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Abstract
Preserving dynamic behaviors of a continuous system in its corresponding dis-

crete system is a difficult task and it becomes more difficult if there is a delay in the
continuous system. Here we discretize the interaction between prey and predator
represented by continuous-time nonlinear differential equations and then analyze
it in presence and absence of a time delay. It is shown that the dynamics of the
discrete model in presence and absence of delay is consistent with that of the con-
tinuous model. Numerical simulations are provided to substantiate the analytical
findings.
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1 Introduction
Researchers are frequently interested to construct discrete model which are dynamically
consistent with its continuous counter part. Conventional discretization schemes, such
as Euler method, Runge–Kutta method, show dynamic inconsistency and exhibit dy-
namic behaviours which are not observed in the corresponding continuous system [16].
For example, Euler forward method, the most frequently used discretize technique, pro-
duces spurious solutions which are not observed in its parent model and its dynamics de-
pend on the step-size. Another important drawback of the conventional discrete model
is that positivity of its solutions do not hold for all positive initial values. Any finite-
difference scheme that allows negative solutions will have numerical instabilities [22].
One alternative to remove these drawbacks is using of non-standard finite difference
(NSFD) method to discretize a continuous-time model [8, 9]. It is to be mentioned that
NSFD method shows dynamic consistency with its continuous counterpart [19]. This
means that all the dynamic properties of the continuous system are preserved by the
NSFD system. Moreover, the dynamic properties are preserved for all step-size as op-
posed to conventional discretization techniques. Nonstandard finite difference scheme
has been successfully used to discretize a continuous system in different fields of phys-
ical and biological sciences [1,3–5,9,11,20,21,23–25]. However, dynamics preserving
discretization of a delay-induced continuous system is rarely observed in the litera-
ture. Here we discretize a continuous-time predator-prey model and then analyze it in
presence and absence of a time delay. We prove that all the qualitative behaviors of the
continuous system in absence and presence of delay are preserved in the discrete model.

The Lotka–Volterra predator-prey model is represented by the following system of
nonlinear differential equations:

dP

dt
= Q(P )−R(P,Z), (1.1)

dZ

dt
= κR(P,Z)− S(Z),

where P and Z represent, respectively, the densities of phytoplankton and zooplankton
populations at time t. Here Q(P ) is the intrinsic growth rate of prey, R(P,Z) is the
predator’s feeding rate, κ (0 < κ < 1) is the conversion efficiency of predator and S(Z)
is predator’s natural death rate. In planktonic ecosystem, zooplankton feeds on the
primary producer phytoplankton. There are many examples that some phytoplankton
species liberate toxic chemical to escape or reduce predation pressure of zooplankton
[2, 12, 13]. These toxin producing phytoplankton (TPP) may cause additional death
to zooplankton and supposed to be one of the regulatory mechanisms in planktonic
dynamics [14, 15]. Assuming that T (P,Z) is the TPP-dependent additional death rate
of zooplankton, system (1.1) then can be represented by

dP

dt
= Q(P )−R(P,Z), (1.2)
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dZ

dt
= κR(P,Z)− S(Z)− T (P,Z).

Considering Q(P ) = rP

(
1 − P

k

)
, R(P,Z) = αPZ, S(Z) = µZ and T (P,Z) =

θPZ

γ + P
, Chattopadhyay et al. [7] proposed the following mathematical model for the in-

teraction of toxic phytoplankton (Noctilucca Scintillans) and zooplankton (Paracalanus):

dP

dt
= rP

(
1− P

k

)
− αPZ, (1.3)

dZ

dt
= βPZ − µZ − θPZ

γ + P
,

where β = κα and all other parameters are positive. For further illustration of the
model, readers are referred to [7]. Liberation of the toxic substances by phytoplank-
ton species is not an instantaneous process but mediated by some time lag required for
the maturity of species. There are also several reports that zooplankton mortality due
to the bloom of toxic phytoplankton bloom occurs after some time lag. In laboratory
experiment. Chattopadhyay et al. [6] observed that the abundance of Paracalanus (zoo-
plankton) population reduces after some time lags of the bloom of toxic phytoplankton
Noctilucca scintillans. Assuming that τ be the time required for the maturity of toxic
phytoplankton, the model (1.3) can be extended to a delay differential equations model
as follows:

dP

dt
= rP

(
1− P

k

)
− αPZ, (1.4)

dZ

dt
= βPZ − µZ − θP (t− τ)Z

γ + P (t− τ)
.

