Intuitionistic fuzzy ℓ–subsemiring of a ℓ–semiring R
under homomorphism and anti-homomorphism

1D. Mydhily and 2R. Natarajan

1Research Scholar (Part Time - Mathematics), Alagappa University,
Karaikudi – 630 003, Tamilnadu, India
2Professor and Head (Rtd), Dept. of Mathematics, Alagappa University,
Karaikudi – 630 003, Tamilnadu, India

Abstract

In this paper, we made an attempt to study the properties of intuitionistic fuzzy ℓ–subsemiring of a ℓ–semiring under homomorphism and anti-homomorphism and we introduce some theorems on this.

Key Words: Fuzzy subset, intuitionistic fuzzy ℓ–subsemiring, homomorphism, anti-homomorphism and strongest intuitionistic fuzzy relation.

Introduction

The concept of fuzzy sets was initiated by L.A.Zadeh [7] in 1965. After the introduction of fuzzy sets several researchers explored on the generalization of the concept of fuzzy sets. K.T.Atanassov introduced [1] intuitionistic fuzzy subset in 1983. George Gargor named new sets as the intuitionistic fuzzy subset. In this paper to introduced the concept of intuitionistic fuzzy ℓ–subsemiring of a ℓ–semiring under homomorphism and anti-homomorphism and established some results on these.

Definition: 1.1

Let R be a ℓ–semiring. An intuitionistic fuzzy subset A of R is said to be an intuitionistic fuzzy ℓ–subsemiring of R if it satisfies the following conditions:

(i) $\mu_A(x + y) \geq \min \{\mu_A(x) , \mu_A(y)\}$
(ii) $\mu_A(xy) \geq \min \{\mu_A(x) , \mu_A(y)\}$
(iii) $\mu_A(x \lor y) \geq \min \{\mu_A(x) , \mu_A(y)\}$
(iv) $\mu_A(x \land y) \geq \min \{\mu_A(x) , \mu_A(y)\}$
\(v_A(x+y) \leq \max \{v_A(x), v_A(y)\} \)

\(v_A(x \cdot y) \leq \max \{v_A(x), v_A(y)\} \)

\(v_A(x \lor y) \leq \max \{v_A(x), v_A(y)\} \)

\(v_A(x \land y) \leq \max \{v_A(x), v_A(y)\} \)

for all \(x, y \in R \)

Definition: 1.2

Let \(A \) be an intuitionistic fuzzy subset in a set \(S \), the strongest intuitionistic fuzzy relation on \(S \), that is a intuitionistic fuzzy relation on \(A \) is \(V \) given by

\[\mu_V(x,y) = \min \{\mu_A(x), \mu_A(y)\} \]

\[v_V(x,y) = \max \{v_A(x), v_A(y)\} \]

for all \(x, y \in S \).

Definition: 1.3

Let \(R \) and \(R' \) be any two \(\ell \)-semirings. Then the function \(f : R \rightarrow R' \) is called a \(\ell \)-semiring homomorphism if it satisfies the following axioms:

(i) \(f(x+y) = f(x) + f(y) \)

(ii) \(f(xy) = f(x)f(y) \)

(iii) \(f(x \lor y) = f(x) \lor f(y) \)

(iv) \(f(x \land y) = f(x) \land f(y) \),

for all \(x, y \in R \)

Example: 1.1

Let \(R = \{m+n\sqrt{2} \mid m, n \in \mathbb{Z}\} \). \(R \) is a \(\ell \)-semiring under usual addition and multiplication

Define \(f : R \rightarrow R \) by \(f(m+n\sqrt{2}) = m-n\sqrt{2} \) is \(\ell \)-semiring homomorphism, where \(\mathbb{Z} \) is the set of all integers.

Definition: 1.4

Let \(R \) and \(R' \) be any two \(\ell \)-semirings. Then the function \(f : R \rightarrow R' \) is called a \(\ell \)-semiring anti-homomorphism if it satisfies the following axioms:

(i) \(f(x+y) = f(y) + f(x) \)

(ii) \(f(xy) = f(y)f(x) \)

(iii) \(f(x \lor y) = f(y) \lor f(x) \)

(iv) \(f(x \land y) = f(y) \land f(x) \),

for all \(x, y \in R \)
Theorem: 1.1
Let R and R' be any two ℓ−semirings. The homomorphic image of an intuitionistic fuzzy ℓ−subsemiring of R is an intuitionistic fuzzy ℓ−subsemiring of R'.

