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Abstract 

Addition and multiplication of integers in the binary representation are basic 

operations of any digital processor. For adding two integers of N  bits each, the 

serial adder takes as many clock ticks. In this paper, we describe a fast method 

for integer addition, which takes 2 clock ticks to perform the addition 

operation requiring only 𝑂(𝑁2) space. The number of bits N is chosen usually 

to be a positive integer power of 2. The speedup is achieved by special 

purpose circuits for increment operations by 2𝑖  , for 0 ≤ 𝑖 ≤ 𝑁 − 1, each 

operation taking only a single clock tick to complete. The usefulness of this 

adder for multiplication operation is discussed. The standard multiplication 

method utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce 

an integer that represents in binary the number of 1s in a column 

corresponding to a place (weighted coefficient) of nonnegative integer power 

of 2. The last two consolidated integers are added by an adder in the end.  

 

1.  INTRODUCTION 

Addition operation of integers represented in binary is a basic operation on most, if 

not all, modern digital processors. The sequential or serial circuit for performing 

addition of two N bit integers takes N clock ticks. For parallelization of the addition 

operation, the main issue is to find an efficient method to deal with the carry produced 

by addition operation of smaller number of bits. For various methods discussed in the 
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literature, viz, Ripple carry adder or Carry propagate adder, Carry look-ahead adder,  

Carry skip adder,  Manchester chain adder,  Carry select adders,  Prefix adders,  

Multi-operand adder,  Carry save adder, Pipelined parallel adder , see [3—6]. These 

circuits perform addition of integers of N bits in about log2 𝑁 number of clock ticks 

and 𝑂(𝑁 ∗ log2 𝑁) space (see [1, 2]). 

In the next section, we present a circuit that adds in constant time, i. e., in 2 time 

delays, but requiring only at most 
𝑁∗(𝑁+1)

2
 space. Further improvements, including the 

application of the adder for fast multiplication of two integers represented in binary, 

are discussed towards the end of the article. The standard multiplication method 

utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce an integer that 

represents in binary the number of 1s in a column corresponding to a place (weighted 

coefficient) of nonnegative integer power of 2. The last two consolidated integers are 

added by an adder in the end. 

 

2.  PARALLEL BINARY ADDER 

The steps in a fast parallel adder are described in the following algorithm: 

Parallel Adder Circuit 

1. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2  … 𝑎0  and 

𝑏𝑁−1 𝑏𝑁−2  … 𝑏0. 

2. In the first step, compute 𝑁  sums of two bits each, 𝑠 𝑖 =  𝑎 𝑖 𝑋𝑂𝑅  𝑏 𝑖   and  

𝑐 𝑖 =  𝑎𝑖 𝐴𝑁𝐷  𝑏 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1 . Set 𝑠𝑁 =  0 . All the operations are 

performed in parallel taking only 1 time delay.  

3. In the second step, the carries 𝑐 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1,  are added in parallel, in 

a single time delay, using about  
𝑁∗(𝑁+1)

2
  special purpose AND-gates, for 0 ≤

𝑖 < 𝑗 ≤ 𝑁, as follows: 

(A)   Let   SC_AND(𝑖, 𝑗)    =

     {

 
𝑠 𝑖+1̅̅ ̅̅ ̅̅   𝐴𝑁𝐷 𝑐𝑖,    𝑖𝑓   𝑗 = 𝑖 + 1  ,          𝑎𝑛𝑑

 𝑠 𝑗̅̅̅  𝐴𝑁𝐷 𝑠 𝑗−1 𝐴𝑁𝐷 …  𝐴𝑁𝐷 𝑠 𝑖+1 𝐴𝑁𝐷 𝑐𝑖 ,      𝑖𝑓  𝑗 > 𝑖 + 1 
  

(B)  It is shown that for each index i, if 𝑐𝑖 = 1, then there exists exactly one 

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such  that   SC_AND(𝑖, 𝑗)   = 1, for 0 ≤

𝑖 ≤ 𝑁 − 1 , since 𝑠 𝑁 is initialized to 0 ; the uniqueness of the index can 

be easily deduced ; moreover, 𝑐 𝑙 = 0 , for 𝑖 + 1 ≤ 𝑙 ≤ 𝑗 − 1 , which 

means that there are no more carries to be added in between the indexes 

𝑖 + 1 and 𝑗 − 1, when 𝑖 + 2 ≤ 𝑗 ≤ 𝑁. 
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(C)  Let j be the unique index as in (B), such that SC_AND(𝑖, 𝑗)   = 1 and 

𝑖 + 1 ≤ 𝑗 ≤ 𝑁 ; Then,   SC_AND  instantly complements the bit string 

𝑠𝑗  𝑠 𝑗−1  … 𝑠𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 1. 