It is shown that the system (1.4) produces oscillations around the interior equilibrium
point depending on the length of delay and thus mimics the cyclic nature of the phyto-
plankton-zooplankton system [6]. In this study, we first discretize the phytoplankton-
zooplankton model (1.3) by nonstandard finite difference method and compare their dy-
namic properties with the corresponding continuous-time model. We show that NSFD
model preserves positivity of solutions and other dynamic properties of the continuous-
time model. In the second part, we discretize the delay-induced continuous model (1.4)
and study its dynamic properties to show that the delay has no effect on the dynamics
of trivial and semi-trivial fixed points. However, the stability of the coexistence fixed
point depends on the length of delay and the results are shown to be consistent with that
of the delay-induced continuous system.

The rest of the paper is organized as follows. Section 2 is devoted for the discretiza-
tion of the non-delayed continuous model. Its dynamic consistency is also proved there.
In Section 3, we discretize the delay-induced continuous-time system and present its
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stability results. Comprehensive simulations of both non-delayed and delayed models
are performed to validate our analytical results in Section 4. The study ends with a
discussion in Section 5.

2 Nondelayed Discrete Model
Here we propose and study the dynamic behaviors of the discrete model correspond-
ing to the continuous system (1.3) formulated by nonstandard finite difference (NSFD)
technique [18].

2.1 Nonstandard finite difference model
For convenience, we express system (1.3) as

dP

dt
= rP − rP 2

K
− αPZ, (2.1)

dZ

dt
= βPZ − µZ − P

γ + P
Z.

With nonlocal approximations, we write the continuous-time system (2.1) as

Pn+1 − Pn
h

= rPn −
r

K
PnPn+1 − αpn+1Zn, (2.2)

Zn+1 − Zn
h

= βPn+1Zn − µZn+1 −
θPn+1

γ + Pn+1

Zn+1,

where h (> 0) is the step-size. This system can be expressed as

Pn+1 = F (Pn, Zn), (2.3)
Zn+1 = G(Pn+1, Zn),

with F (P,Z) =
(1 + rh)Pn

[1 + rh
K
Pn + hαZn]

and G(P,Z) =
(1 + hβPn+1)(γ + Pn+1)Zn

[(1 + hµ)(γ + Pn+1) + hθPn+1]
.

Note that solutions of the discrete-time system (2.3) will remain positive for any step-
size if it starts with positive initial values.

2.1.1 Existence and stability of fixed points

At the fixed point, we have Pn+1 = Pn = P and Zn+1 = Zn = Z. The discrete-time
system (2.2) has three fixed points. One trivial fixed point E0 = (0, 0), one semi-
trivial fixed point E1 = (K, 0) and one interior fixed point E∗ = (P ∗, Z∗), where

P ∗ =
−(βγ − µ− θ) +

√
(βγ − µ− θ)2 + 4βγµ

2β
, Z∗ =

r

α

(
1 − P ∗

K

)
. Observe that

the first two fixed points always exist and the interior fixed point exists if θ < θ∗ and

P ∗ < K, where θ∗ =
1

K
(K + γ)(βK − µ).
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Definition 2.1 (See [9]). A finite difference method is called elementary stable if for
any value of the step size, the fixed points of the discrete system are those of the corre-
sponding differential system and the linear stability properties of each fixed point being
the same for both the differential and discrete systems.