Proof:
Let R and R' be any two ℓ−semirings and $f : R \to R'$ an homomorphism.
Let $V = f(A)$, where A is an intuitionistic fuzzy ℓ−subsemiring of R.
To prove V is an intuitionistic fuzzy ℓ−subsemiring of R'.
For $f(x)$, $f(y)$ in R',
(i) $\mu_V(f(x) + f(y)) = \mu_V(f(x + y)) \geq \mu_A(x + y) \geq \min\{\mu_A(x), \mu_A(y)\}$
$\Rightarrow \mu_V(f(x) + f(y)) \geq \min\{\mu_V(x), \mu_V(y)\}$, for all x, y in R
(ii) $\mu_V(f(x)f(y)) = \mu_V(f(xy)) \geq \mu_A(xy) \geq \min\{\mu_A(x), \mu_A(y)\}$
$\Rightarrow \mu_V(f(x)f(y)) \geq \min\{\mu_V(x), \mu_V(y)\}$, for all x, y in R
(iii) $\mu_V(f(x) \vee f(y)) = \mu_V(f(x \vee y)) \geq \mu_A(x \vee y) \geq \min\{\mu_A(x), \mu_A(y)\}$
$\Rightarrow \mu_V(f(x) \vee f(y)) \geq \min\{\mu_V(x), \mu_V(y)\}$, for all x, y in R
(iv) $\mu_V(f(x) \wedge f(y)) = \mu_V(f(x \wedge y)) \geq \mu_A(x \wedge y) \geq \min\{\mu_A(x), \mu_A(y)\}$
$\Rightarrow \mu_V(f(x) \wedge f(y)) \geq \min\{\mu_V(x), \mu_V(y)\}$, for all x, y in R
(v) $v_V(f(x) + f(y)) = v_V(f(x + y)) \leq v_A(x + y) \leq \max\{v_A(x), v_A(y)\}$
$\Rightarrow v_V(f(x) + f(y)) \leq \max\{v_V(x), v_V(y)\}$, for all x, y in R
(vi) $v_V(f(x)f(y)) = v_V(f(xy)) \leq v_A(xy) \leq \max\{v_A(x), v_A(y)\}$
$\Rightarrow v_V(f(x)f(y)) \leq \max\{v_V(x), v_V(y)\}$, for all x, y in R
(vii) $v_V(f(x) \vee f(y)) = v_V(f(x \vee y)) \leq v_A(x \vee y) \leq \max\{v_A(x), v_A(y)\}$
$\Rightarrow v_V(f(x) \vee f(y)) \leq \max\{v_V(x), v_V(y)\}$, for all x, y in R
(viii) $v_V(f(x) \wedge f(y)) = v_V(f(x \wedge y)) \leq v_A(x \wedge y) \leq \max\{v_A(x), v_A(y)\}$
$\Rightarrow v_V(f(x) \wedge f(y)) \leq \max\{v_V(x), v_V(y)\}$, for all x, y in R
Therefore V is an intuitionistic fuzzy ℓ−subsemiring of R'.

Theorem: 1.2
Let R and R' be any two ℓ−semirings. The homomorphic pre-image of an intuitionistic fuzzy ℓ−subsemiring of R' is an intuitionistic fuzzy ℓ−subsemiring of R.

Proof:

Let R and R' be any two $\ell-$semirings and $f : R \rightarrow R'$ a homomorphism.

Let $V = f(A)$, where V is an intuitionistic fuzzy $\ell-$subsemiring of R'.

