International Journal of Environmental Science Development & Monitoring. ISSN 2231-1289 Volume 11, Number 1 (2020), pp. 1-9 © Research India Publications http://www.ripublication.com

Durability Assessment of Reclaimed Soil by using RS& GIS Applications under U.P. Sodic Lands Reclamation Project III

Dr. Bishnu Pratap Singh^{1*}, Jitendra Singh², Chhail Bihari Shukla³, Dr. Manisha Mishra⁴

State Institute for Management of Agriculture, Rahmankheda, Lucknow, India.

Abstract

In India, about 6.9 million ha area is subjected to salt stressed, in which about 1.2 million ha is in Uttar Pradesh (Gupta et al., 2014). Soils are termed as sodic when the concentration of salt in the root zone exceeds 4dS/m (Richards, 1954). These soils are generally encountered in an arid or semi-arid climate and are derived from weathering of indigenous minerals (Tanzi,1990). Saltaffected soils are, more important economically in the irrigated commands areas where irrigation is practiced to produce crops (Carter, 1975). However, in certain areas, the reclamation has been reported to be unsustainable and the soils are reverting back to sodicity condition (Yadav et al., 2010). The presence of sodium salt in the parent material, alternate wet and dry seasons with evapo-transpiration excessive precipitation, along with the introduction of canal irrigation have led to the development of soil sodicity in that particular region through secondary Sodic characters. Some of the most unfavorable properties of these soils include high salt content, poor structure, limited microbial activity, low percolation rates, and other characteristics which restrict plant growth and human settlement. Information on the nature, extent, and spatial distribution of salt-affected soils is a pre-requisite for planning and implementation of any reclamation and/or prevention measures. Once a reclamation program is underway, a mechanism is needed to monitor its success and progress. The project durability assessment of Uttar Pradesh Sodic land Reclamation Project envisages monitoring the effect of reclamation programme on a long term basis. Sodicland reclamation sites spread over in 32 district of Uttar Pradesh. Assessment goes through digital analysis of satellite data of a period prior to reclamation (zero year) and subsequently after a period of 5-7 year. This study highlighted the spatial progress of sodicland reclamation in selected villages. Based on high resolution satellite, IRS-LISS-IV FMX, 1C/1D a methodology is developed to monitor the effect of reclamation on the land use at plot level.

^{*} Correspondence author

OBJECTIVE

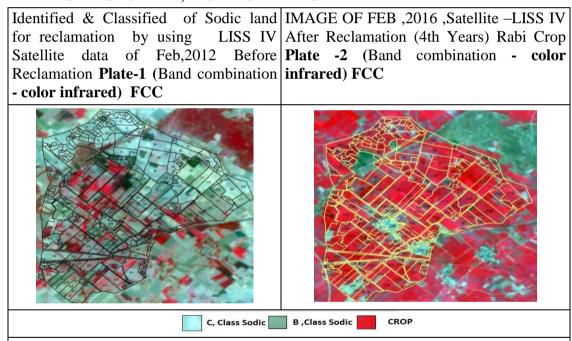
The board objective of the durability study was to monitor the changes at plot level using satellite data of rabi (Jan-Feb) and kharif (Aug -Nov) cropping season after 5 to 7 years of reclamation, thereby indicating the project sustainability.

METHODOLOGY:

