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ABSTRACT 

We formulate the problems of water wave radiation (both heave and surge) by 

a submerged circular cylinder in water of uniform finite depth with an ice-

cover by using the method of multipoles, the ice-cover being modelled as an 

elastic plate of very small thickness. The added mass and damping coefficients 

for a heaving and surge problems are obtained and depicted graphically 

against the wave number for various values of flexural rigidity of the ice-cover 

to show the effect of the presence of ice-cover on these quantities. When the 

flexural rigidity and surface density of ice-cover are taken to be zero, then the 

curves for added-mass and damping coefficients almost coincide with the 

curves for the case of uniform finite depth water with free surface. Also, it is 

observed that the added-mass and damping coefficients for the heave modes of 

motion are different from those for surge modes but for the case of radiation 

by cylinder submerged in deep water with ice-cover, the forces of heave 

problem are equal to the forces for the surge problem. 

Key words- Water wave radiation, uniform finite depth, circular cylinder, ice-

cover, added-mass and damping coefficients. 

 

1. INTRODUCTION 

Problems concerning the radiation of water waves by spherical objects have received 

extensive study, beginning with Havelock [1] who solved the heave radiation problem 

for a half-immersed sphere in deep water. Hulme [2] improved and extended it to the 

case of sway. Ursell [3] solved the problem of surface waves on deep water in the 

presence of a submerged circular cylinder by using the method of multipoles. This 

method has been used in various fields of theoretical physics (cf. Jackson [4], Morse 

and Feshbach [5]). Problems concerning the radiation of waves by spherical objects 
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fully submerged in deep water with a free surface were investigated by Srokosz [6]. 

Wang [7] used the method of Havelock [1] to examine the radiation and diffraction 

problems for a submerged sphere in deep water. Evans and Linton [8] used the 

multipole method to solve the two-dimensional problems of radiation and scattering 

of water waves by a submerged horizontal circular cylinder in finite depth water as 

part of a need to determine accurately the natural frequencies of oscillation of a highly 

buoyant tethered cylinder. Linton [9] considered the problems of radiation (both 

heave and sway) and scattering of water waves by a sphere submerged in finite depth 

water using the same method. Also, one of the attractive features of multipole 

expansion methods for this type of problem is that the evaluation of added-mass and 

damping coefficients on a submerged circular cylinder in infinite depth water (both 

heave and surge) is investigated (cf. Linton and McIver [10] and Eatock Taylor and 

Hu [11]. 

Recently, Das and Mandal [12] studied the wave radiation by a sphere submerged in 

water with an ice-cover to obtain the added-mass and damping coefficients. Sturova 

[13] also considered the problem of hydrodynamic loads acting on an oscillating 

cylinder submerged in a stratified fluid with ice-cover. Thakur and Das[14] 

investigated the problem of hydrodynamic forces on a submerged horizontal circular 

cylinder in water with ice-cover. Li et.all [15] considered the wave radiation and 

diffraction by a circular cylinder submerged below an ice-sheet with a crack. They 

used the multipole expansion method and the solution was obtained for a fluid of both 

finite and infinite depth. Das and Sahu [16] recently studied the wave radiation by a 

horizontal circular cylinder submerged in deep water with ice-cover. Thus we extend 

the problem of Das and Sahu [16] to examine the radiation for a submerged circular 

cylinder in uniform finite depth water with an ice-cover. The added-mass and 

damping coefficients for a heaving and surge mode circular cylinder are obtained and 

depicted graphically against the wave number for various values of flexural rigidity of 

the ice-cover and depth of water to show the effect of the presence of ice-cover. When 

the flexural rigidity and surface density of ice-cover are taken to be zero, so that the 

ice-cover tends to a free-surface. Then the curves for added-mass and damping 

coefficients almost coincide with the curves for the case of water with free surface (cf. 

Eatock Taylor and Hu [11]). Also it is observed here that the added-mass and 

damping coefficients for the heave modes of motion are different from those for surge 

modes but for the case of radiation by cylinder submerged in deep water with ice-

cover, the forces of heave problem are equal to the forces for the surge problem (cf. 

Das and Sahu [16]). 