To prove A is an intuitionistic fuzzy $\ell-$subsemiring of R. For x, y in R,

(i) $\mu_A(x + y) = \mu_V(f(x + y))$, since $\mu_V(f(x)) = \mu_A(x)$

$= \mu_V(f(x) + f(y))$, ($\because f$ is a homomorphism)

$\geq \min \{\mu_V(f(x)), \mu_V(f(y))\}$

$= \min \{\mu_A(x), \mu_A(y)\}$, since $\mu_V(f(x)) = \mu_A(x)$

$\Rightarrow \quad \mu_A(x + y) \geq \min \{\mu_A(x), \mu_A(y)\}$, for all x, y in R

(ii) $\mu_A(xy) = \mu_V(f(xy))$, since $\mu_V(f(x)) = \mu_A(x)$

$= \mu_V(f(x)f(y))$, ($\because f$ is a homomorphism)

$\geq \min \{\mu_V(f(x)), \mu_V(f(y))\}$

$= \min \{\mu_A(x), \mu_A(y)\}$, since $\mu_V(f(x)) = \mu_A(x)$

$\Rightarrow \quad \mu_A(xy) \geq \min \{\mu_A(x), \mu_A(y)\}$, for all x, y in R

(iii) $\mu_A(x \vee y) = \mu_V(f(x \vee y))$, since $\mu_V(f(x)) = \mu_A(x)$

$= \mu_V(f(x) \vee f(y))$, ($\because f$ is a homomorphism)

$\geq \min \{\mu_V(f(x)), \mu_V(f(y))\}$

$= \min \{\mu_A(x), \mu_A(y)\}$, since $\mu_V(f(x)) = \mu_A(x)$

$\Rightarrow \quad \mu_A(x \vee y) \geq \min \{\mu_A(x), \mu_A(y)\}$, for all x, y in R

(iv) $\mu_A(x \wedge y) = \mu_V(f(x \wedge y))$, since $\mu_V(f(x)) = \mu_A(x)$

$= \mu_V(f(x) \wedge f(y))$, ($\because f$ is a homomorphism)

$\geq \min \{\mu_V(f(x)), \mu_V(f(y))\}$

$= \min \{\mu_A(x), \mu_A(y)\}$, since $\mu_V(f(x)) = \mu_A(x)$

$\Rightarrow \quad \mu_A(x \wedge y) \geq \min \{\mu_A(x), \mu_A(y)\}$, for all x, y in R

(v) $v_A(x + y) = v_V(f(x + y))$, since $v_V(f(x)) = v_A(x)$

$= v_V(f(x) + f(y))$, ($\because f$ is a homomorphism)

$\leq \max \{v_V(f(x)), v_V(f(y))\}$

$= \max \{v_A(x), v_A(y)\}$, since $\mu_V(f(x)) = \mu_A(x)$
\[\Rightarrow v_A(x + y) \leq \max \{v_A(x), v_A(y)\}, \text{ for all } x, y \in R \]

(vi) \[v_A(xy) = v_V(f(xy)), \text{ since } v_V(f(x)) = v_A(x) \]
\[= v_V(f(x)f(y)), (\because f \text{ is a homomorphism}) \]
\[\leq \max \{v_V(f(x)), v_V(f(y))\} \]
\[= \max \{v_A(x), v_A(y)\}, \text{ since } \mu_V(f(x)) = \mu_A(x) \]

\[\Rightarrow v_A(xy) \leq \max \{v_A(x), v_A(y)\}, \text{ for all } x, y \in R \]

(vii) \[v_A(x \vee y) = v_V(f(x \vee y)), \text{ since } v_V(f(x)) = v_A(x) \]
\[= v_V(f(x) \vee f(y)), (\because f \text{ is a homomorphism}) \]
\[\leq \max \{v_V(f(x)), v_V(f(y))\} \]
\[= \max \{v_A(x), v_A(y)\}, \text{ since } \mu_V(f(x)) = \mu_A(x) \]

\[\Rightarrow v_A(x \vee y) \leq \max \{v_A(x), v_A(y)\}, \text{ for all } x, y \in R \]

Therefore \(A \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R \).

Theorem: 1.3

Let \(R \) and \(R' \) be any two \(\ell - \) semirings. The anti-homomorphic image of an intuitionistic fuzzy \(\ell - \) subsemiring of \(R \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R' \).

Proof:

Let \(R \) and \(R' \) be any two \(\ell - \) semirings and \(f : R \to R' \) an anti-homomorphism.

Let \(V = f(A) \), where \(A \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R \).

To prove \(V \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R' \).