Definition 2.2 (See [10]). LetX∗ be a fixed point of the discrete system (2.3) and J(X∗)
be the Jacobian of the system (2.3) at X∗. If λ1 and λ2 be two eigenvalues of J(X∗),
then the fixed point X∗ is called stable if |λ1| < 1, |λ2| < 1 and a source if |λ1| > 1,
|λ2| > 1. It is called a saddle if |λ1| < 1, |λ2| > 1 or |λ1| > 1, |λ2| < 1 and a
nonhyperbolic fixed point if either |λ1| = 1 or |λ2| = 1.

Theorem 2.3 (See [10]). Let λ1 and λ2 be the eigenvalues of the 2×2 matrix J = (aij).
Then |λ1| < 1 and |λ2| < 1 iff the following conditions holds:

(i) 1−det(J) > 0, (ii) 1−trace(J)+det(J) > 0 and (iii) 1+trace(J)+det(J) > 0.

We have the following theorem for the stability of different fixed points of (2.3).

Theorem 2.4. (i) The fixed point E0 = (0, 0) is always a saddle. (ii) The fixed point
E1 = (K, 0) is stable if θ > θ∗ and it can not be a source. It is a saddle point if θ < θ∗.

(iii) The coexistence fixed point E∗ is stable if θ < θ∗, where θ∗ =
1

K
(K+γ)(βK−µ).

Proof. The variational matrix of system (2.3) evaluated at an arbitrary fixed point (P,Z)
is

J(P,Z) =

(
a11 a12
a21 a22

)
,

where

a11 =
(1 + rh)

[1 + rh
K
P + hαZ]

−
(1 + rh)P ( rh

K
)

[1 + rh
K
P + hαZ]2

,

a12 = −
(1 + rh)Phα

[1 + rh
K
P + hαZ]2

,

a21 =
[ (hβγ + 1 + 2hβP )

[(1 + hµ)(γ + P ) + hθP ]
− (1 + hβP )(γ + P )(1 + hµ+ hθ)

[(1 + hµ)(γ + P ) + hθP ]2
]
a11Z,

a22 =
(1 + hβP )(γ + P )

[(1 + hµ)(γ + P ) + hθP ]
+
[ (hβγ + 1 + 2hβP )

[(1 + hµ)(γ + P ) + hθP ]
−

(1 + hβP )(γ + P )(1 + hµ+ hθ)

[(1 + hµ)(γ + P ) + hθP ]2
]
a12Z.

(2.4)

It is easy to check that the eigenvalues atE0 are λ1 = 1+rh, λ2 =
1

1 + hµ
and therefore

the fixed point E0 is always saddle.

At the fixed point E1, eigenvalues are evaluated as λ1 = 1 − rh

1 + rh
and λ2 =

(1 + hβK)(γ +K)

(1 + hµ)(γ +K) + hθK
. Here λ1 is always less than unity for any step size h > 0
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and λ2 is always positive. Thus, for any h > 0, λ2 < 1 if θ >
(K + γ)(βK − µ)

K
and

therefore E1 is stable. In this case, however, E∗ does not exist. Since λ1 is always less

than unity,E1 can not be a source. On the other hand, λ2 > 1 if θ <
(K + γ)(βK − µ)

K
.

Therefore, existence of the interior fixed point implies that the axial fixed point is saddle.
At the interior fixed point E∗, elements of the variational matrix J(P ∗, Z∗) are

a11 = 1 −
(

rh

1 + rh

)(
P ∗

K

)
, a12 = − hαP ∗

1 + rh
, a21 =

h[βγ + 2βP ∗ − µ− θ]
(1 + hβP ∗)(γ + P ∗)

a11Z
∗,

a22 = 1 +
h[βγ + 2βP ∗ − µ− θ]
(1 + hβP ∗)(γ + P ∗)

a12Z
∗. Clearly, a11 is positive and less than unity.

Simple algebraic computations show that det(J) = a11. Therefore, 0 < det(J) <
1. After some algebraic computations, one can show that 1 − trace(J) + det(J) =

−h[βγ + 2βP ∗ − µ− θ]
(1 + hβP ∗)(γ + P ∗)

a12Z
∗. As a12 < 0, condition (ii) of Theorem 2.3 will hold

if P ∗ >
µ+ θ − βγ

2β
. One can easily verify that this last inequality is always satisfied

whenever P ∗ exists. Straight forward calculations show that 1 + trace(J) + det(J)=

2a11 + 2

[
1−

(
hβP ∗

1 + hβP ∗

)(
rh

1 + rh

)(
1− P ∗

K

)(
βγ + 2βP ∗ − µ− θ

2βγ + 2βP ∗

)]
. Note that

terms in each first bracket are positive and less than unity. Thus, condition (iii) of Theo-
rem 2.3 is satisfied. Therefore, following Definition 2.2, E∗ is stable whenever it exists.
This completes the proof of the theorem.

It is noted that above analysis shows that the fixed points of the discrete system (2.3)
are those of the continuous system (1.3) and the stability properties of each fixed point
for both the continuous and discrete systems are identical. As the solution of the discrete
system always remain positive if it starts with positive initial values, the discrete model
(2.3), following Definition 2.1, is therefore positive and elementary stable.

3 Delay-Induced Discrete Model

In this section, we first discretize the delay-induced continuous system (1.4) and then
analyze its dynamic properties. We here want to analyze the stability of each fixed point
of the discrete system by considering τ as the bifurcation parameter. Following [1, 24],
we consider P (t) = x(tτ) and Z(t) = y(tτ) so that the continuous system (1.4) can be
transferred to

dx

dt
= τrx(1− x

k
)− ταxy, (3.1)

dy

dt
= τβxy − τµy − τ θx(t− 1)y

γ + x(t− 1)
.
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We employ the following nonlocal approximations termwise to discretize the system
(3.1):



dx

dt
→ xn+1 − xn

h
,

dy

dt
→ yn+1 − yn

h
,

x→ xn, y → yn+1,
xy → ynxn+1, xy → xn+1yn+1,

x2 → xnxn+1,
x(t− 1)y

γ + x(t− 1)
→ xn−myn+1

γ + xn−m
.

(3.2)

Here the step-size is of the form h =
1

m
, where m is a positive integer. xn and yn are

numerical approximations of x(t0 + nh) and y(t0 + nh), where n = 0, 1, 2, . . .. The
initial conditions are assumed to be xm = φm and y0 = y(t0), where φm = φ(tm), for
m = −i,−i+ 1,−i+ 2, . . . , 0.

Using (3.2) in (3.1), we obtain the discrete system

xn+1 =
(1 + rhτ)xn

[1 + rhτ
K
xn + hατyn]

, (3.3)

yn+1 =
(1 + hτβxn+1)(γ + xn−m)yn

[(1 + µhτ)(γ + xn−m) + hτθxn−m]
.

It is to be noted that all terms in the right hand side are positive and hence all solutions
of the delay-induced discrete system (3.3) remain positive for all positive initial values.

3.1 Existence and stability of fixed points

As before, one can compute the fixed points of the system (3.3). It is to be mentioned
that the fixed points of all three systems (1.3), (2.3) and (3.3) are the same. For stability
analysis, we linearize the system (3.3) about an arbitrary fixed point (x, y) by substitut-
ing xn = x+ un and yn = y+ vn, where un << 1 and vn << 1. The linearized system
is then given by

un+1 = a11un + a12vn, (3.4)
vn+1 = a21un + a22vn + a23un−m,
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where

a11 =
(1 + rhτ)

[1 + rhτ
K
x+ hταy]

−
(1 + rhτ) rhτ

K
x

[1 + rhτ
K
x+ hταy]2

,

a12 = −
(1 + rhτ)xτhα

[1 + rhτ
K
x+ hατy]2

,

a21 =
hβτ(γ + x)

[(1 + µhτ)(γ + x) + hτθx]
a11y,

a22 =
(1 + hβτx)(γ + x)

[(1 + µhτ)(γ + x) + hτθx]
+

hβτ(γ + x)

[(1 + µhτ)(γ + x) + hτθx]
a11y,

a23 =
(1 + hβτx)

[(1 + µhτ)(γ + x) + hτθx]
+

(1 + hβτx)(γ + x)y[1 + hµτ + hθτ ]

[(1 + µhτ)(γ + x) + hτθx]2
.

(3.5)

System (3.4) can be expressed as

Un+1 =MUn, (3.6)

where Un = (un, un−1, . . . , un−m, vn)
T and M is a (m+ 2)× (m+ 2) matrix given by

M =



a11 0 · · · 0 0 a12
1 0 · · · 0 0 0
0 1 · · · 0 0 0
... . . . ...

...
...

0 0 · · · 1 0 0
a21 0 · · · 0 a23 a22


.

The characteristic equation of the matrix M is

λm+2 + Aλm+1 +Bλm + C = 0, (3.7)

where A = −(a11 + a22), B = a11a22 − a12a21, C = −a12a23.
We now prove the following theorems for the stability of different fixed points.

Theorem 3.1. (i) The fixed point E0 = (0, 0) is always a saddle. (ii) The fixed point
E1 = (K, 0) is stable if θ > θ∗ and it can not be a source. It is a saddle point if θ < θ∗,

where θ∗ =
(K + γ)(βK − µ)

K
.

Proof. At the fixed point E0, (3.7) becomes

λk[λ2 − (1 + thτ +
1

1 + hµτ
)λ+ (1 + thτ)

1

1 + hµτ
] = 0.

It is easy to check that the eigenvalues are λ1 = (1 + thτ), λ2 =
1

1 + hµτ
and k− fold

roots λ = 0. Since all eigenvalues are positive but one is greater than unity and others
are less than unity, the fixed point E0 is always a saddle point.
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At the fixed point E1, the characteristic equation (3.7) becomes

λk[λ2 − (a11 + a22)λ+ a11a22] = 0,

where a11 = 1− rhτ

1 + rhτ
and a22 =

(1 + hτβK)(γ +K)

(1 + hτµ)(γ +K) + hτθK
. The eigenvalues are

λ1 = a11 = 1 − rhτ

1 + rhτ
, λ2 = a22 =

(1 + hτβK)(γ +K)

(1 + hτµ)(γ +K) + hτθK
and k− fold roots

λ = 0. Observe that, for any step size h > 0, λ1 is always less than unity and λ2 < 1 if

θ >
(K + γ)(βK − µ)

K
. Thus, the fixed point E1 is stable if θ >

(K + γ)(βK − µ)
K

.
In this case, however, E∗ does not exist. Since λ1 is always less than unity, so E1 can

not be a source. On the other hand, λ2 > 1 if θ <
(K + γ)(βK − µ)

K
, which is the

existence condition of E∗. In this later case, E1 is a saddle. Hence the theorem is
proven.

It is to be noted that the stability properties of E0 and E1 remain unchanged in
presence of delay and the results are consistent with that of the delay-induced continuous
system (1.4).

Now we observe whether stability of the coexistence fixed point E∗ is altered in
presence of delay. First we state the following lemma.

Lemma 3.2 (See [25]). Suppose that B ⊂ R is a bounded, closed and connected set
and f(λ, τ) = λk+ p1(τ)λ

k−1(τ)+ . . .+ pk(τ) is continuous in (λ, τ) ∈ C ×B, where
τ ≥ 0 is a parameter, τ ∈ B. Then as τ varies, the sum of the order of the zeros of
f(λ, τ) out of the unit circle {λ ∈ C : |λ| > 1} can change only if a zero appears on or
crosses the unit circle.

Theorem 3.3. There exists a critical value τ ∗ of τ such that for 0 < τ < τ ∗, the
coexistence fixed point E∗ is stable whenever it exists.

Proof. When τ = 0, the characteristic equation (3.7) at E∗ is

λk+2 − 2λk+1 + λk = 0. (3.8)

This equation has k− fold roots λ = 0 and double roots λ = 1. Consider the root
λ(τ) such that |λ(0)| = 1. This root depends continuously on τ and is a differentiable

function of τ . Note that
dλ

dτ
satisfies the following equation(

dλ

dτ

)2

+
rhx∗

K

(
dλ

dτ

)
+ h2αβx∗y∗ = 0. (3.9)

Thus, whenever, rx∗ = 4Kβ(K − x∗) is satisfied, we have

dλ

dτ

∣∣∣∣
τ=0,λ=1

= −rhx
∗

K
< 0. (3.10)
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Then all the roots of (3.7) lie inside the open unit circle for sufficiently small τ > 0 and
the existence of maximal τ ∗ follows. Hence the theorem.

A Neimark–Sacker bifurcation occurs when a complex conjugate pair of eigenvalues
of the matrix M cross the unit circle as τ varies. Let λ = eiω be the root of (3.7) when
τ = τ ∗. Substituting λ = eiω in (3.7), we have

e(m+2)iω + A∗e(m+1)iω +B∗emiω + C∗ = 0, (3.11)

where A∗, B∗, C∗ are the values of A, B, C evaluated at the interior fixed point E∗ with
τ = τ ∗. Separating real and imaginary parts, we have

cos(m+ 2)ω∗ + A∗ cos(m+ 1)ω∗ +B∗ cosmω∗ + C∗ = 0, (3.12)
sin(m+ 2)ω∗ + A∗ sin(m+ 1)ω∗ +B∗ sinω∗ = 0.

Thus, there exists an infinite sequence of τ such that 0 < τ1 < τ2 < . . . τi < . . . and
satisfies (3.12). From (3.7), one can calculate

dλ

dτ
=

2N

D
, (3.13)

where 

N = X + Y (1− cosω),

D =
∣∣(m+ 2)C + Aλm+1 + 2Bλm

∣∣2
= (m+ 2)2C2 + A2 + 4B2 − (m+ 2)A2 + 2(m+ 2)BA1

+ (2AB − (m+ 2)A(B + 1) + 2(m+ 2)A) cosω,

X =

[
(m+ 2)C +

A2

C
+

2A1B

C
− A(B + 1)

C
+

2A

C

]
dC

dτ

+

[
2B + (m+ 2)A1 + (m+ 2)AB + A

]
dB

dτ

+

[
A− (m+ 2)A− (m+ 2)(B + 1) + 2B

]
dA

dτ
,

A1 = (1−B) +
A2 + (B − 1)2 − C2

2B
,

Y = −
[
2B − (m+ 2)(B + 1)

]
dA

dτ
+

[
(m+ 2)AB + A

]
dB

dτ

+

[
2A

B
− A(B + 1)

C

]
dC

dτ

(3.14)

and cosω =
A(B + 1) +

√
(B − 1)2(A2 − 4B) + 4BC2

4B
. Here D is always positive

and

A = 2− rhτx∗

(1 + rhτ)K
− h2τ 2αβx∗y∗

(1 + hβτx∗)(1 + rhτ)
, B = 1− rhτx∗

(1 + rhτ)K
,
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C =
h2τ 2αx∗y∗[βx∗ − µ− θ]

(1 + hβτx∗)2(1 + rhτ)2(γ + x∗)
,

dA

dτ
=

rhx∗

(1 + rhτ)2K
+
h2ταβx∗y∗[2 + hτβx∗ + rhτ ]

[(1 + rhτ)(1 + hβτ)]2
,

dB

dτ
= − rhx∗

(1 + rhτ)2K
,

dC

dτ
=
h2ταx∗Y ∗(βx∗ − µ− θ)[2 + rhτ + hβτx∗]

(1 + rhτ)2(1 + hβτx∗)2(γ + x∗)
.

Note that allA,B, C are actuallyA∗,B∗, C∗ which satisfy equation (3.12). Substituting

all these values in N , one has to show that
dλ

dτ
is positive at τ = τ ∗. Analytically it is

very difficult to show the positivity of
dλ

dτ
. In numerical section we however show that

dλ

dτ
> 0 at τ = τ ∗. Thus, we have the following theorem assuming that

dλ

dτ

∣∣∣∣
τ=τ∗

> 0.

Theorem 3.4. Assume that the equation (3.12) is satisfied. There exists a sequence of
values of the delay parameter τ , 0 < τ ∗ < τ1 < τ2 < . . . τi < . . ., such that the interior
fixed point E∗ of the system (3.3) is asymptotically stable for τ ∈ [0, τ ∗) and unstable
for τ > τ ∗. A Neimark-Sacker bifurcation occurs around E∗ at τ = τi, i = ∗, 1, 2, . . ..

4 Numerical Simulations

In this section we will validate and illustrate our theoretical results with the parameter
values as in [6]. The same parameter set r = 0.2, α = 0.9, β = 0.3, γ = 0.06,
µ = 0.02, θ = 0.9, except K = 60, is considered for the numerical simulations of
both the nondelayed and delayed systems. Initial point I = (0.6, 0.2) is kept fixed for
all simulations [6]. It is to be mentioned that this parameter set satisfies the condition
of Theorem 2.3(iii) with θ∗ = 17.9980. To observe the dynamic consistency about the
interior equilibrium E∗, we plot phase portraits of both the continuous system (1.3) and
discrete system (2.3) in Figure 4.1 with θ = 0.9. It shows that trajectory in each system
reaches to the interior equilibrium E∗ = (3.0080, 0.2111) and therefore the systems are
dynamically equivalent. Figure 4.2 shows that time series solutions of the continuous
system (1.3) and the discrete system (2.3) converges to the predator-free equilibrium E1

for θ = 18(> θ∗), following Theorem 2.3(ii). It again shows dynamic consistency of
both systems.
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Figure 4.1: Phase portraits of the continuous system (1.3) (a) and NSFD system (2.3)
(b). These figures show that solution starting from I = (0.6, 0.2) reaches to the interior
fixed point E∗ = (3.0080, 0.2111) for both systems. Parameters are r = 0.2, α = 0.9,
β = 0.3, γ = 0.06, µ = 0.02, K = 60, θ = 0.9. Step-size is h = 0.1 for the NSFD
system.
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Figure 4.2: These figures show that phytoplankton population reaches to its carrying
capacity and zooplankton population goes to extinction, indicating stability of the equi-
librium E1, for the continuous system (1.3) (a) and the NSFD system (2.3) (b). All
parameters and initial points are as in Figure 4.1 except θ = 18.

It is interesting to observe that the corresponding Euler-discrete system

Pn+1 = Pn + h[rPn(1−
Pn
k
)− αPnZn], (4.1)

Zn+1 = Zn + h[βPnZn − µZn −
θPnZn
γ + Pn

],

behaves differently. To compare the behavior of the Euler discrete system (4.1) and
NSFD discrete system (2.3) of the same continuous system (1.3), we present bifurcation
diagrams of both discrete systems with step-size h as the bifurcation parameter (Figure
4.3). It shows that the dynamical behavior of the NSFD system is independent of the
step-size (Figure 4.3 (a)) but the dynamics of the Euler system depends on the step-size
h (Figure 4.3 (b)). Thus, the NSFD system is dynamically consistent with its continuous
counterpart, but the Euler system is dynamically inconsistent.
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Figure 4.3: Bifurcation diagram of phytoplankton population of the NSFD system (2.3)
(a) and that of the Euler system (4.1) (b). The first figure shows that phytoplankton
population is stable for all step-size h.The second figure shows that phytoplankton pop-
ulation is stable for small values of h and unstable for higher values. Parameters and
initial value are same as in Figure 4.1.

Now we show that our delayed NSFD system (3.3) is dynamically consistent with
the delayed-continuous system (3.1). We consider the same initial point and parameter
set as before. Figure 4.4 compares the time evolutions of the delayed continuous system
(3.1) (Figure 4.4 (a)) and delayed discrete system (3.3) (Figure 4.4 (b)). These figures
show that both the systems are stable for lower delay τ = 5. However, the systems are
unstable for higher value τ = 15 (Figures 4.4 (c) and (d)).
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Figure 4.4: (a) and (b) show stable behavior of the delayed continuous system (3.1) and
the delayed discrete system (2.3) for τ = 5. (c) and (d) show the unstable behavior of
these systems for τ = 15. All parameters and initial point are same as in Figure 4.1
except m = 500 (i.e., h = 0.002), xn−m = 0.6 for n = 1, 2, 3, . . . 500, 501 and other
parameters are as in Figure 4.1.
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We compare our delayed continuous system and delayed NSFD system with the
delayed Euler system

xn+1 = xn + h[τrxn(1−
xn
k
)− ταxnyn], (4.2)

yn+1 = yn + h[τβxnyn − τµyn − τ
θxn−myn
γ + xn−m

],

where h and m have the same meanings as before. The delayed Euler system (4.2)
has been constructed following [1]. In Figure 4.5, we give bifurcation diagrams of
the delayed continuous system (3.1), delayed NSFD system (3.3) and delayed Euler
system (4.2) with τ as the bifurcation parameter. Figures 4.5 (a) and (b) show that
the continuous system and the NSFD system are stable around E∗ for τ < 14.52 and
unstable for τ > 14.52. Therefore, a Neimark–Sacker bifurcation occurs at τ = τ ∗ =
14.52. This result supports Theorem 3.4 and also proves the dynamic consistency of the
delayed NSFD system (3.3) with that of the delayed-continuous system (3.1). However,
the delayed Euler system (4.2) is unstable around the fixed point E∗ for significantly
lower value of τ , depicting its inconsistency with the continuous system.
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Figure 4.5: Bifurcation diagrams of phytoplankton population of the delayed continuous
system (3.1) (a), delayed NSFD system (3.3) (b) and delayed Euler system (4.2) (c) with
τ as the bifurcation parameter. (a) and (b) show that the phytoplankton population is
stable for τ < 14.525 and unstable as τ crosses 14.52. (c) shows that phytoplankton
population is stable for τ < 1.78 and unstable for all τ > 1.78. Parameters and initial
point are same as in Figure 4.4.
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5 Summary and Discussion

In this paper, we discretized a continuous-time phytoplankton-zooplankton (respec-
tively, prey and predator) model studied in [6] where phytoplankton produces some
harmful chemical which is toxic to zooplankton. We first discretized the continuous
time nondelayed model following nonstandard finite difference scheme so that the dis-
crete model shows dynamic consistency with its continuous counterpart. Considering
that the negative effect of toxic chemical on zooplankton is not instantaneous, we in-
corporated a delay in the system which measures the delayed negative effect on the
zooplankton. The delay-induced NSFD discrete system is then analyzed to show that
the delay has no effect on the dynamics of trivial and zooplankton-free fixed points.
However, the stability of the coexistence fixed point depends on the length of delay.
There exists some critical length of the delay parameter such that the system is stable if
the length is smaller than it and unstable if it is higher. A Neimark–Sacker bifurcation
occurs at that critical value of the delay. We numerically show that the critical value
of the delay parameter is same with that of the delay-induced continuous system. It
is also shown that solutions of both the nondelayed and delayed discrete systems are
always positive with all feasible initial points. Our simulations results show that the
corresponding delayed Euler system is dynamically inconsistent and exhibits unstable
behavior for significantly lower value of delay.
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