Datasets for Assessment of Water Quality Indices for Irrigation and Drinking for Hadoti Lakes, Rajasthan

Sohil Sisodiya^{1*}, Renu Kumari Mehar ^{2a}, Anil K. Mathur ^{2b}

¹ Assistant Professor, Department of Civil Engineering, University Departments, RTU, Kota - 324010, Rajasthan, India.

^{2a} Graduate Student, Department of Civil Engineering, University Departments, RTU, Kota - 324010, Rajasthan, India.

^{2b} Professor, Department of Civil Engineering, University Departments, RTU, Kota - 324010, Rajasthan, India.

Abstract

In semi-arid areas, water availability plays an important role in the survival and sustenance of human life. The aim was to provide an assessment of urban lakes in the Hadoti region of Rajasthan. For assessing irrigation water quality, sodium absorption ratio, soluble sodium percentage, kelly ratio, sodium percentage, magnesium hazard, permeability index are determined. For drinking water assessment, water quality indexing is been done and the standards in accordance with drinking water parameters as laid by the Bureau of Indian Standards (BIS) are assessed. The estimated indices prove to be an important rating tool for water quality in terms of sustainable development associated with urban settings along with presence of lakes. The present dataset demonstrates the application of indices associated with water quality aspects as an important decision-making tool to policymakers for implementing best management practices, treatment, and associated sustainable development for urban lakes.

Keywords: Hadoti area, Urban Lakes, Water quality Index, Best Management Practices.

_

^{*} Corresponding author: Sohil Sisodiya E-Mail: ssisodiya.npiu.ce@rtu.ac.in

1. DATA DESCRIPTION

This dataset contains 8 Tables and 2 Figures that present the quality of lake waters for Hadoti region in the state of Rajasthan, India. Figure 1 shows the sampling locations. Monitoring of physico-chemical parameters (like pH, turbidity, total hardness, sodium, potassium, calcium, alkalinity, nitrate, iron and fluoride) and their characteristics are shown in Table 1. Irrigation water indices are shown in Table 2 and the suitability ranges are shown in Table 6. Drinking water standards as per the Bureau of Indian Standards (BIS)[1] are used in Table 3 and the range for suitability is shown in Table 4. Table 5 and Table 7 represent the comparative results for the featured indices. Table 8 and Figure 2 shows the Pearson Correlation Matrix among the various parameters.

2. EXPERIMENTAL DESIGN, MATERIALS AND METHODS

2.1 Study Area Description

The study area involves Hadoti region (situated in the state of Rajasthan) which comprises of Kota, Bundi, Baran and Jhalawar districts. Kota has Kishore Sagar Lake, Jhalawar has Khandiya Lake, Bundi has Jait Sagar Lake and Baran has Dol Lake. All water bodies are situated in city limits and are facing constant human encroachments in their catchments due to increasing urbanization. Figure 1 shows the details of the study area. Samples were taken at definite intervals from each urban lake representing the seasonal variations from April 2019 to February 2020. Table 1 indicates Latitude and Longitude for collected samples/data.

Table 1: Latitude and Longitude for Urban Lakes in Hadoti Region

Urban Lakes	Latitude	Longitude		
Kishore Sagar Lake	25.181	75.853		
Dol Lake	25.107	76.510		
Khandya Lake	24.575	76.170		
Jait Sagar Lake	25.454	75.643		

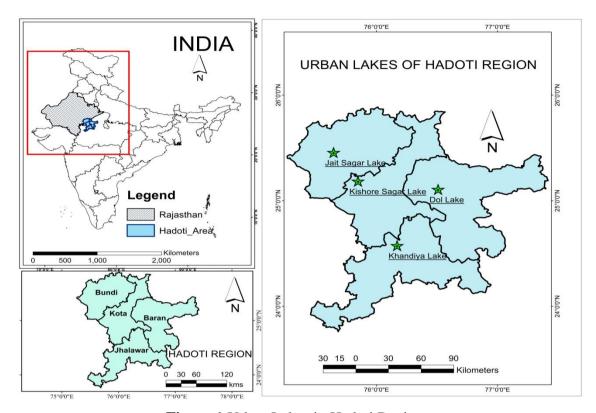


Figure 1 Urban Lakes in Hadoti Region

2.2 Analytical Procedures

All methods and sampling steps and procedures are performed as per the Standard methods for water and wastewater [4]. pH and EC are measured using portable meter (EIE Instruments - Soil and water analysis kit), hardness and alkalinity were performed by titration using EDTA and H₂SO₄ solutions with proper respective indicators. Turbidity was measured using turbidity meter (EIE Instruments - Model 335E). Sodium and potassium were measured using flame photometer (EIE concentrations, Model 049100). iron and nitrate Instruments-For Spectrophotometer (ThermoFischer Spectronic 200) was used and fluoride was determined using SPANDS method. For TDS measurements gravimetric methods were employed.

