International Journal of Electronics Engineering Research.
ISSN 0975-6450 Volume 11, Number 2 (2019) pp. 99-105
© Research India Publications
http://www.ripublication.com

Fast Parallel Integer Multiplier in Binary
Representation

Duggirala Meher Krishna

Gayatri Vidya Parishad College of Engineering (Autonomous),
Madhurawada, Visakhapatnam — 530 048, Andhra Pradesh, India
Email: duggiralameherkrishna@gmail.com

Duggirala Ravi

Gayatri Vidya Parishad College of Engineering (Autonomous),
Madhurawada, Visakhapatnam — 530 048, Andhra Pradesh, India
Email: ravi@gvpce.ac.in ; drdravi2000@yahoo.com
Abstract

Addition and multiplication of integers in the binary representation are basic
operations of any digital processor. For adding two integers of N bits each, the
serial adder takes as many clock ticks. In this paper, we describe a fast method
for integer addition, which takes 2 clock ticks to perform the addition
operation requiring only O (N?) space. The number of bits N is chosen usually
to be a positive integer power of 2. The speedup is achieved by special
purpose circuits for increment operations by 2!, for 0 <i <N — 1, each
operation taking only a single clock tick to complete. The usefulness of this
adder for multiplication operation is discussed. The standard multiplication
method utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce
an integer that represents in binary the number of 1s in a column
corresponding to a place (weighted coefficient) of nonnegative integer power
of 2. The last two consolidated integers are added by an adder in the end.

1. INTRODUCTION

Addition operation of integers represented in binary is a basic operation on most, if
not all, modern digital processors. The sequential or serial circuit for performing
addition of two N bit integers takes N clock ticks. For parallelization of the addition
operation, the main issue is to find an efficient method to deal with the carry produced
by addition operation of smaller number of bits. For various methods discussed in the

mailto:duggiralameherkrishna@gmail.com
mailto:ravi@gvpce.ac.in
mailto:drdravi2000@yahoo.com

100 Duggirala Meher Krishna and Duggirala Ravi

literature, viz, Ripple carry adder or Carry propagate adder, Carry look-ahead adder,
Carry skip adder, Manchester chain adder, Carry select adders, Prefix adders,
Multi-operand adder, Carry save adder, Pipelined parallel adder , see [3—6]. These
circuits perform addition of integers of N bits in about log, N number of clock ticks
and O(N = log, N) space (see [1, 2]).

In the next section, we present a circuit that adds in constant time, i. e., in 2 time

N*UZH) space. Further improvements, including the

application of the adder for fast multiplication of two integers represented in binary,
are discussed towards the end of the article. The standard multiplication method
utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce an integer that
represents in binary the number of 1s in a column corresponding to a place (weighted
coefficient) of nonnegative integer power of 2. The last two consolidated integers are
added by an adder in the end.

delays, but requiring only at most

2. PARALLEL BINARY ADDER
The steps in a fast parallel adder are described in the following algorithm:
Parallel Adder Circuit

1. Let the input integers in the binary form be ay_;ay_, ... ag and
bN_l bN_Z e bO.

2. In the first step, compute N sums of two bits each, s; = a; XOR b; and
c;= a;AND b;, for0 <i <N —1. Set sy = 0. All the operations are
performed in parallel taking only 1 time delay.

3. In the second step, the carriesc¢; , for0 <i < N — 1, are added in parallel, in

a single time delay, using about &1

special purpose AND-gates, for 0 <
i <j <N,asfollows:
(A) Let SC_AND(i, j) =

Sa1 ANDc;, if j=i+1, and
§; AND s;_; AND .. AND s ;41 AND ¢;, if j>i+1

(B) It is shown that for each index i, if ¢; = 1, then there exists exactly one
index j, wherei+1 <j <N, such that SC_AND(i, j) =1, for0 <
i <N —1,since sy is initialized to 0 ; the uniqueness of the index can
be easily deduced ; moreover, c; =0, fori+1<1[<j—1, which
means that there are no more carries to be added in between the indexes
i+1landj—1,wheni+2<j<N.

Fast Parallel Integer Multiplier in Binary Representation 101

(C) Let j be the unique index as in (B), such that SC_AND(i, j) = 1and
i+1<j<N; Then, SC_AND instantly complements the bit string
SjSj—1 = Si+1s for0 <i<N-1.

