 A L
0 0.5 1 15 2

ka
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5. CONCLUSION

Water wave radiation by a horizontal circular cylinder submerged in uniform finite
depth water beneath the free surface is extended here when the free surface is replaced
by a thin ice-cover modelled as a thin elastic plate. Numerical results for the added-
mass and damping coefficients for surge and heaving cylinder are obtained. The
added mass and damping coefficients are depicted graphically against the wave
number in a number of figures. When the ice-cover is replaced by a free surface
curves for added-mass and damping coefficients almost coincide with the curves for
the cases of uniform finite depth water with free surface. Here it is also observed that
the forces of the heave problem have significant change, where as those for surge
rather smoothly but for the case of radiation by submerged circular cylinder in deep
water, the forces of heave problem are equal to the forces for the surge problem.
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