2.3 Data treatment and classification methods

2.3.1. Drinking water quality index

The Water Quality index (WQI) [2],[3] is calculated in the following steps:

1. Different weights (W_i) are assigned to all parameters based upon their importance and the parameter under consideration indicating harmfulness, if present. The

minimum weight assigned is one and the maximum being five. Following this, Relative Weights (RW_i) is calculated as:

$$RW_i = \frac{W_i}{\sum_{1}^{n} W_i}$$

where n is the number of parameters under consideration.

2. For Quality Rating Scale (q_i) is calculated as:

$$q_i = \frac{e_i - v_i}{b_i - v_i} \times 100$$

where v_i is the base value for each parameter under observation (0 for all parameters except for pH (7)), b_i is the standard value recommended in IS 10500 and e_i are the values observed experimentally.

3. The (SI_i)Sub Index is calculated for each parameter as:

$$SI_i = RW_i \times q_i$$

4. Finally, Water Quality Index (WQI) is calculated as:

$$WQI = \sum_{1}^{n} SI_{i}$$

2.3.2. Indices calculation for irrigation water[2]

Overall water quality of the parameters was assessed using indices such as SAR (Sodium Absorption Ratio), SSP (Soluble Sodium Percentage), KR (Kelly Ratio), Na % (Sodium Percentage), MH (Magnesium Hazard) and PI (Permeability Index) using Table 2 and Table 6.

SampleNo. Total Ca 2+ Mg ²⁺ pH Turbidity EC T.D.S. Nitrate Iron Na⁺ K⁺ HCO3 F-Parameter Hardness 313.00 0.00 22.00 2.79 129.00 49.00 0.29 **KST 11** 7.60 13.00 421.00 148.00 3.00 29.00 **KST 12** 7.94 15.00 450.00 175.00 772.00 1.00 0.00 24.00 2.95 137.00 26.00 27.00 1.50 Kishore Sagar Lake, Kota 0.00 28.00 3.10 130.00 **KST 13** 7.80 15.60 343.00 100.00 240.00 5.00 70.00 30.00 0.27 **KST 14** 8.20 14.00 345.00 150.00 234.00 4.00 0.00 21.00 3.30 110.00 80.00 50.00 0.13 MAX 8.20 15.60 450.00 175.00 772.00 5.00 0.00 28.00 3.30 137.00 80.00 50.00 1.50 234.00 0.00 21.00 2.79 7.60 100.00 1.00 110.00 26.00 27.00 MIN 13.00 343.00 0.13 7.89 23.75 3.04 **MEAN** 14.40 389.75 143.25 389.75 3.25 0.00 126.50 56.25 34.00 0.55 0.25 31.34 257.35 1.71 0.00 3.10 0.22 11.56 23.95 10.74 SD 1.14 54.14 0.64