- 1. Digitizing the reclaimed plots on cadastral map on 1:4000 scales.
- 2. Geo referenced using the geographic latitude/longitude WGS 84 coordinate system of digitizing layer & Satellite data.
- 3. Generation of False Colour Composite (FCC) for the identification of crop and salt affected plot on satellite data IRS 1D LISS III data has four bands: blue (0.45- 0.52 μm), green (0.52-0.59 μm), red (0.62- 0.68 μm) and near infrared (0.77-0.86 μm). The FCC was generated by combination of three bands: infrared, red and green bands projecting as red, green and blue image planes. The standard false colour composite was used. The crop/vegetation was represented by red colour instead of green colour in the false colour composite.
- 4. **Satellite images classification**, categorization of pixels based on their spectral characteristics.
- 5. The enhanced false colour composite image of the study area (1:4000 scale) was displayed on monitor. Standard FCC was visually interpreted for salt affected soils and crop with the help of image elements like tone, texture, shape, size, pattern and NDVI. The salt-affected soils were depicted in tones of bright white to dull white with medium to coarse texture on Standard FCC as per the presence of salts on soil surface and crop were depicted in tones of dull red to high red.
- 6. Digitizing & polygon delineation of crop and salt affected signatures on satellite data of Rabi season of 2008-09 by using FCC.
- 7. Superimposed of salt affected polygon of 2008-09 on satellite data of 2012, 2014 ,2016 ,2017 and 2019 of both season (Rabi & Kharif depends on availability of seen)and calculated how many plots are sustain after reclamation.
- 8. Ground truething (With GPS point) of satellite signature and NDVI value.

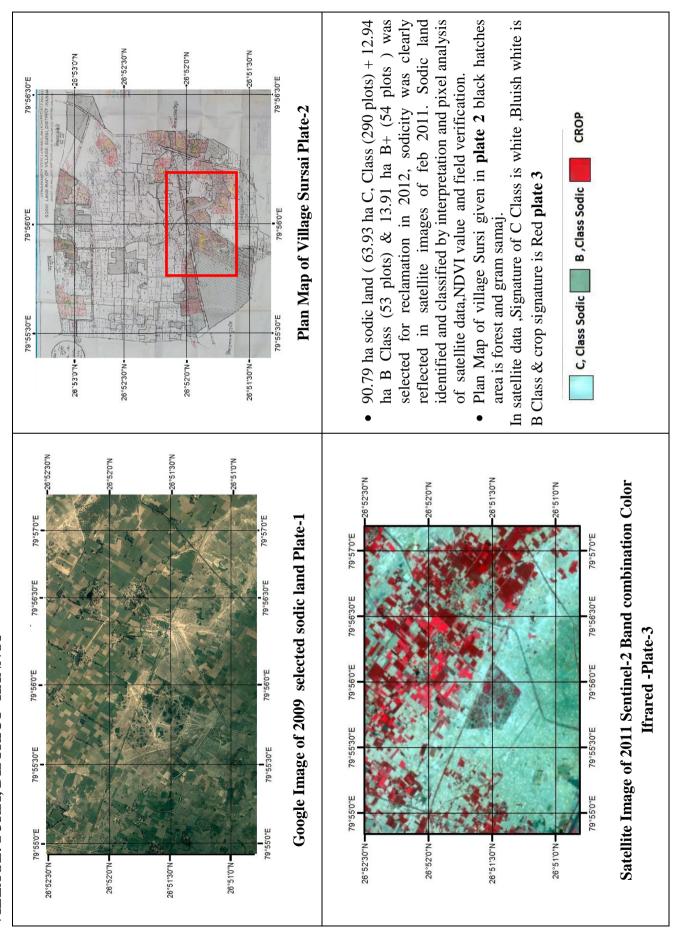
DATA USED

- 1. Geo referenced Cadastral maps of village scale 1:4000
- 2. IRS-1C/1 D, satellite LISS IV (5.8 resolution) data of Rabi (Jan-Feb).
- 3. Sentinel-2, L1C+ L2A Multi Temporal Satellite Data of 2009, 2016 & 2017 2018 & 2019 downloaded from land viewer.


INTERPRETATION KEY	IN	JTF.	RPR	ETA	TION	KEY
--------------------	----	------	-----	-----	------	-----

Signature on Satellite Image (LISS IV FCC) at Plot level	Status of Reclamation	Interpretation Class
Pink/Red	Reclaimed	Cropped
Pink/Red colour in patches with white/light blue colour	Reclaimed with patchy crop	Cropped
White	Bare Sodic land	No Crop

STUDY AREA


Total of selected 119 villages representing all the 32 project districts were taken up for the study.