 

2. MATHEMATICAL FORMULATION 

A rectangular Cartesian co-ordinate systems are chosen such that 𝑦 =  0 is the 

undisturbed position of the ice-cover,  𝑦 being measured vertically downwards. The 

central axis of the cylinder with radius a is taken to be 𝑥 =  0, 𝑦 =  𝑓(𝑓 >
 𝑎). Assuming linear theory, the velocity potential function describing the resulting 

motion can be represented by 𝑅𝑒 {𝜙(𝑥, 𝑦)𝑒−𝑖𝜎𝑡} , where the time-
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independent complex valued potential function 𝜙(𝑥, 𝑦) satisfies 

                          ∇2𝜙 =  0 in the fluid region,                                  (1)  

the linearized ice-cover condition (cf. Fox and Squire[17] ) 

(𝐷
𝜕4

𝜕𝑥4  +  1 −  𝜖𝐾) 𝜙𝑦 +  𝐾𝜙 =  0         𝑜𝑛   𝑦 =  0.                     (2) 

Where 𝐾 =
𝜎2

𝑔
,  𝑔 being the gravity, 𝐷 =

𝐸ℎ0
3

12(1−𝜈2)𝜌1𝑔
  and  𝜖 =

𝜌0

𝜌1
ℎ0 ,  𝜌0 is the 

density of ice, 𝜌1 is the density of water, ℎ0 is the small thickness of the ice-cover, 

and 𝐸, 𝜈 are the Young’s modulus, and Poisson’s ratio of the ice. The boundary 

conditions on the cylinder surface are 

𝜕𝜙𝑠

𝜕𝑟
= 𝑠𝑖𝑛𝜃      and         

𝜕𝜙ℎ

𝜕𝑟
= 𝑐𝑜𝑠𝜃   at 𝑟 = 𝑎 

The bottom condition is given by 

𝜕𝜙

𝜕𝑦
= 0  as  𝑦 = ℎ.                                       (3) 

Where ℎ is the depth of the water. 

 

3.   METHOD OF SOLUTION 

Here 𝑟 and 𝜃 are polar coordinates defined by  𝑥 =  𝑟𝑠𝑖𝑛𝜃, 𝑦 = 𝑓 + 𝑟𝑐𝑜𝑠𝜃 (−𝜋 ≤
𝜃 ≤  𝜋). 

Let 𝜙𝑛
𝑠  and 𝜙𝑛

𝑎 denote the symmetric (heave potential) and antisymmetric (surge 

potential) multipoles satisfy (1) except at (0, 𝑓) with boundary conditions (3),(2). 

The multipoles are (cf. Thorne [18]) 

  𝜙𝑛
𝑠 =

cos 𝑛𝜃

𝑟𝑛 + ∮ [𝐴1(𝑘) sinh 𝑘𝑦 + 𝐵1(𝑘) cosh 𝑘(ℎ − 𝑦)]𝑘𝑛−1cos 𝑘𝑥 𝑑𝑘,
∞

0
     (4)  

  𝜙𝑛
𝑎 =

sin 𝑛𝜃

𝑟𝑛
+ ∮ [𝐴2(𝑘) sinh 𝑘𝑦 + 𝐵2(𝑘) cosh 𝑘(ℎ − 𝑦)]𝑘𝑛−1sin 𝑘𝑥 𝑑𝑘,

∞

0
         (5) 

𝐴1(𝑘) = 𝐴2(𝑘) =
1

(𝑛−1)!

𝑒−𝑘(ℎ−𝑓)

cosh 𝑘ℎ
 , 

𝐵1(𝑘) =
(−1)𝑛

(𝑛 − 1)!
𝑒−𝑘𝑓

𝑘(𝐷𝑘4 + 1 − 𝜖𝐾) + 𝐾

𝑘(𝐷𝑘4 + 1 − 𝜖𝐾) sinh 𝑘ℎ − 𝐾𝑐𝑜𝑠ℎ 𝑘ℎ

+
1

(𝑛 − 1)!
𝑒−𝑘(ℎ−𝑓)

𝑘(𝐷𝑘4 + 1 − 𝜖𝐾)

cosh 𝑘ℎ[ 𝑘(𝐷𝑘4 + 1 − 𝜖𝐾) sinh 𝑘ℎ − 𝐾𝑐𝑜𝑠ℎ 𝑘ℎ]
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𝐵2(𝑘) =
(−1)𝑛+1

(𝑛−1)!
𝑒−𝑘𝑓 𝑘(𝐷𝑘4+1−𝜖𝐾)+𝐾

𝑘(𝐷𝑘4+1−𝜖𝐾) sinh 𝑘ℎ−𝐾𝑐𝑜𝑠ℎ 𝑘ℎ
+

                                    
1

(𝑛−1)!
𝑒−𝑘(ℎ−𝑓) 𝑘(𝐷𝑘4+1−𝜖𝐾)

cosh 𝑘ℎ[𝑘(𝐷𝑘4+1−𝜖𝐾) sinh 𝑘ℎ−𝐾𝑐𝑜𝑠ℎ 𝑘ℎ]
 . 