For \(f(x), f(y) \) in \(R' \),

(i) \[\mu_V(f(x) + f(y)) = \mu_V(f(y + x)), \text{ since } f \text{ is an anti-homomorphism} \]
\[\geq \mu_A(y + x) \geq \min \{\mu_A(y), \mu_A(x)\} = \min \{\mu_A(x), \mu_A(y)\} \]
\[\Rightarrow \mu_V(f(x) + f(y)) \geq \min \{\mu_V(f(x)), \mu_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(ii) \[\mu_V(f(x)f(y)) = \mu_V(f(yx)), \text{ since } f \text{ is an anti-homomorphism} \]
\[\geq \mu_A(yx) \geq \min \{\mu_A(y), \mu_A(x)\} = \min \{\mu_A(x), \mu_A(y)\} \]

\[\Rightarrow \mu_V(f(x)f(y)) \geq \min \{\mu_V(f(x)), \mu_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(iii) \[\mu_V(f(x)f(y)) = \mu_V(f(yf(x)) \geq \min \{\mu_A(y), \mu_A(x)\} = \min \{\mu_A(x), \mu_A(y)\} \]

\[\Rightarrow \mu_V(f(x)f(y)) \geq \min \{\mu_V(f(x)), \mu_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(iv) \[\mu_V(f(x)f(y)) = \mu_V(f(yf(x)), \text{ since } f \text{ is an anti-homomorphism} \]

\[\geq \mu_A(yf(x) \geq \min \{\mu_A(x), \mu_A(y)\} \]

\[\Rightarrow \mu_V(f(x)f(y)) \geq \min \{\mu_V(f(x)), \mu_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(v) \[v_V(f(x)+f(y)) = v_V(f(y+x)), \text{ since } f \text{ is an anti-homomorphism} \]

\[\leq v_A(x+y) \leq \max \{v_A(x), v_A(y)\} \]

\[\Rightarrow v_V(f(x)+f(y)) \leq \max \{v_V(f(x)), v_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(vi) \[v_V(f(x)f(y)) = v_V(f(yx)), \text{ since } f \text{ is an anti-homomorphism} \]

\[\leq v_A(x+y) \leq \max \{v_A(x), v_A(y)\} \]

\[\Rightarrow v_V(f(x)f(y)) \leq \max \{v_V(f(x)), v_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(vii) \[v_V(f(x)f(y)) = v_V(f(yx)), \text{ since } f \text{ is an anti-homomorphism} \]

\[\leq v_A(x+y) \leq \max \{v_A(x), v_A(y)\} \]

\[\Rightarrow v_V(f(x)f(y)) \leq \max \{v_V(f(x)), v_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

(viii) \[v_V(f(x)f(y)) = v_V(f(yx)), \text{ since } f \text{ is an anti-homomorphism} \]

\[\leq v_A(x+y) \leq \max \{v_A(x), v_A(y)\} \]

\[\Rightarrow v_V(f(x)f(y)) \leq \max \{v_V(f(x)), v_V(f(y))\}, \text{ for all } x, y \text{ in } R \]

Therefore \(V \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R' \).

Theorem: 1.4

Let \(R \) and \(R' \) be any two \(\ell - \) semirings. The anti-homomorphic pre-image of an intuitionistic fuzzy \(\ell - \) subsemiring of \(R' \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R \).

Proof:

Let \(R \) and \(R' \) be any two \(\ell - \) semirings and \(f : R \rightarrow R' \) an anti-homomorphism.

Let \(V = f(A) \), where \(V \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R' \).

To prove \(A \) is an intuitionistic fuzzy \(\ell - \) subsemiring of \(R \). For \(x, y \in R \),
(i) \(\mu_A(x+y) = \mu_V(f(x+y)) \), since \(\mu_V(f(x)) = \mu_A(x) \)
\(= \mu_V(f(y)+f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\geq \min \{\mu_V(f(y)), \mu_V(f(x))\} = \min \{\mu_V(f(x)), \mu_V(f(y))\} \)
\(= \min \{\mu_A(x), \mu_A(y)\}, \text{ (since } \mu_V(f(x)) = \mu_A(x)\) \)
\(\Rightarrow \mu_A(x+y) \geq \min \{\mu_A(x), \mu_A(y)\}, \text{ for all } x, y \in R \)