(D)  The sum together with the carry is  𝑠𝑁 𝑠𝑁−1 𝑠𝑁−2  … 𝑠0, where  𝑠𝑁 is the 

carry or overflow bit.  

Proof of Correctness of the Algorithm:. Let 0 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑁 − 1   be the 

indexes such that 𝑐𝑖𝑙
= 1 , for  1 ≤ 𝑙 ≤ 𝑟, for some r, where 1 ≤ 𝑟 ≤ 𝑁. If 𝑟 = 1, 

then 𝑐𝑖1
 is the only carry to be added, and this case is easily handled by the algorithm. 

Let   2 ≤ 𝑟 ≤ 𝑁. The main point in the proof is that the addition operation of a carry 

𝑐𝑖𝑙
 does not affect the addition operation of the carry 𝑐𝑖𝑙+1

, for 1 ≤ 𝑙 ≤ 𝑟 − 1, as 

observed in the following.  The bit 𝑠𝑖𝑙+1
must be 0, because 𝑐𝑖𝑙+1

= 1 and 𝑐𝑖𝑙+1
𝑠𝑖𝑙+1

,  

being the result of adding only two bits, 𝑎𝑖𝑙+1
 and 𝑏𝑖𝑙+1

,  cannot be the bit string 11,  

for  1 ≤ 𝑙 ≤ 𝑟 − 1. Thus, there exists an index 𝑗𝑙 , such that 𝑖𝑙 + 1 ≤ 𝑗𝑙 ≤ 𝑖𝑙+1 and  

SC_AND(𝑖𝑙, 𝑗𝑙)   = 1, for 1 ≤ 𝑙 ≤ 𝑟 − 1. Now, since there are no carries of 1s in 

between the indexes 𝑖𝑙 + 1  and 𝑖𝑙+1 − 1 , the complementation  of the string 

𝑠𝑗𝑙
 𝑠 𝑗𝑙−1  … 𝑠𝑖𝑙+1 is equivalent to adding 1 to the corresponding integer represented by 

it, without affecting the carry addition of  𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1. The last carry 𝑐𝑖𝑟

 

is added, as if  it were lone carry to be added. 

It may be observed that addition of two (2N)-bit integers takes only 3 time delays by 

means of two N-bit adders as just described. Two lower and higher significant N-bit 

integers are added, and if a carry is produced by the addition operation of the two 

lower significant N-bit integers, then it is added to the sum of the two higher 

significant N-bit integers, in just one time delay.  

 

3.   MULTIPLICATION OF TWO INTEGERS IN BINARY 

 REPRESENTATION 

The time delay of multiplication of two N-bit integers is determined mostly by the 

time delay of addition of (2N)-bit integers, requiring at least one (2N)-bit adder and 

consolidation circuits that reduce a larger number of integers to a smaller number of 

integers for addition, such that the sum of the integers, before and after consolidation, 

is the same. For each index 𝑖, a Cauchy sum of product is formed, which corresponds 

to the coefficient of 2𝑖, for 0 ≤ 𝑖 ≤ 2𝑁 − 1. Then, the bit-planes of the coefficients 

are rearranged, similar to rearranging the order of summation of a doubly indexed 

sum, into log2 𝑁 number of integers of at most (2N) bits, with (N+1) quantization 

levels, which can be classified by (N+1) comparators (Chapter 7 of [9]). The 

quantization intervals are recognized by two adjacent voltage levels. The voltages of 

the bits in a column corresponding to the same place of a nonnegative integer power 
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of 2 are connected in series, to get the sum of voltages, which encodes the number of 

1s in the column. If the bits are sensitive to current measurements, then they are added 

in parallel, to form the sum of currents, and the common junction point is connected 

to the ground by an additional resistor. Thus, in any case, the sum of the voltages is 

measured at a particular junction point. The sum falls (after accounting for small 

errors and fluctuations) somewhere in the middle of exactly one quantization interval, 

which is recognized by the conjugation of the conditions that (i) the upper limit 

voltage is larger,  and (ii) the lower limit voltage is smaller than the sum of the 

voltages in a column. The conjunction of the two conditions is fed to a switching 

circuit (Chapter 8 of [9]), which switches an associative memory entry containing the 

bit pattern that encodes the integer to count the number of 1s in the column. Thus, the 

sum of 𝑟 ≥ 3 integers can be reduced to a sum of ⌊log2  𝑟⌋+1 integers, in a constant 

number of (which may be two) clock ticks. However, when the number of integers to 

be added falls to a small number (such as below 6), the consolidation method 

described in Slide 45 of [8] may be faster than the quantizer circuit. The quantizer 

based consolidation method achieves higher speed, when the number of integers to be 

consolidated is larger than a prescribed number, and as such may be qualified to be 

called optimal, owing to its constant time operational performance. The final two 

integers after the consolidation stages are added to get the integer which is the product 

of the two integers, given as input in the beginning.  

The consolidation operation is illustrated for the 64-bit multiplication. Initially, there 

are 64 integers to be added, which are aligned properly adjusting for the respective 

binary places. Two cases are described for comparison: one with only 3-bit to 2-bit 

consolidation circuits described in Slide 45 of [8], and the other with quantizers for 

about two stages followed by 3-bit to 2-bit consolidation circuits described in Slide 45 

of [8] in the remaining stages, until both reduce the sum of the initially given 64 

integers into a sum of two integers, where the latter could be 128-bit long, unlike in 

the input, which are at most 64-bit long. The quantizer is assumed to take two clock 

ticks to produce the required integers, as follows: in the first clock tick, the lower and 

upper bounds of interval of quantization are detected, consequently initiating the 

corresponding switching circuit, and in the second clock tick, the initiated switching 

circuit activates an associative memory unit, which places the contents in appropriate 

places, taking care also of the binary places, positioning the resulting integers as in a 

staircase, for the next stage. The circuit initialization phase is sensitive to the leading 

or trailing edge of a switching (initiating) pulse, giving the pipeline or cascade effect, 

which is partly folded into (overlapped with) the duration of the switching pulse. The 

edges are not always sharp or crisp, and edge sensitivity is exploited for gaining 

speedup in cascading (during both feed-forward and feedback stages of) compound 

circuits. The measurements for settling time for the overall circuit are explicitly 

performed, by trying out its response for various pulses that arise in typical 

(empirical) situations. 
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(A) With only 3-bit to 2-bit consolidation. The numbers of integers to be 

consolidated in a sequence of stages taking only one clock tick per stage are as 

follows (where the serial number stands for the clock tick offset number): (1) 

64 to 43 (with only 63 to 42 consolidation and one integer left out), (2) 43 to 

29 (with only 42 to 28 consolidation and one integer left out), (3) 29 to 20 

(with only 27 to 18 consolidation and two integers left out), (4) 20 to 14 (with 

only 18 to 12 consolidation and two integers left out), (5) 14 to 10 (with only 

12 to 8 consolidation and two integers left out), (6) 10 to 7 (with only 9 to 6 

consolidation and one integer left out), (7) 7 to 5 (with only 6 to 4 

consolidation and one integer left out), (8) 5 to 4 (with only 3 to 2 

consolidation and two integers left out), (9) 4 to 3 (with only 3 to 2 

consolidation and one integer left out) and (10) 3 to 2 consolidation, taking 10 

clock ticks to complete the task. The overall consolidation factor for 

consolidating 64 integers into 2 integers is 32, and with a consolidation factor 

of (
3

2
)  per stage, the lower bound for the number of stages is 

⌊log(3/2)  (32)⌋ =  ⌊8.547 … ⌋ = 9 . The overrun of the number of stages is 

caused by the indivisibility of the number of integers to be consolidated by the 

integer 3 in some stages. 

It may be observed that,  with required quantizers to add up 14 bits to produce 

4-bit integers in binary representation,  steps (5) through (8) can be replaced 

with a single quantizer step, which may take two clock ticks to perform this 

particular subtask, saving two clock ticks. As another opportunity, again with 

required quantizers to add up 7 bits to produce 3-bit integers in binary 

representation, for instance, steps (7) through (9) can be replaced with a single 

quantizer step, which may take two clock ticks to perform this particular 

subtask, but saving just one clock tick. 