Where the contour is intended below the pole 𝑘 = 𝜆 on the real 𝑘-axis, 𝜆 being the 

only real positive root of the dispersion equation 

𝑘(𝐷𝑘4 + 1 − 𝜖𝑘) sinh 𝑘ℎ = 𝐾 cosh 𝑘ℎ.                                                (6) 

This accounts for outgoing behaviour of 𝜙𝑛
𝑠  and 𝜙𝑛

𝑎 at infinity. 

   A power series expansion can be obtained from (4) and (5) as  

𝜙𝑛
𝑠 =

cos 𝑛𝜃

𝑟𝑛 + ∑ 𝐴𝑚𝑛𝑟𝑚 cos 𝑚𝜃∞
𝑚=0  ,                                            (7) 

and 

𝜙𝑛
𝑎 =

sin 𝑛𝜃

𝑟𝑛 + ∑ 𝐵𝑚𝑛𝑟𝑚 sin 𝑚𝜃∞
𝑚=0  .                                                  (8) 

Where 

𝐴𝑚𝑛 =
1

2

1

𝑚!
∮ 𝑘𝑚+𝑛−1[𝐴1(𝑘)𝐶1(𝑘) + 𝐵1(𝑘)𝐶2(𝑘)]𝑑𝑘,

∞

0

 

𝐵𝑚𝑛 =
1

2

1

𝑚!
∮ 𝑘𝑚+𝑛−1[𝐴2(𝑘)𝐶3(𝑘) + 𝐵2(𝑘)𝐶4(𝑘)]𝑑𝑘,

∞

0

 

Where 

𝐶1,3(𝑘) = 𝑒𝑘𝑓 ∓ (−1)𝑚𝑒−𝑘𝑓 , 

𝐶2,4(𝑘) = 𝑒−𝑘(ℎ−𝑓) ± (−1)𝑚𝑒𝑘(ℎ−𝑓). 

Let us now consider the heave and surge radiation problems for the cylinder. The 

surge problem is anti-symmetric about 𝑥 = 0, whereas the heave problem is 

symmetric and so we can write (cf. Das and Sahu [16]) 

𝜙𝑠 = ∑ 𝑎𝑛+1𝛼𝑛𝜙𝑛
𝑎∞

𝑛=1                                                               (9) 

𝜙ℎ = ∑ 𝑎𝑛+1𝛽𝑛𝜙𝑛
𝑠∞

𝑛=1                                                       (10) 

for some set of unknowns  𝛼𝑛 ,𝛽𝑛 and here , 𝜙𝑠 and 𝜙ℎ denotes the potential functions 

for the surge and heave problems respectively. 

Now using (7) and (8)  in (9) and (10) respectively and using structural boundary 
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conditions   

𝜕𝜙𝑠

𝜕𝑟
= 𝑠𝑖𝑛𝜃  and  

𝜕𝜙ℎ

𝜕𝑟
= 𝑐𝑜𝑠𝜃   at          𝑟 = 𝑎 

and using the orthogonal property of trigonometry, we obtained two infinite system of 

equations  

𝛼𝑚 − ∑ 𝑎𝑚+𝑛𝐵𝑚𝑛𝛼𝑛 = −𝛿1𝑚
∞
𝑛=1  , 𝑚 = 1,2,3, … . .,                                  (11) 

𝛽𝑚 − ∑ 𝑎𝑚+𝑛𝐴𝑚𝑛𝛽𝑛 = −𝛿1𝑚
∞
𝑛=1  , 𝑚 = 1,2,3, … . .,                               (12) 

Where 𝛿𝑛𝑚 is the kronecker delta function. 

These systems can be solved numerically by truncating the infinite series and solving 

an 𝑁 ×  𝑁   system of equations. 

The hydrodynamic forces on the cylinder in the direction of motion is  

𝐹𝑚 = 𝑅𝑒{𝑓𝑚𝑒−𝑖𝜔𝑡}, (𝑚 = 0 surge and 𝑚 = 1 for heave problems ), where the time-

independent part 𝑓𝑚 is given by 

𝑓0 = 𝑓𝑠 = 𝜔𝜌 ∫ ∫ 𝜙𝑠 sin 𝜃 𝑟𝑑𝜃𝑑𝑟
𝜋

−𝜋

𝑎

0
, 

for surge problem and 

  𝑓1 = 𝑓ℎ = 𝜔𝜌 ∫ ∫ 𝜙ℎ cos 𝜃 𝑟𝑑𝜃𝑑𝑟
𝜋

−𝜋

𝑎

0
, 

for heave problem. 