(ii) \(\mu_A(xy) = \mu_V(f(x)\cdot y) \), since \(\mu_V(f(x)) = \mu_A(x) \)
\(= \mu_V(f(y)f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\geq \min \{\mu_V(f(y)), \mu_V(f(x))\} = \min \{\mu_V(f(x)), \mu_V(f(y))\} \)
\(= \min \{\mu_A(x), \mu_A(y)\}, \text{ since } \mu_V(f(x)) = \mu_A(x) \)
\(\Rightarrow \mu_A(xy) \geq \min \{\mu_A(x), \mu_A(y)\}, \text{ for all } x, y \in R \)

(iii) \(\mu_A(x \lor y) = \mu_V(f(x \lor y)) \), since \(\mu_V(f(x)) = \mu_A(x) \)
\(= \mu_V(f(y) \lor f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\geq \min \{\mu_V(f(y)), \mu_V(f(x))\} = \min \{\mu_V(f(x)), \mu_V(f(y))\} \)
\(= \min \{\mu_A(x), \mu_A(y)\}, \text{ since } \mu_V(f(x)) = \mu_A(x) \)
\(\Rightarrow \mu_A(x \lor y) \geq \min \{\mu_A(x), \mu_A(y)\}, \text{ for all } x, y \in R \)

(iv) \(\mu_A(x \land y) = \mu_V(f(x \land y)) \), since \(\mu_V(f(x)) = \mu_A(x) \)
\(= \mu_V(f(y) \land f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\geq \min \{\mu_V(f(y)), \mu_V(f(x))\} = \min \{\mu_V(f(x)), \mu_V(f(y))\} \)
\(= \min \{\mu_A(x), \mu_A(y)\}, \text{ since } \mu_V(f(x)) = \mu_A(x) \)
\(\Rightarrow \mu_A(x \land y) \geq \min \{\mu_A(x), \mu_A(y)\}, \text{ for all } x, y \in R \)

(v) \(\nu_A(x+y) = \nu_V(f(x+y)) \), since \(\nu_V(f(x)) = \nu_A(x) \)
\(= \nu_V(f(y)+f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\leq \max \{\nu_V(f(y)), \nu_V(f(x))\} = \max \{\nu_V(f(x)), \nu_V(f(y))\} \)
\(= \max \{\nu_A(x), \nu_A(y)\}, \text{ since } \nu_V(f(x)) = \nu_A(x) \)
\(\Rightarrow \nu_A(x+y) \leq \max \{\nu_A(x), \nu_A(y)\}, \text{ for all } x, y \in R \)

(vi) \(\nu_A(xy) = \nu_V(f(xy)) \), since \(\nu_V(f(x)) = \nu_A(x) \)
\(= \nu_V(f(y)f(x)), (\because f \text{ is an anti- homomorphism}) \)
\(\leq \max \{\nu_V(f(y)), \nu_V(f(x))\} = \max \{\nu_V(f(x)), \nu_V(f(y))\} \)
\[v_A(x \land y) = v_V(f(x \land y)), \text{ since } v_V(f(x))=v_A(x) \]
\[= v_V(f(y) \land f(x)), (\because f \text{ is an anti-homomorphism}) \]
\[\leq \max \{v_V(f(y)), v_V(f(x))\} = \max \{v_V(f(x)), v_V(f(y))\} \]
\[= \max \{v_A(x), v_A(y)\}, \text{ since } v_V(f(x))=v_A(x) \]
\[\Rightarrow v_A(x \land y) \leq \max \{v_A(x), v_A(y)\}, \text{ for all } x, y \in R \]

(vii) \[v_A(x \lor y) = v_V(f(x \lor y)), \text{ since } v_V(f(x))=v_A(x) \]
\[= v_V(f(y) \lor f(x)), (\because f \text{ is an anti-homomorphism}) \]
\[\leq \max \{v_V(f(y)), v_V(f(x))\} = \max \{v_V(f(x)), v_V(f(y))\} \]
\[= \max \{v_A(x), v_A(y)\}, \text{ since } v_V(f(x))=v_A(x) \]
\[\Rightarrow v_A(x \lor y) \leq \max \{v_A(x), v_A(y)\}, \text{ for all } x, y \in R \]

Therefore \(A \) is an intuitionistic fuzzy \(\ell \)–subsemiring of \(R \).

References: