
International Journal of Electronics Engineering Research.

ISSN 0975-6450 Volume 11, Number 2 (2019) pp. 99-105

© Research India Publications

http://www.ripublication.com

Fast Parallel Integer Multiplier in Binary

Representation

Duggirala Meher Krishna

Gayatri Vidya Parishad College of Engineering (Autonomous),

Madhurawada, Visakhapatnam – 530 048, Andhra Pradesh, India

Email: duggiralameherkrishna@gmail.com

Duggirala Ravi

Gayatri Vidya Parishad College of Engineering (Autonomous),

Madhurawada, Visakhapatnam – 530 048, Andhra Pradesh, India

Email: ravi@gvpce.ac.in ; drdravi2000@yahoo.com

Abstract

Addition and multiplication of integers in the binary representation are basic

operations of any digital processor. For adding two integers of N bits each, the

serial adder takes as many clock ticks. In this paper, we describe a fast method

for integer addition, which takes 2 clock ticks to perform the addition

operation requiring only 𝑂(𝑁2) space. The number of bits N is chosen usually

to be a positive integer power of 2. The speedup is achieved by special

purpose circuits for increment operations by 2𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1, each

operation taking only a single clock tick to complete. The usefulness of this

adder for multiplication operation is discussed. The standard multiplication

method utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce

an integer that represents in binary the number of 1s in a column

corresponding to a place (weighted coefficient) of nonnegative integer power

of 2. The last two consolidated integers are added by an adder in the end.

1. INTRODUCTION

Addition operation of integers represented in binary is a basic operation on most, if

not all, modern digital processors. The sequential or serial circuit for performing

addition of two N bit integers takes N clock ticks. For parallelization of the addition

operation, the main issue is to find an efficient method to deal with the carry produced

by addition operation of smaller number of bits. For various methods discussed in the

mailto:duggiralameherkrishna@gmail.com
mailto:ravi@gvpce.ac.in
mailto:drdravi2000@yahoo.com

100 Duggirala Meher Krishna and Duggirala Ravi

literature, viz, Ripple carry adder or Carry propagate adder, Carry look-ahead adder,

Carry skip adder, Manchester chain adder, Carry select adders, Prefix adders,

Multi-operand adder, Carry save adder, Pipelined parallel adder , see [3—6]. These

circuits perform addition of integers of N bits in about log2 𝑁 number of clock ticks

and 𝑂(𝑁 ∗ log2 𝑁) space (see [1, 2]).

In the next section, we present a circuit that adds in constant time, i. e., in 2 time

delays, but requiring only at most
𝑁∗(𝑁+1)

2
 space. Further improvements, including the

application of the adder for fast multiplication of two integers represented in binary,

are discussed towards the end of the article. The standard multiplication method

utilizes quantizer and 3-bit to 2-bit consolidation circuits to produce an integer that

represents in binary the number of 1s in a column corresponding to a place (weighted

coefficient) of nonnegative integer power of 2. The last two consolidated integers are

added by an adder in the end.

2. PARALLEL BINARY ADDER

The steps in a fast parallel adder are described in the following algorithm:

Parallel Adder Circuit

1. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2 … 𝑎0 and

𝑏𝑁−1 𝑏𝑁−2 … 𝑏0.

2. In the first step, compute 𝑁 sums of two bits each, 𝑠 𝑖 = 𝑎 𝑖 𝑋𝑂𝑅 𝑏 𝑖 and

𝑐 𝑖 = 𝑎𝑖 𝐴𝑁𝐷 𝑏 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1 . Set 𝑠𝑁 = 0 . All the operations are

performed in parallel taking only 1 time delay.

3. In the second step, the carries 𝑐 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1, are added in parallel, in

a single time delay, using about
𝑁∗(𝑁+1)

2
 special purpose AND-gates, for 0 ≤

𝑖 < 𝑗 ≤ 𝑁, as follows:

(A) Let SC_AND(𝑖, 𝑗) =

 {

𝑠 𝑖+1̅̅ ̅̅ ̅̅ 𝐴𝑁𝐷 𝑐𝑖, 𝑖𝑓 𝑗 = 𝑖 + 1 , 𝑎𝑛𝑑

 𝑠 𝑗̅̅̅ 𝐴𝑁𝐷 𝑠 𝑗−1 𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝑠 𝑖+1 𝐴𝑁𝐷 𝑐𝑖 , 𝑖𝑓 𝑗 > 𝑖 + 1

(B) It is shown that for each index i, if 𝑐𝑖 = 1, then there exists exactly one

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such that SC_AND(𝑖, 𝑗) = 1, for 0 ≤

𝑖 ≤ 𝑁 − 1 , since 𝑠 𝑁 is initialized to 0 ; the uniqueness of the index can

be easily deduced ; moreover, 𝑐 𝑙 = 0 , for 𝑖 + 1 ≤ 𝑙 ≤ 𝑗 − 1 , which

means that there are no more carries to be added in between the indexes

𝑖 + 1 and 𝑗 − 1, when 𝑖 + 2 ≤ 𝑗 ≤ 𝑁.

Fast Parallel Integer Multiplier in Binary Representation 101

(C) Let j be the unique index as in (B), such that SC_AND(𝑖, 𝑗) = 1 and

𝑖 + 1 ≤ 𝑗 ≤ 𝑁 ; Then, SC_AND instantly complements the bit string

𝑠𝑗 𝑠 𝑗−1 … 𝑠𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 1.

(D) The sum together with the carry is 𝑠𝑁 𝑠𝑁−1 𝑠𝑁−2 … 𝑠0, where 𝑠𝑁 is the

carry or overflow bit.

Proof of Correctness of the Algorithm:. Let 0 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑁 − 1 be the

indexes such that 𝑐𝑖𝑙
= 1 , for 1 ≤ 𝑙 ≤ 𝑟, for some r, where 1 ≤ 𝑟 ≤ 𝑁. If 𝑟 = 1,

then 𝑐𝑖1
 is the only carry to be added, and this case is easily handled by the algorithm.

Let 2 ≤ 𝑟 ≤ 𝑁. The main point in the proof is that the addition operation of a carry

𝑐𝑖𝑙
 does not affect the addition operation of the carry 𝑐𝑖𝑙+1

, for 1 ≤ 𝑙 ≤ 𝑟 − 1, as

observed in the following. The bit 𝑠𝑖𝑙+1
must be 0, because 𝑐𝑖𝑙+1

= 1 and 𝑐𝑖𝑙+1
𝑠𝑖𝑙+1

,

being the result of adding only two bits, 𝑎𝑖𝑙+1
 and 𝑏𝑖𝑙+1

, cannot be the bit string 11,

for 1 ≤ 𝑙 ≤ 𝑟 − 1. Thus, there exists an index 𝑗𝑙 , such that 𝑖𝑙 + 1 ≤ 𝑗𝑙 ≤ 𝑖𝑙+1 and

SC_AND(𝑖𝑙, 𝑗𝑙) = 1, for 1 ≤ 𝑙 ≤ 𝑟 − 1. Now, since there are no carries of 1s in

between the indexes 𝑖𝑙 + 1 and 𝑖𝑙+1 − 1 , the complementation of the string

𝑠𝑗𝑙
 𝑠 𝑗𝑙−1 … 𝑠𝑖𝑙+1 is equivalent to adding 1 to the corresponding integer represented by

it, without affecting the carry addition of 𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1. The last carry 𝑐𝑖𝑟

is added, as if it were lone carry to be added.

It may be observed that addition of two (2N)-bit integers takes only 3 time delays by

means of two N-bit adders as just described. Two lower and higher significant N-bit

integers are added, and if a carry is produced by the addition operation of the two

lower significant N-bit integers, then it is added to the sum of the two higher

significant N-bit integers, in just one time delay.