   Using (9) and (10) and orthogonal properties of trigonometry, one can reduces it to 

𝑓𝑠 = 𝜋𝜌𝜔𝑎2[𝛼1 + ∑ 𝐵1𝑛𝛼𝑛 ]∞
𝑛=1  , (13) 

𝑓ℎ = 𝜋𝜌𝜔𝑎2[𝛽1 + ∑ 𝐴1𝑛𝛽𝑛 ]∞
𝑛=1  , (14) 

The forces are non-dimesionalized with respect to the mass of fluid displaced by the 

cylinder, we get the simplified expansion for the non-dimensional added-mass and 

damping coefficients 𝜇𝑠,ℎ and 𝜈𝑠,ℎ respectively, by using (11) and (12) respectively 

with𝑚 = 1. These are given by  

𝜇𝑠 + 𝑖𝜈𝑠 = 1 + 2𝛼1  ,   (15) 

𝜇ℎ + 𝑖𝜈ℎ = 1 + 2𝛽1  .             (16) 

The constants 𝛼1 and 𝛽1 appearing in (15) and (16) respectively can be obtained 

numerically by solving the linear system (11) and (12) after truncation. Here (11) and 

(12) are truncated up to five terms and added-mass and damping coefficients for the 

surge and heave problems are depicted graphically against the wave number for 
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various values of flexural rigidity of the ice-cover to show the effect of the presence 

of ice-cover on these quantities.  

 

4.  NUMERICAL RESULTS 

Curves for the added-mass 𝜇 and damping coefficients 𝜈 for both the cases (surge and 

heave) are shown in figures 1 to 12. 

Figs. 1-6 show 𝜇𝑠, 𝜈𝑠 (surge mode) and Figs. 7-12 for 𝜇ℎ, 𝜈ℎ (heave mode) plotted 

against 𝐾𝑎 for different values of 𝑓 𝑎,⁄ Viz. 𝑓 𝑎 = 1.5,1.2,1.05⁄  and different values 

of 𝐷 𝑎4⁄ . In the Figs.  1, 7and Figs. 2, 8for added-mass and damping coefficient 

respectively, 𝐷 𝑎4 = 0, 𝜖 𝑎 = 0.⁄⁄  Here we observed that the curves are almost 

coincides with the curves for the case of water with free surface (cf. Eatock Taylor 

and Hu, [11]. 

In the Figs. 3,4 and 9,10, 𝐷 𝑎4 = 1,⁄ 𝜖 𝑎 = 0.01,⁄ ℎ 𝑎 = 3,⁄  Figs. 5, 6 and 11, 12, 

𝑓 𝑎4 = 1.5,⁄ 𝜖 𝑎 = 0.01,⁄ ℎ 𝑎 = 4⁄  and different values of 𝐷 𝑎4.⁄  It is observed that 

added-mass and damping coefficients first increase as 𝐾𝑎 increases; each attains a 

maximum value and then decrease as 𝐾𝑎 further increases for all cases except added-

mass of the heave problem. Here added-mass gradually decrease as increases of 𝐾𝑎. 

Also we noticed that due to the presence of ice-cover, the non-dimensional 𝜇 and 𝜈 

get reduced. 

The damping coefficients here are always non-negative while the added-mass can be 

negative. This occurs for a submerged cylinder, while it is very closed to the ice-cover 

surface. Here it is also observed that the forces of the heave problem have significant 

change, where as those for surge rather smoothly but for the case of radiation by 

submerged circular cylinder in deep water (cf. Das and Sahu [16]), the forces of heave 

problem are equal to the forces for the surge problem. 
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5. CONCLUSION 

Water wave radiation by a horizontal circular cylinder submerged in uniform finite 

depth water beneath the free surface is extended here when the free surface is replaced 

by a thin ice-cover modelled as a thin elastic plate. Numerical results for the added-

mass and damping coefficients for surge and heaving cylinder are obtained. The 

added mass and damping coefficients are depicted graphically against the wave 

number in a number of figures. When the ice-cover is replaced by a free surface 

curves for added-mass and damping coefficients almost coincide with the curves for 

the cases of uniform finite depth water with free surface. Here it is also observed that 

the forces of the heave problem have significant change, where as those for surge 

rather smoothly but for the case of radiation by submerged circular cylinder in deep 

water, the forces of heave problem are equal to the forces for the surge problem. 
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