Table 2: Parameters for lakes of Hadoti Region

	DL 11	6.90	12.00	189.00	88.00	144.00	19.00	0.05	33.00	2.70	148.00	49.00	19.00	0.15
Dol Lake, Baran	DL 12	7.95	10.00	195.00	95.00	1584.00	25.00	0.10	31.00	3.10	152.00	8.00	18.00	0.00
	DL 13	7.30	14.40	323.00	110.00	226.00	10.00	0.05	37.00	3.90	130.00	80.00	20.00	0.18
	DL 14	6.60	9.20	225.00	75.00	157.00	24.00	0.00	39.00	2.90	70.00	50.00	20.00	0.12
	MAX	7.95	14.40	323.00	110.00	1584.00	25.00	0.10	39.00	3.90	152.00	80.00	20.00	0.18
Do	MIN	6.60	9.20	189.00	75.00	144.00	10.00	0.00	31.00	2.70	70.00	8.00	18.00	0.00
	MEAN	7.19	11.40	233.00	92.00	527.75	19.50	0.05	35.00	3.15	125.00	46.75	19.25	0.11
	SD	0.58	2.32	62.03	14.58	705.09	6.86	0.04	3.65	0.53	37.89	29.57	0.96	0.08
	KL 11	7.50	11.00	386.00	110.00	412.00	12.00	0.00	26.00	1.90	198.00	117.00	25.00	0.21
ır	KL 12	7.69	10.00	410.00	145.00	698.00	10.00	0.10	21.00	2.20	148.00	34.00	15.00	0.75
alawa	KL 13	7.70	11.50	412.00	140.00	289.00	13.00	0.00	25.00	2.80	170.00	120.00	22.00	0.17
Khandya Lake, Jhalawar	KL 14	7.30	11.70	505.00	70.00	354.00	15.00	0.00	29.00	2.60	180.00	120.00	70.00	0.15
ya La	MAX	7.70	11.70	505.00	145.00	698.00	15.00	0.10	29.00	2.80	198.00	120.00	70.00	0.75
hand	MIN	7.30	10.00	386.00	70.00	289.00	10.00	0.00	21.00	1.90	148.00	34.00	15.00	0.15
K	MEAN	7.55	11.05	428.25	116.25	438.25	12.50	0.03	25.25	2.38	174.00	97.75	33.00	0.32
	SD	0.19	0.76	52.51	34.49	180.31	2.08	0.05	3.30	0.40	20.85	42.52	25.02	0.29
	JS 11	7.38	9.00	389.00	128.00	268.00	4.00	0.30	19.00	1.50	168.00	105.00	33.00	0.29
	JS 12	7.41	10.00	370.00	135.00	674.00	5.00	0.00	17.00	1.90	125.00	122.00	19.00	0.70
ake, Bundi	JS 13	7.40	3.70	368.00	145.00	258.00	3.00	0.10	21.00	1.60	172.00	125.00	25.00	0.18
ake,	JS 14	7.20	7.00	394.00	140.00	276.00	2.00	0.10	23.00	2.10	160.00	110.00	40.00	0.20
Jait Sagar La	MAX	7.41	10.00	394.00	145.00	674.00	5.00	0.30	23.00	2.10	172.00	125.00	40.00	0.70
Jait S:	MIN	7.20	3.70	368.00	128.00	258.00	2.00	0.00	17.00	1.50	125.00	105.00	19.00	0.18
	MEAN	7.35	7.43	380.25	137.00	369.00	3.50	0.13	20.00	1.78	156.25	115.50	29.25	0.34
	SD	0.10	2.78	13.18	7.26	203.47	1.29	0.13	2.58	0.28	21.42	9.54	9.18	0.24

Acronym	Index	Expression
SAR	Sodium Absorption Ratio	$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$
SSP	Soluble Sodium Percentage	$\left(\frac{Na}{Ca + Mg + Na}\right) \times 100$
KR	Kelly Ratio	$\frac{Na}{Ca + Mg}$
Na %	Sodium Percentage	$\left(\frac{Na + K}{Ca + Mg + Na + K}\right) \times 100$
МН	Magnesium Hazard	$\left(\frac{Mg}{Ca + Mg}\right) \times 100$
PI	Permeability Index	$\left(\frac{Na + K + \sqrt{HCO_3}}{Ca + Mg + Na + K}\right) \times 100$

Table 3: Various Indices for Irrigation water

Table 4: IS 10500 standard values for parameters

Parameters	Standard Values as per IS 10500	Weight (W _i)	Relative Weights(RW _i)	
рН	6.5-8.5	4	0.13	
Total Hardness	300	4	0.13	
T.D.S.	500	4	0.13	
Nitrate 45		4	0.13	
Iron 0.3		2	0.06	
Turbidity	1	2	0.06	
Total Alkalinity	al Alkalinity 200		0.06	
Calcium	Calcium 75		0.09	
Magnesium 30		3	0.09	
Fluoride 1		4	0.13	
	Total	32	1.00	

Table 5: Classification and Range in WQI for drinking purpose for the present study [3]

WQI Value	Water Quality
< 50	Excellent
50 - 100	Good
100 -200	Poor
200 - 300	Very Poor
> 300	Unsuitable for Drinking

Table 6: Comparative results for drinking WQI

Lake	WQI Value	Water Quality
Kishore Sagar Lake, Kota	157.22	Poor
Dol Lake, Baran	116.63	Poor
Khandya Lake, Jhalawar	134.68	Poor
Jait Sagar Lake, Bundi	106.51	Poor

Table 7: Classification and Range in Irrigation Indices for the present study [2]

Index	Range	Water Quality
	0 - 10	Excellent
SAR	10 -18	Good
	18 - 26	Doubtful
	> 26	Unsuitable
SSP	< 50	Good
	> 50	Unsuitable
KR	< 1	Suitable
	> 2	Unsuitable
	< 20	Excellent
	20 - 40	Good
Na %	40 - 60	Permissible
	60 -80	Doubtful
	> 80	Unsuitable
MH	< 50	Suitable
	> 50	Harmful and
		Unsuitable
	< 80	Good
PI	80 - 100	Moderate
	100 - 120	Poor

Jait Sagar Lake,

Lake	SAR	SSP	KR	Na %	МН	PI	Water Class (Overall)
Kishore Sagar Lake , Kota	3.53	20.85	0.26	22.89	37.67	32.5	Excellent and Suitable
Dol Lake, Baran	6.09	34.65	0.53	36.63	29.2	47.36	Excellent and Suitable
Khandya Lake, Jhalawar	3.14	16.18	0.19	17.45	25.24	25.78	Excellent and Suitable
							Excellent

0.13

13.07

20.21

20.58

and

12.15

2.35

Table 8: Comparative Results for Irrigation Indices

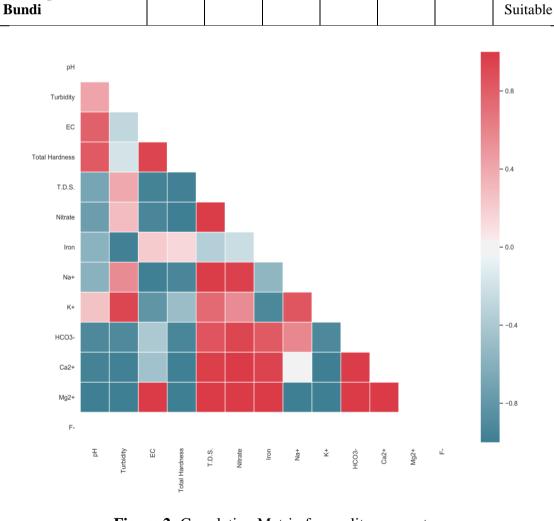


Figure 2: Correlation Matrix for quality parameters

Total HCO3- Ca2+ Mg2+ T.D.S. Variables пH Turbidity EC Nitrate Iron Na+ K+ Hardness рH 1 **Turbidity** 0.673 1 0.662 -0.025 Total 0.718 0.032 0.731 Hardness -0.570 0.199 -0.786 T.D.S. -0.968 1 -0.633 0.064 -0.681 -0.993 0.976 Nitrate 1 Iron -0.654 -0.949 -0.121 0.055 -0.242 -0.168 1 -0.485 0.317 -0.841 -0.908 0.982 0.918 -0.308 Na+ 1 K+ 0.191 0.849 -0.543 -0.413 0.627 0.472 -0.754 0.743 нсоз--0.056 -0.328 -0.116 -0.497 -0.762 -0.537 0.684 0.126 0.270 1 -0.113 -0.780 -0.619 -0.444 0.640 -0.749 -0.985 0.858 Ca2+ 0.643 0.404 0.843 0.216 0.960 0.811 -0.796 -0.747 -0.304 -0.801 -0.334 0.459 0.429 Mg2+ F-0.931 0.398 0.922 -0.819 -0.871 -0.336 -0.737 -0.097 0.014 0.133 0.883 0.736

Table 9: Correlation Matrix for quality parameters

Value of the Data

- This dataset gives a brief idea about the water quality aspects of urban lakes for the study area which helps the decision-makers to devise a strategy for implementing best management practices.
- ➤ The dataset for physical and chemical parameters can help to identify various processes and mechanisms affecting the water chemistry of urban lakes.
- > Stakeholders can use the data for future research related to monitoring studies with regards to assess impacts of urbanization for the study area.
- The results indicate that the water for the study area is fit for drinking and irrigation requirements and has the potential to be developed as recharge sites for groundwater development and further as stormwater detention ponds during the rainfall period.

Acknowledgments

The authors wish to acknowledge the laboratory support of Civil Engineering Department, Rajasthan Technical University, Kota.

REFERENCES

- [1] BIS, "Indian Standards Drinking Water Specifications IS 10500:2012," Bur. Indian Stand. Indian Stand. Drink. Water Specif., vol. 2, no. May, p. 11, 2012.
- [2] S. Acharya, S. K. Sharma, and V. Khandegar, "Assessment of groundwater quality by water quality indices for irrigation and drinking in South West Delhi, India," *Data Br.*, vol. 18, no. 2018, pp. 2019–2028, 2018.
- [3] M. Kachroud, F. Trolard, M. Kefi, S. Jebari, and G. Bourrié, "Water quality indices: Challenges and application limits in the literature," *Water (Switzerland)*, vol. 11, no. 2, pp. 1–26, 2019.
- [4] American Public Health Association (1998). Andrew D. Eaton et al., Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association.