VILLAGE-HURSAINA, DISTRICT - ALIGARH

- 63.523 ha sodic land (49.738 ha C, Class (170 plots) + 8.886 ha B Class (47 plots)
 & 4.899 ha B+ (44 plots) was selected for reclamation in 2012 ,sodicity was clearly reflected in satellite images of feb 2012 .Sodic land identified and classified on satellite data by interpretation and pixel analysis object signature, NDVI value and field verification. (plate-1)
- On the basis of field verification of interpretation and pixel analysis of satellite images of Feb 2016, 95% plots of C class and 100% plots of B &B+ class found under rabi crop. (plate-2)
- Plot number 114, 82, 12,79,179 and some part of plot number 76 shows barren in 2016 but in images of feb 2019 these plot found under crop only one plot shows barren.

VILLAGE: SURSI, DISTRICT- KANNOJ

- satellite images of Feb 2019, 93% plots of C B Class and 100% plots of B+ class On the basis of field verification of interpretation and pixel found under rabi crop. (plate-4) class, 97% plots of analysis of
- Field photographs with GPS coordinate dated, Jan 18, 2019 of reclaimed plots given below (1 to 7)
 - Crops are showing in red signature & found different NDVI of wheat, mustard & potato satellite data.
- verified in ground truth photographs with GPS coordinate Bright red is potato & NDVI value is .783, this signature
 - given in number 7.
- satellite images and in all are showing in photographs Blackish Red is wheat, this signature verified in ground Green signature with irregular texture are scrubland of forest truth photographs with GPS coordinate given in number 6. department ,this land not taken in reclamation

number 5. We can consider this plot as control sample of the

assessment.

Plate-4

Satellite image of reclaimed soil Feb 21,2019

	District	Class of Selected Sodic Land		
Village Name		B+ Class (%)	B Class	C Class (%)
Dhnwasad		100.0	98.1	92.0
Khaira Kanku		100.0	100.0	91.6
Indara		99.0	95.5	89.2
Kumhrawa	Lucknow	100.0	100.0	91.9
Gulalpur		100.0	98.1	92.0
Abbasnaga		100.0	98.0	91.8
Amwa Murtaja		100.0	97.7	92.0
Singhpur		97.0	95.5	87.5
Karsuva		100.0	100.0	90.2
Hursaina		100.0	98.1	86.1
Kandauli	Aligarh	98.0	98.0	92.0
Tanchi Abunasirpur	7 mgum	100.0	97.7	91.8
Ukhlana		100.0	99.1	91.5
Rakheda		100.0	99.1	87.5
Barauli		100.0	97.2	90.2
Alinagar		98.0	97.7	91.8
Umarda		99.0	99.1	87.7
Sikandarpur		100.0	100.0	89.0
Kasuwa		99.0	89.4	90.7
Boesee	Kanuaj	100.0	100.0	92.0
Sarsai		100.0	100.0	86.0
Vilandpur Khadagpu		99.0	97.2	92.1
Hisamudeenpur		100.0	97.4	91.0
Sursi		100.0	100.0	92.0
Mirjapur		100.0	98.7	89.5
Chandpura		99.0	95.2	87.9
Gauri Bagwantpur	Kanpur	100.0	99.1	85.9
Laxmanpur Tewariy	Nagar	99.0	97.0	92.2
Gopalpur		97.0	92.0	92.0

		Class of Sele	ected Sodic Land	
Village Name	District	B+ Class	B Class	C Class
Tilanda	-	(%)	(%)	(%)
Tilsanda	-	100.0	87.0	89.0
Baraigarh		100.0	100.0	91.8
Aurangpur Sambhi		100.0	88.0	91.2
Meerpur		99.0	95.6	87.0
Khajuwa		100.0	100.0	91.7
Mirjapur		100.0	93.0	89.8
Gahni		100.0	94.9	92.0
Taraw		100.0	93.6	86.9
Kudachawar	Ghazipur	97.0	92.0	92.0
Siyawa		100.0	99.0	92.0
Kaithwaliya		99.0	99.0	89.3
Mangari		100.0	100.0	92.0
Meerpur		100.0	96.3	91.7
Chaurabojh		100.0	94.0	91.7
Kathirava	Bhadoi	100.0	100.0	92.0
Nagla Ranjeet		100.0	93.5	86.9
Nagla Khangar		98.0	93.0	87.0
Bhujpura Sathanavpr	Etah	99.0	97.3	92.0
Nayanpur		100.0	95.0	89.3
Batmaee		100.0	100.0	90.2
Jariya		100.0	98.0	87.9
Mustababad Bailhani		98.0	95.0	91.8
Sarai Damu	-	100.0	100.0	92.8
Taajudeenpur	aajudeenpur		95.6	91.9
Rahimkheda	Raebareli	97.0	95.0	92.0
Paidriya	Paidriya		100.0	86.9
Dehli		100.0	95.4	87.0
Khairani		99.0	95.5	92.0
Pakhrauli		100.0	95.0	89.3

	District	Class of Selected Sodic Land			
Village Name		B+ Class (%)	B Class	C Class (%)	
Charuhaar Jiyayak		100.0	100.0	92.0	
Pothai		99.0	95.9	86.9	
Bansinghpur		100.0	96.0	89.0	

CONCLUSION

The study has been completed in 119 villages which represent all the 32 project units in all project districts and the project period from PY-1 to PY-8. The satellite data used in the study indicate 89-92% C-class sodic plots, 94-96% B-class sodic plots and 97-100% B+ class sodic plots under crops after reclamation. The average of all years, all villages and all sodic plots under crops are 93%.

REFERENCE

- [1] Manjul Gupta, Shikha, Pankaj Kumar Srivastavaa, Shri Krishna Tewaria (2014) Prospects of Sodic Soil Amelioration for Increased Crop Production in India *Advances in BioresearchAdv. Biores.*, Vol 5 [1] March 2014: 160-162 ©2014 Society of Education, India Print ISSN 0976- 4585; Online ISSN 2277-1573.
- [2] Lee, T., J.A. Richards, and P.H. Swain, 1987. Probabilistic and evidential approaches for multisource data analysis, *IEEE Transactions on Geosciences and Remote Sensing*, GE-25283-293.
- [3] MS Yadav, PPS Yadav, M Yaduvansi, D.Varma (2010) Sustainability assessment of sodic land reclamation using remote sensing and GIS; *Journal of the Indian Society of Remote Sensing* volume 38, pages269–278(2010).
- [4] Dwivedi RS, Ramana KV, Thammappa SS and Singh AN (2001) The utility of IRS 1C LISS-III and PAN merged data for mapping salt-affected soils. *Phot. Engg. & Remote Sensing* 67(10):1167–1175.
- [5] Rao BRM, Dwivedi RS, Venkataratnam L and Singh AN (1996) Monitoring salt affected soils using remote sensing data. *Geocarto International* 11(4):41–46.
- [6] Singh AN, Mathur A and Behl HM (2004) Environmental monitoring and impact of reclamation In Rural Development through Sodic land Reclamation UPSLRP Experience. Publication of International Conference on Sustainable Management of Sodic land. U.P. Coucil of Agriculture Research, Lucknow, pp. 142–176.
- [7] Sujatha G, Dwivedi RS, Sreenivas K and Venkataratnam L (2000) Mapping and monitoring of degraded lands in part of Jaunpur district of Uttar Pradesh

- using temporal Spaceborne Multispectral data. *International J Remote Sensing* 21(3):519–53.
- [8] Carter, D.L., 1975. Problem of salinity in agriculture, Ecological Studies: Analysis and Synthesis, Vol. 15, *Plants in Saline Environments, (A. Poljakoff-Mayber and J. Gale, editors), Springer-Verlag, New York, N.Y.*, pp. 25-35.
- [9] Tanzi, K.K., 1990. The nature and extent of agricultural salinity problems, Agriculture Salinity Assessment and Management, ASCE Manual and Reports on Engineering Practice. No. 71 (K.K. Tanzi, editor), *American Society of Civil Engineers, New York, N.Y.*, pp. 1-17.