3. MULTIPLICATION OF TWO INTEGERS IN BINARY

 REPRESENTATION

The time delay of multiplication of two N-bit integers is determined mostly by the

time delay of addition of (2N)-bit integers, requiring at least one (2N)-bit adder and

consolidation circuits that reduce a larger number of integers to a smaller number of

integers for addition, such that the sum of the integers, before and after consolidation,

is the same. For each index 𝑖, a Cauchy sum of product is formed, which corresponds

to the coefficient of 2𝑖, for 0 ≤ 𝑖 ≤ 2𝑁 − 1. Then, the bit-planes of the coefficients

are rearranged, similar to rearranging the order of summation of a doubly indexed

sum, into log2 𝑁 number of integers of at most (2N) bits, with (N+1) quantization

levels, which can be classified by (N+1) comparators (Chapter 7 of [9]). The

quantization intervals are recognized by two adjacent voltage levels. The voltages of

the bits in a column corresponding to the same place of a nonnegative integer power

102 Duggirala Meher Krishna and Duggirala Ravi

of 2 are connected in series, to get the sum of voltages, which encodes the number of

1s in the column. If the bits are sensitive to current measurements, then they are added

in parallel, to form the sum of currents, and the common junction point is connected

to the ground by an additional resistor. Thus, in any case, the sum of the voltages is

measured at a particular junction point. The sum falls (after accounting for small

errors and fluctuations) somewhere in the middle of exactly one quantization interval,

which is recognized by the conjugation of the conditions that (i) the upper limit

voltage is larger, and (ii) the lower limit voltage is smaller than the sum of the

voltages in a column. The conjunction of the two conditions is fed to a switching

circuit (Chapter 8 of [9]), which switches an associative memory entry containing the

bit pattern that encodes the integer to count the number of 1s in the column. Thus, the

sum of 𝑟 ≥ 3 integers can be reduced to a sum of ⌊log2 𝑟⌋+1 integers, in a constant

number of (which may be two) clock ticks. However, when the number of integers to

be added falls to a small number (such as below 6), the consolidation method

described in Slide 45 of [8] may be faster than the quantizer circuit. The quantizer

based consolidation method achieves higher speed, when the number of integers to be

consolidated is larger than a prescribed number, and as such may be qualified to be

called optimal, owing to its constant time operational performance. The final two

integers after the consolidation stages are added to get the integer which is the product

of the two integers, given as input in the beginning.

The consolidation operation is illustrated for the 64-bit multiplication. Initially, there

are 64 integers to be added, which are aligned properly adjusting for the respective

binary places. Two cases are described for comparison: one with only 3-bit to 2-bit

consolidation circuits described in Slide 45 of [8], and the other with quantizers for

about two stages followed by 3-bit to 2-bit consolidation circuits described in Slide 45

of [8] in the remaining stages, until both reduce the sum of the initially given 64

integers into a sum of two integers, where the latter could be 128-bit long, unlike in

the input, which are at most 64-bit long. The quantizer is assumed to take two clock

ticks to produce the required integers, as follows: in the first clock tick, the lower and

upper bounds of interval of quantization are detected, consequently initiating the

corresponding switching circuit, and in the second clock tick, the initiated switching

circuit activates an associative memory unit, which places the contents in appropriate

places, taking care also of the binary places, positioning the resulting integers as in a

staircase, for the next stage. The circuit initialization phase is sensitive to the leading

or trailing edge of a switching (initiating) pulse, giving the pipeline or cascade effect,

which is partly folded into (overlapped with) the duration of the switching pulse. The

edges are not always sharp or crisp, and edge sensitivity is exploited for gaining

speedup in cascading (during both feed-forward and feedback stages of) compound

circuits. The measurements for settling time for the overall circuit are explicitly

performed, by trying out its response for various pulses that arise in typical

(empirical) situations.

Fast Parallel Integer Multiplier in Binary Representation 103

(A) With only 3-bit to 2-bit consolidation. The numbers of integers to be

consolidated in a sequence of stages taking only one clock tick per stage are as

follows (where the serial number stands for the clock tick offset number): (1)

64 to 43 (with only 63 to 42 consolidation and one integer left out), (2) 43 to

29 (with only 42 to 28 consolidation and one integer left out), (3) 29 to 20

(with only 27 to 18 consolidation and two integers left out), (4) 20 to 14 (with

only 18 to 12 consolidation and two integers left out), (5) 14 to 10 (with only

12 to 8 consolidation and two integers left out), (6) 10 to 7 (with only 9 to 6

consolidation and one integer left out), (7) 7 to 5 (with only 6 to 4

consolidation and one integer left out), (8) 5 to 4 (with only 3 to 2

consolidation and two integers left out), (9) 4 to 3 (with only 3 to 2

consolidation and one integer left out) and (10) 3 to 2 consolidation, taking 10

clock ticks to complete the task. The overall consolidation factor for

consolidating 64 integers into 2 integers is 32, and with a consolidation factor

of (
3

2
) per stage, the lower bound for the number of stages is

⌊log(3/2) (32)⌋ = ⌊8.547 … ⌋ = 9 . The overrun of the number of stages is

caused by the indivisibility of the number of integers to be consolidated by the

integer 3 in some stages.

It may be observed that, with required quantizers to add up 14 bits to produce

4-bit integers in binary representation, steps (5) through (8) can be replaced

with a single quantizer step, which may take two clock ticks to perform this

particular subtask, saving two clock ticks. As another opportunity, again with

required quantizers to add up 7 bits to produce 3-bit integers in binary

representation, for instance, steps (7) through (9) can be replaced with a single

quantizer step, which may take two clock ticks to perform this particular

subtask, but saving just one clock tick.

(B) With quantizers and 3-bit to 2-bit consolidation. The numbers of integers to be

consolidated in a sequence of stages taking one or two clock ticks per stage,

depending on the particular stage, are as follows (the serial number marking

for the end of the clock tick offset number): (2) 64 to 7 (with 63-bit to 6-bit

consolidation based on quantizers, taking two clock ticks, and one integer left

out), (4) 7 to 3 (with 7-bit to 3-bit consolidation based on quantizers, taking

two clock ticks), and (5) 3 to 2 consolidation (with only 3-bit to 2-bit

consolidation, taking one clock tick), taking 5 clock ticks to complete the task.

The total time needed is calculated as follows: 5 clock ticks for consolidation of 64 to

2 integers of at most 128 bits each, added to about 3 clock ticks for the addition of the

two 128-bit integers, to get the final result of multiplication of the two input 64-bit

integers in about 8 clock ticks, in case (B), and, about 9 clock ticks obtained by the

theoretical lower bound for consolidation of 64 to 2 integers of at most 128 bits each,

104 Duggirala Meher Krishna and Duggirala Ravi

added to about 15 clock ticks for the addition of the two 128-bit integers, to get the

final result of multiplication of the two input 64-bit integers in about 24 clock ticks, in

case (A). Thus, the speedup factor is at least
24

8
= 3.

In the following discussion, the circuit complexity for the two cases discussed above

is estimated. The initial 64 number of 64-bit integers are arranged in a parallelogram

staircase, in the standard presentation. They can be arranged to foom a nabla (▼) or

Delta (▲) shape staring at 127-bit integer in the first row, followed by 125-bit integer

in the second row and so on, until 1-bit integer in the last (64-th) row. In the first

stage, since 64 itself is not divisible by 3, there are 63 rows to be consolidated, and

121 number of 3-bit to 2-bit consolidation circuits, required in the second row,

followed by 115 number of 3-bit to 2-bit consolidation circuits, required in the fifth

row, until one 3-bit to 2-bit consolidation circuit, in the 62-nd row, skipping two rows

in between, with 6 circuits less in succession. These consolidation circuits must

perform in parallel in the first stage at least. This number can also be arrived at by

observing that 21 rows of 3-bit to 2-bit consolidation circuits are required to

consolidate 63 rows to 42 rows in the first step. Thus, there are ∑ (6 ∗ 𝑖 + 1) =20
𝑖=0

1 + 7 + ⋯ + 121 = 21 ∗ 61 = 1281 number of 3-bit to 2-bit circuits (associative

memory units) required, in case (A), each circuit containing 8 entries of 2-bit

associative memory. Now, in case (B), in addition to 128 number of 3-bit to 2-bit

consolidation circuits in the final consolidation stage, the number of 63-bit to 6-bit

quantizers needed is about 128, with possible reuse in the second stage, and if no

reuse is possible, another 128 number of 7-bit to 3-bit quantizers in the second

consolidation stage are needed. For comparison, 128 number of 63-bit to 6-bit

quantizers hold 64*128 = 8192 associative memory entries of 6-bits each, while 1281-

128 = 1153 number of 3-bit to 2-bit consolidation circuits hold 1153 * 8 = 9224

number of 2-bit associative memory entries. If reuse of the quantizers in the second

stage is possible, the associative memory space requirement in case (B) is less than 3

times that in case (A), with a speedup factor of at least 3. It may be observed that the

well-known Amdahl's law for speedup bound is applicable for the same programs or

circuits, when executed in parallel by replication of resources. An interesting situation

is when different tasks together require some resources in total, which can be

allocated to them to execute in parallel, without requiring any additional resources.

Quantizers are more commonly well-known in the analog-to-digital (ADC)

converters. However, the inputs to the quantizers in this section take only finitely

many discrete values, and the required precision for the lower and upper bounds of

the interval of quantization for the sum offers considerable tolerance for accounting

for small errors and fluctuations in the current or voltage measurements taken at the

input.

Fast Parallel Integer Multiplier in Binary Representation 105

REFERENCES

[1] Avinash Shrivastava, and Chandrahas Sahu, “Performance analysis of parallel

prefix adder based on FPGA”, International Journal of Engineering Trends and

Technology (IJETT), Volume 21, Number 6, March 2015, pp. 281 – 286.

[2] Jasbir Kaur, and Lalit Sood, “Comparison between various types of adder

topologies”, International Journal of Computer Science and Technology

(IJCST˘), Volume 6, Issue 1, Jan-March 2015, pp. 62 – 66

[3] Richard P. Brent, and H. T. Kung, “A regular layout for parallel adders”, IEEE

Transactions on Computers, vol. 31, no. 03, March 1982, pp. 260—264.

[4] Vitit Kantabutra, “Designing optimum one-level carry-skip adders”, IEEE

Transactions on Computers, vol.42, no.6, June 1993.

[5] Luigi Dadda and Vincenzo Piuri, “Pipelined adders”, IEEE Transactions on

Computers, vol.45, no.3, March 1996.

[6] Jien-Chung Lo, “A fast binary adder with conditional carry generation”, IEEE

Transactions on Computers, vol.46, no.2, February 1997.

[7] A. Guyot, B. Hochet and J.M. Muller, “A way to build efficient carry-skip

adders”, IEEE Transactions on Computers, pp.1144--1152, October 1987.

[8] Steven Rudich, “Great theoretical ideas in computer science”, CMU Lecture 17,

CS 15-251, Carnegie Mellon University, March 2004.

[9] Jacob Millman, and Herbert Taub, “Pulse, Digital, and Switching Waveforms

(Devices and Circuits for their Generation and Processing)”, McGraw-Hill

International, 1965.

106 Duggirala Meher Krishna and Duggirala Ravi