(D) The sum together with the carry is sy Sy_1 Sy—2 --- So, Where sy is the
carry or overflow bit.

Proof of Correctness of the Algorithm:. Let0 <i; <---<i.,<N—1 be the
indexes such thatc;, =1, for 1 <l <7, forsome r, wherel <r <N. Ifr =1,

then ¢;, is the only carry to be added, and this case is easily handled by the algorithm.

Let 2 <r < N. The main point in the proof is that the addition operation of a carry
c;, does not affect the addition operation of the carry ¢;, , for1 <l <r -1, as

observed in the following. The bits; must be 0, because ¢;,,, = 1and¢; sy, ,,
being the result of adding only two bits, a;,,, and b;,,,, cannot be the bit string 11,
for 1 <1 <r—1. Thus, there exists an index j;, such thati; + 1 <j, <i;,, and
SC_AND(i;, j;) =1, for1 <1l <r—1. Now, since there are no carries of 1s in
between the indexes i; +1 and i;,; — 1, the complementation of the string
Sj, S j,-1 - Sij+1 IS equivalent to adding 1 to the corresponding integer represented by
it, without affecting the carry addition of ¢;, , for1 <l <r — 1. The last carry c;_
is added, as if it were lone carry to be added.

It may be observed that addition of two (2N)-bit integers takes only 3 time delays by
means of two N-bit adders as just described. Two lower and higher significant N-bit
integers are added, and if a carry is produced by the addition operation of the two
lower significant N-bit integers, then it is added to the sum of the two higher
significant N-bit integers, in just one time delay.

3. MULTIPLICATION OF TWO INTEGERS IN BINARY
REPRESENTATION

The time delay of multiplication of two N-bit integers is determined mostly by the
time delay of addition of (2N)-bit integers, requiring at least one (2N)-bit adder and
consolidation circuits that reduce a larger number of integers to a smaller number of
integers for addition, such that the sum of the integers, before and after consolidation,
is the same. For each index i, a Cauchy sum of product is formed, which corresponds
to the coefficient of 2¢, for 0 < i < 2N — 1. Then, the bit-planes of the coefficients
are rearranged, similar to rearranging the order of summation of a doubly indexed
sum, into log, N number of integers of at most (2N) bits, with (N+1) quantization
levels, which can be classified by (N+1) comparators (Chapter 7 of [9]). The
quantization intervals are recognized by two adjacent voltage levels. The voltages of
the bits in a column corresponding to the same place of a nonnegative integer power

102 Duggirala Meher Krishna and Duggirala Ravi

of 2 are connected in series, to get the sum of voltages, which encodes the number of
1s in the column. If the bits are sensitive to current measurements, then they are added
in parallel, to form the sum of currents, and the common junction point is connected
to the ground by an additional resistor. Thus, in any case, the sum of the voltages is
measured at a particular junction point. The sum falls (after accounting for small
errors and fluctuations) somewhere in the middle of exactly one quantization interval,
which is recognized by the conjugation of the conditions that (i) the upper limit
voltage is larger, and (ii) the lower limit voltage is smaller than the sum of the
voltages in a column. The conjunction of the two conditions is fed to a switching
circuit (Chapter 8 of [9]), which switches an associative memory entry containing the
bit pattern that encodes the integer to count the number of 1s in the column. Thus, the
sum of r > 3 integers can be reduced to a sum of |log, r|+1 integers, in a constant
number of (which may be two) clock ticks. However, when the number of integers to
be added falls to a small number (such as below 6), the consolidation method
described in Slide 45 of [8] may be faster than the quantizer circuit. The quantizer
based consolidation method achieves higher speed, when the number of integers to be
consolidated is larger than a prescribed number, and as such may be qualified to be
called optimal, owing to its constant time operational performance. The final two
integers after the consolidation stages are added to get the integer which is the product
of the two integers, given as input in the beginning.