  

(B) With quantizers and 3-bit to 2-bit consolidation. The numbers of integers to be 

consolidated in a sequence of stages taking one or two clock ticks per stage, 

depending on the particular stage, are as follows (the serial number marking 

for the end of the clock tick offset number): (2) 64 to 7 (with 63-bit to 6-bit 

consolidation based on quantizers, taking two clock ticks, and one integer left 

out), (4) 7 to 3 (with 7-bit to 3-bit consolidation based on quantizers, taking 

two clock ticks), and (5) 3 to 2 consolidation (with only 3-bit to 2-bit 

consolidation, taking one clock tick), taking 5 clock ticks to complete the task.  

The total time needed is calculated as follows: 5 clock ticks for consolidation of 64 to 

2 integers of at most 128 bits each, added to about 3 clock ticks for the addition of the 

two 128-bit integers, to get the final result of multiplication of the two input 64-bit 

integers in about 8 clock ticks, in case (B), and,  about 9 clock ticks obtained by the 

theoretical lower bound for consolidation of 64 to 2 integers of at most 128 bits each, 
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added to about 15 clock ticks for the addition of the two 128-bit integers,  to get the 

final result of multiplication of the two input 64-bit integers in about 24 clock ticks, in 

case (A). Thus, the speedup factor is at least  
24

8
= 3. 

In the following discussion, the circuit complexity for the two cases discussed above 

is estimated. The initial 64 number of 64-bit integers are arranged in a parallelogram 

staircase, in the standard presentation. They can be arranged to foom a nabla (▼) or 

Delta (▲) shape staring at 127-bit integer in the first row, followed by 125-bit integer 

in the second row and so on, until 1-bit integer in the last (64-th) row. In the first 

stage, since 64 itself is not divisible by 3, there are 63 rows to be consolidated, and 

121 number of 3-bit to 2-bit consolidation circuits, required in the second row, 

followed by 115 number of 3-bit to 2-bit consolidation circuits, required in the fifth 

row, until one 3-bit to 2-bit consolidation circuit, in the 62-nd row, skipping two rows 

in between, with 6 circuits less in succession. These consolidation circuits must 

perform in parallel in the first stage at least. This number can also be arrived at by 

observing that 21 rows of 3-bit to 2-bit consolidation circuits are required to 

consolidate 63 rows to 42 rows in the first step.  Thus, there are ∑ (6 ∗ 𝑖 + 1) =20
𝑖=0

1 + 7 + ⋯ + 121 = 21 ∗ 61 = 1281 number of 3-bit to 2-bit circuits (associative 

memory units) required, in case (A), each circuit containing 8 entries of 2-bit 

associative memory. Now, in case (B), in addition to 128 number of 3-bit to 2-bit 

consolidation circuits in the final consolidation stage, the number of 63-bit to 6-bit 

quantizers needed is about 128, with possible reuse in the second stage, and if no 

reuse is possible, another 128 number of 7-bit to 3-bit quantizers in the second 

consolidation stage are needed. For comparison, 128 number of 63-bit to 6-bit 

quantizers hold 64*128 = 8192 associative memory entries of 6-bits each, while 1281-

128 = 1153 number of 3-bit to 2-bit consolidation circuits hold 1153 * 8 = 9224 

number of 2-bit associative memory entries. If reuse of the quantizers in the second 

stage is possible, the associative memory space requirement in case (B) is less than 3 

times that in case (A), with a speedup factor of at least 3. It may be observed that the 

well-known Amdahl's law for speedup bound is applicable for the same programs or 

circuits, when executed in parallel by replication of resources. An interesting situation 

is when different tasks together require some resources in total, which can be 

allocated to them to execute in parallel, without requiring any additional resources. 

Quantizers are more commonly well-known in the analog-to-digital (ADC) 

converters. However, the inputs to the quantizers in this section take only finitely 

many discrete values, and the required precision for the lower and upper bounds of 

the interval of quantization for the sum offers considerable tolerance for accounting 

for small errors and fluctuations in the current or voltage measurements taken at the 

input. 
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