The consolidation operation is illustrated for the 64-bit multiplication. Initially, there
are 64 integers to be added, which are aligned properly adjusting for the respective
binary places. Two cases are described for comparison: one with only 3-bit to 2-bit
consolidation circuits described in Slide 45 of [8], and the other with quantizers for
about two stages followed by 3-bit to 2-bit consolidation circuits described in Slide 45
of [8] in the remaining stages, until both reduce the sum of the initially given 64
integers into a sum of two integers, where the latter could be 128-bit long, unlike in
the input, which are at most 64-bit long. The quantizer is assumed to take two clock
ticks to produce the required integers, as follows: in the first clock tick, the lower and
upper bounds of interval of quantization are detected, consequently initiating the
corresponding switching circuit, and in the second clock tick, the initiated switching
circuit activates an associative memory unit, which places the contents in appropriate
places, taking care also of the binary places, positioning the resulting integers as in a
staircase, for the next stage. The circuit initialization phase is sensitive to the leading
or trailing edge of a switching (initiating) pulse, giving the pipeline or cascade effect,
which is partly folded into (overlapped with) the duration of the switching pulse. The
edges are not always sharp or crisp, and edge sensitivity is exploited for gaining
speedup in cascading (during both feed-forward and feedback stages of) compound
circuits. The measurements for settling time for the overall circuit are explicitly
performed, by trying out its response for various pulses that arise in typical
(empirical) situations.

Fast Parallel Integer Multiplier in Binary Representation 103

(A)With only 3-bit to 2-bit consolidation. The numbers of integers to be
consolidated in a sequence of stages taking only one clock tick per stage are as
follows (where the serial number stands for the clock tick offset number): (1)
64 to 43 (with only 63 to 42 consolidation and one integer left out), (2) 43 to
29 (with only 42 to 28 consolidation and one integer left out), (3) 29 to 20
(with only 27 to 18 consolidation and two integers left out), (4) 20 to 14 (with
only 18 to 12 consolidation and two integers left out), (5) 14 to 10 (with only
12 to 8 consolidation and two integers left out), (6) 10 to 7 (with only 9 to 6
consolidation and one integer left out), (7) 7 to 5 (with only 6 to 4
consolidation and one integer left out), (8) 5 to 4 (with only 3 to 2
consolidation and two integers left out), (9) 4 to 3 (with only 3 to 2
consolidation and one integer left out) and (10) 3 to 2 consolidation, taking 10
clock ticks to complete the task. The overall consolidation factor for
consolidating 64 integers into 2 integers is 32, and with a consolidation factor

of (%) per stage, the lower bound for the number of stages is

llogz/2) (32)] = [8.547 ...] =9. The overrun of the number of stages is
caused by the indivisibility of the number of integers to be consolidated by the
integer 3 in some stages.

It may be observed that, with required quantizers to add up 14 bits to produce
4-bit integers in binary representation, steps (5) through (8) can be replaced
with a single quantizer step, which may take two clock ticks to perform this
particular subtask, saving two clock ticks. As another opportunity, again with
required quantizers to add up 7 bits to produce 3-bit integers in binary
representation, for instance, steps (7) through (9) can be replaced with a single
quantizer step, which may take two clock ticks to perform this particular
subtask, but saving just one clock tick.

(B) With quantizers and 3-bit to 2-bit consolidation. The numbers of integers to be
consolidated in a sequence of stages taking one or two clock ticks per stage,
depending on the particular stage, are as follows (the serial number marking
for the end of the clock tick offset number): (2) 64 to 7 (with 63-bit to 6-bit
consolidation based on quantizers, taking two clock ticks, and one integer left
out), (4) 7 to 3 (with 7-bit to 3-bit consolidation based on quantizers, taking
two clock ticks), and (5) 3 to 2 consolidation (with only 3-bit to 2-bit
consolidation, taking one clock tick), taking 5 clock ticks to complete the task.

The total time needed is calculated as follows: 5 clock ticks for consolidation of 64 to
2 integers of at most 128 bits each, added to about 3 clock ticks for the addition of the
two 128-bit integers, to get the final result of multiplication of the two input 64-bit
integers in about 8 clock ticks, in case (B), and, about 9 clock ticks obtained by the
theoretical lower bound for consolidation of 64 to 2 integers of at most 128 bits each,

104 Duggirala Meher Krishna and Duggirala Ravi

added to about 15 clock ticks for the addition of the two 128-bit integers, to get the
final result of multiplication of the two input 64-bit integers in about 24 clock ticks, in

case (A). Thus, the speedup factor is at least 27:‘ =3.

In the following discussion, the circuit complexity for the two cases discussed above
is estimated. The initial 64 number of 64-bit integers are arranged in a parallelogram
staircase, in the standard presentation. They can be arranged to foom a nabla (V) or
Delta (A) shape staring at 127-bit integer in the first row, followed by 125-bit integer
in the second row and so on, until 1-bit integer in the last (64-th) row. In the first
stage, since 64 itself is not divisible by 3, there are 63 rows to be consolidated, and
121 number of 3-bit to 2-bit consolidation circuits, required in the second row,
followed by 115 number of 3-bit to 2-bit consolidation circuits, required in the fifth
row, until one 3-bit to 2-bit consolidation circuit, in the 62-nd row, skipping two rows
in between, with 6 circuits less in succession. These consolidation circuits must
perform in parallel in the first stage at least. This number can also be arrived at by
observing that 21 rows of 3-bit to 2-bit consolidation circuits are required to
consolidate 63 rows to 42 rows in the first step. Thus, there are ¥22,(6 i + 1) =
1+7+--4121 =21%61 = 1281 number of 3-bit to 2-bit circuits (associative
memory units) required, in case (A), each circuit containing 8 entries of 2-bit
associative memory. Now, in case (B), in addition to 128 number of 3-bit to 2-bit
consolidation circuits in the final consolidation stage, the number of 63-bit to 6-bit
quantizers needed is about 128, with possible reuse in the second stage, and if no
reuse is possible, another 128 number of 7-bit to 3-bit quantizers in the second
consolidation stage are needed. For comparison, 128 number of 63-bit to 6-bit
quantizers hold 64*128 = 8192 associative memory entries of 6-bits each, while 1281-
128 = 1153 number of 3-bit to 2-bit consolidation circuits hold 1153 * 8 = 9224
number of 2-bit associative memory entries. If reuse of the quantizers in the second
stage is possible, the associative memory space requirement in case (B) is less than 3
times that in case (A), with a speedup factor of at least 3. It may be observed that the
well-known Amdahl's law for speedup bound is applicable for the same programs or
circuits, when executed in parallel by replication of resources. An interesting situation
is when different tasks together require some resources in total, which can be
allocated to them to execute in parallel, without requiring any additional resources.
Quantizers are more commonly well-known in the analog-to-digital (ADC)
converters. However, the inputs to the quantizers in this section take only finitely
many discrete values, and the required precision for the lower and upper bounds of
the interval of quantization for the sum offers considerable tolerance for accounting
for small errors and fluctuations in the current or voltage measurements taken at the
input.

Fast Parallel Integer Multiplier in Binary Representation 105

REFERENCES

[1] Avinash Shrivastava, and Chandrahas Sahu, “Performance analysis of parallel
prefix adder based on FPGA”, International Journal of Engineering Trends and
Technology (JETT), Volume 21, Number 6, March 2015, pp. 281 — 286.

[2] Jasbir Kaur, and Lalit Sood, “Comparison between various types of adder
topologies”, International Journal of Computer Science and Technology
(IJCST"), Volume 6, Issue 1, Jan-March 2015, pp. 62 — 66

[3] Richard P. Brent, and H. T. Kung, “A regular layout for parallel adders”, IEEE
Transactions on Computers, vol. 31, no. 03, March 1982, pp. 260—264.

[4] Vitit Kantabutra, “Designing optimum one-level carry-skip adders”, IEEE
Transactions on Computers, vol.42, no.6, June 1993.

[5] Luigi Dadda and Vincenzo Piuri, “Pipelined adders”, IEEE Transactions on
Computers, vol.45, no.3, March 1996.

[6] Jien-Chung Lo, “A fast binary adder with conditional carry generation”, IEEE
Transactions on Computers, vol.46, no.2, February 1997.

[7] A. Guyot, B. Hochet and J.M. Muller, “A way to build efficient carry-skip
adders”, IEEE Transactions on Computers, pp.1144--1152, October 1987.

[8] Steven Rudich, “Great theoretical ideas in computer science”, CMU Lecture 17,
CS 15-251, Carnegie Mellon University, March 2004.

[9] Jacob Millman, and Herbert Taub, “Pulse, Digital, and Switching Waveforms

(Devices and Circuits for their Generation and Processing)”, McGraw-Hill
International, 1965.

106 Duggirala Meher Krishna and Duggirala Ravi

