Positive Periodic Solutions for Higher-order Functional Difference Equations*

Weibing Wang

Department of Mathematics, Hunan Normal University
Changsha, Hunan 410081, PR China

Zhiguo Luo

College of Mathematics and Computer Science,
Jishou University, Jishou 416000, PR China
Department of Mathematics, Hunan Normal University
Changsha, Hunan 410081, PR China

Abstract

In this paper, we apply a fixed point theorem to obtain sufficient conditions for the existence of positive periodic solutions for two classes of higher-order functional difference equations.

Keywords: Difference equations, periodic solutions, cone.

1. Introduction

The existence of positive periodic solutions of discrete mathematical models has been studied extensively in recent years, see [1, 5–12], for example,

(i) discrete model of blood cell production:

\[\Delta x(n) = -a(n)x(n) + b(n) \frac{1}{1 + x^k(n - \tau(n))}, \quad k \in \mathbb{N}, \quad (1.1) \]

\[\Delta x(n) = -a(n)x(n) + b(n) \frac{x(n - \tau(n))}{1 + x^k(n - \tau(n))}, \quad k \in \mathbb{N}, \quad (1.2) \]

*This work is supported by the NNSF of China (10571050), Hunan Provincial Natural Science Foundation (05JJ40013) and Scientific Keysearch Fund of Hunan Provincial Education Department (07A038).

Received August 11, 2006; Accepted January 28, 2007
(ii) the periodic Michaelis–Menton discrete model:

\[\Delta x(n) = a(n)x(n) \left[1 - \sum_{j=1}^{k} \frac{a_j(n)x(n - \tau_j(n))}{1 + c_j(n)x(n - \tau_j(n))} \right], \quad (1.3) \]

(iii) the single species discrete periodic population model:

\[\Delta x(n) = x(n) \left[a(n) - \sum_{j=1}^{k} b_j(n)x(n - \tau_j(n)) \right]. \quad (1.4) \]

Jiang, O'Regan and Agarwal in [4] have obtained the optimal existence theorem for

single and multiple positive periodic solutions to general functional difference equations

\[\Delta x(n) = x(n)[a(n) - g(n, x(n - \tau_1(n)), \ldots, x(n - \tau_k(n))]], \quad (1.5) \]

\[\Delta x(n) = -a(n)x(n) + g(n, x(n - \tau(n))). \quad (1.6) \]

Note that the equations (1.1)–(1.6) are first-order functional difference equations. Our aim of this paper is to study existence of positive periodic solutions for the higher-order difference equations

\[x(n + m) = a(n)x(n) + f(n, x(n - \tau(n))), \quad (1.7) \]

\[x(n + m) = a(n)x(n) - f(n, x(n - \tau(n))), \quad (1.8) \]

where \(a(n) = a(n + \omega), \quad f(n + \omega, u) = f(n, u), \quad \tau : \mathbb{Z} \to \mathbb{Z}, \quad \tau(n + \omega) = \tau(n) \) and \(\mathbb{Z} \) denotes the set of integers, \(\omega, m \in \mathbb{N} \). By using a fixed point theorem in a cone, we obtain existence results for single and multiple positive periodic solutions to the equation (1.7) and (1.8).

To prove our main results, we present an existence theorem.

Theorem 1.1. [2, 3] Let \(X \) be a Banach space and \(K \) be a cone in \(X \). Suppose \(\Omega_1 \) and \(\Omega_2 \) are open subsets of \(X \) such that \(0 \in \Omega_1 \subset \bar{\Omega}_1 \subset \Omega_2 \) and suppose that

\[\Phi : K \cap (\bar{\Omega}_2 \setminus \Omega_1) \to K \]

is a completely continuous operator such that

(i) \(\|\Phi u\| \leq \|u\| \) for \(u \in K \cap \partial \Omega_1 \), and there exists \(\psi \in \Omega_1 \setminus \{0\} \) such that \(u \neq \Phi u + \lambda \psi \) for \(u \in K \cap \partial \Omega_2 \) and \(\lambda > 0 \), or

(ii) \(\|\Phi u\| \leq \|u\| \) for \(u \in K \cap \partial \Omega_2 \), and there exists \(\psi \in \Omega_1 \setminus \{0\} \) such that \(u \neq \Phi u + \lambda \psi \) for \(u \in K \cap \partial \Omega_1 \) and \(\lambda > 0 \).

Then \(\Phi \) has a fixed point in \(K \cap (\bar{\Omega}_2 \setminus \Omega_1) \).
2. Positive Periodic Solutions of (1.7)

In this section we establish the existence of positive periodic solutions of equation (1.7). We always assume the following condition throughout this section:

\((H)\) 0 < \(a(n)\) < 1 for all \(n \in [0, \omega - 1]\) and \(f : \mathbb{Z} \times [0, \infty) \to [0, \infty)\) is continuous.

Let \(X\) be the set of all real \(\omega\)-periodic sequences. When endowed with the maximum norm \(\|x\| = \max_{n \in [0, \omega - 1]} |x(n)|\), \(X\) is a Banach space. Set \((m, \omega) = l, \omega / l = h\). From (1.7), we have that for any \(x \in X\)

\[
\frac{1}{a(n)} x(n + m) - x(n) = \frac{1}{a(n)} f(n, x(n - \tau(n)));
\]

\[
\frac{1}{a(n)a(n + m)} x(n + 2m) - \frac{1}{a(n)} x(n + m)
= \frac{1}{a(n)a(n + m)} f(n + m, x(n + m - \tau(n + m)));
\]

\[
\left(\prod_{i=0}^{h-1} \frac{1}{a(n + im)}\right) x(n + hm) - \left(\prod_{i=0}^{h-2} \frac{1}{a(n + im)}\right) x(n + (h - 1)m)
= \left(\prod_{i=0}^{h-1} \frac{1}{a(n + im)}\right) f(n + hm, x(n + (h - 1)m - \tau(n + (h - 1)m))).
\]

By summing the above equations and using periodicity of \(x\), we obtain the following result.

Lemma 2.1. \(x \in X\) is a solution of equation (1.7) if and only if

\[
x(n) = \left(\prod_{i=0}^{h-1} \frac{1}{a(n + im)} - 1\right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n + jm)}\right) \times f(n + im, x(n + im - \tau(n + im)));
\]

(2.1)

Put

\[
M^* = \max \left\{ \prod_{i=0}^{h-1} a(n + im) : 0 \leq n \leq \omega - 1 \right\},
\]

\[
M_* = \min \left\{ \prod_{i=0}^{h-1} a(n + im) : 0 \leq n \leq \omega - 1 \right\},
\]

\[
\delta = \frac{M_*^2(1 - M^*)}{M^*(1 - M_*)}.
\]
Clearly, $\delta \in (0, 1)$. We define a cone by

$$P = \{ y \in X : y(n) \geq 0, n \in \mathbb{Z}, \ y(n) \geq \delta \|y\| \}. $$

and a mapping $T : X \to X$ by

$$(Tx)(n) = \left(\prod_{i=0}^{h-1} \frac{1}{a(n + im)} - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n + jm)} \right) \times f(n + im, x(n + im - \tau(n + im))).$$

By the nonnegativity of f and a, $Tx(n) \geq 0$ on $[0, \omega - 1]$. It is clear that $(Tx)(n + \omega) = (Tx)(n)$ and T is completely continuous on bounded subsets of P. Noting that

$$(Tx)(n) = \left(\prod_{i=0}^{h-1} \frac{1}{a(n + im)} - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n + jm)} \right) \times f(n + im, x(n + im - \tau(n + im)))$$

$$\leq \left(\frac{M_\ast}{M_\ast - M_*} \right)^{-1} \sum_{i=0}^{h-1} f(n + im, x(n + im - \tau(n + im))),$$

$$(Tx)(n) \geq \left(\frac{1}{M_\ast} - 1 \right)^{-1} \sum_{i=0}^{h-1} f(n + im, x(n + im - \tau(n + im))),$$

we easily obtain that $Tx(n) \geq \delta \|Tx\|$, that is, $T(P) \subset P$.

For convenience, we denote

$$\varphi(s) = \max \left\{ \frac{f(n, u)}{1 - a(n)} : n \in [0, \omega - 1], \ u \in [\delta s, s] \right\},$$

$$\psi(s) = \min \left\{ \frac{f(n, u)}{(1 - a(n))u} : n \in [0, \omega - 1], \ u \in [\delta s, s] \right\},$$

$$\varphi_0 = \lim_{s \to 0^+} \varphi(s), \ \varphi_\infty = \lim_{s \to \infty} \frac{\varphi(s)}{s},$$

$$\psi_0 = \lim_{s \to 0^+} \psi(s), \ \psi_\infty = \lim_{s \to \infty} \psi(s).$$

Theorem 2.2. Assume that (H) holds, and there exist two positive constants a, b with $a \neq b$ such that $\varphi(a) \leq a$ and $\psi(b) \geq 1$. Then the equation (1.7) has at least one positive solution $x \in X$ with $\min \{a, b\} \leq \|x\| \leq \max \{a, b\}$.
Proof. Without loss of generality, we assume that $a < b$. Let $\Omega_1 = \{x \in X : \|x\| < a\}$ and $\Omega_2 = \{x \in X : \|x\| < b\}$. We claim that

(i) $\|Tx\| \leq \|x\|$, $x \in P \cap \partial \Omega_1$.

(ii) $x \neq Tx + \lambda$, $x \in P \cap \partial \Omega_2$ and $\lambda > 0$.

From $\varphi(a) \leq a$ and $\psi(b) \geq 1$, we have that

$$f(n, x) \leq (1-a(n))a, \ 0 \leq n \leq \omega - 1, \ a \delta \leq x \leq a,$$ \hspace{1cm} (2.2) $$f(n, x) \geq (1-a(n))x, \ 0 \leq n \leq \omega - 1, \ b \delta \leq x \leq b.$$ \hspace{1cm} (2.3)

To justify (i), let $x \in P \cap \partial \Omega_1$. Then $\|x\| = a$ and $\delta a \leq x(n) \leq a$ for $0 \leq n \leq \omega - 1$. It follows that

$$Tx(n) \leq \left(\prod_{i=0}^{h-1} a(n + im) - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} a(n + jm) \right) \times f(n + im, x(n + im - \tau(n + im)))$$

$$\leq \left(\prod_{i=0}^{h-1} a(n + im) - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} a(n + jm) \right) \times (1 - a(n + im))x(n + im - \tau(n + im))$$

$$\leq \left(\prod_{i=0}^{h-1} a(n + im) - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} a(n + jm) \right) (1 - a(n + im))a$$

$$\leq \|x\|.$$

This means that $\|Tx\| \leq \|x\|$ for all $x \in P \cap \partial \Omega_1$.

Next, we prove (ii). If not, there exist $x^* \in P \cap \partial \Omega_2$ and $\lambda_0 > 0$ such that $x^* = Tx^* + \lambda_0$.

Since $x^* \in P \cap \partial \Omega_2$, we have $\|x^*\| = b$ and $\delta b \leq x^*(n) \leq b$. Put $\chi = \min\{x(n), 0 \leq n \leq \omega - 1\}$. Then we have $\chi = x(n)$ for some $n \in [0, \omega - 1]$. Thus it follows that
\[x^*(n) = (Tx^*)(n) + \lambda_0 = \left(\prod_{i=0}^{h-1} \frac{1}{a(n+im)} - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n+jm)} \right) \\
\times f(n+im, x(n+im - \tau(n+im))) + \lambda_0 \]
\[\geq \left(\prod_{i=0}^{h-1} \frac{1}{a(n+im)} - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n+jm)} \right) \\
\times (1 - a(n+im))x(n+im - \tau(n+im)) + \lambda_0 \]
\[\geq \chi \left(\prod_{i=0}^{h-1} \frac{1}{a(n+im)} - 1 \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n+jm)} \right) \\
\times (1 - a(n+im)) + \lambda_0 = \chi + \lambda_0, \]

and this implies \(\chi > \chi \), a contradiction.

Therefore, by Theorem 1.1, it follows that \(T \) has a fixed point \(x \in P \cap (\bar{\Omega}_2 \setminus \Omega_1) \).
Furthermore, \(a \leq \|x\| \leq b \) and \(x(n) \geq \delta a \), which means that \(x \) is a positive \(\omega \)-periodic solution of (1.7). The proof is complete. \(\blacksquare \)

Corollary 2.3. Assume that \((H)\) holds, and one of the following conditions holds:

(i) \(\varphi_0 < 1 \) and \(\psi_\infty > 1 \),

(ii) \(\varphi_\infty < 1 \) and \(\psi_0 > 1 \).

Then the equation (1.7) has at least one positive solution \(x \in X \) with \(\|x\| > 0 \).

Theorem 2.4. Assume that \((H)\) holds. There exist \(N + 1 \) positive constants \(p_1 < p_2 < \cdots < p_N < p_{N+1} \) such that one of the following conditions is satisfied:

(i) \(\varphi(p_{2k-1}) < p_{2k-1}, \ k = 1, 2, \ldots, [(N + 2)/2], \)
\(\psi(p_{2k}) > 1, \ k = 1, 2, \ldots, [(N + 1)/2], \)

(ii) \(\psi(p_{2k-1}) > 1, \ k = 1, 2, \ldots, [(N + 2)/2], \)
\(\psi(p_{2k}) < p_{2k}, \ k = 1, 2, \ldots, [(N + 1)/2], \)

where \([d]\) denotes the integer part of \(d \). Then the equation (1.7) has at least \(N \) positive solutions \(x_k \in X, k = 1, 2, \ldots, N \) with \(p_k < \|x_k\| < p_{k+1} \).

Proof. It is enough to prove case (i). Since \(\phi, \psi : (0, \infty) \to [0, \infty) \) are continuous, there exist \(p_k < a_k < b_k < p_{k+1}, \ k = 1, 2, \ldots, N \) such that
\[\varphi(a_{2k-1}) \leq a_{2k-1}, \ \phi(b_{2k-1}) \geq 1, \ k = 1, 2, \ldots, [(N + 1)/2], \]
\[\phi(a_{2k}) \geq 1, \ \varphi(b_{2k}) \leq b_{2k}, \ k = 1, 2, \ldots, \lfloor (N + 1)/2 \rfloor. \]

It follows by Theorem 2.2 that equation (1.7) has at least one positive periodic solution \(x_k \in X \) for every pair of numbers \(\{a_k, b_k\} \) with \(p_k < a_k \leq \|x_k\| \leq b_k < p_{k+1} \). The proof is complete. \[\blacksquare \]

Corollary 2.5. Assume that \((H)\) holds, and the following conditions are satisfied:

(i) \(\varphi_0 < 1 \) and \(\varphi_\infty < 1 \),

(ii) there exists a positive constant \(b \) such that \(\psi(b) > 1 \).

Then the equation (1.7) has at least two positive solutions \(x_1, x_2 \in X \) with

\[0 < \|x_1\| < b < \|x_2\| < \infty. \]

Corollary 2.6. Assume that \((H)\) holds, and the following conditions are satisfied:

(i) \(\psi_0 > 1 \) and \(\psi_\infty > 1 \),

(ii) there exists a positive constant \(a \) such that \(\varphi(a) < a \).

Then the equation (1.7) has at least two positive solutions \(x_1, x_2 \in X \) with

\[0 < \|x_1\| < a < \|x_2\| < \infty. \]

3. Positive Periodic Solutions of (1.8)

In this section we establish the existence of positive periodic solutions of equation (1.8). We always assume the following condition throughout this section:

\((H^*)\) \(a(n) > 1 \) for all \(n \in [0, \omega - 1] \) and \(f: \mathbb{Z} \times [0, \infty) \to [0, \infty) \) is continuous.

The proofs of the results presented in this section are similar to those given in Section 2 and hence are omitted.

Lemma 3.1. \(x \in X \) is a solution of equation (1.8) if and only if

\[
x(n) = \left(1 - \prod_{i=0}^{h-1} \frac{1}{a(n+im)}\right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n+jm)}\right) \\
\times f(n+im, x(n+im - \tau(n+im))),
\]

where \(X \) and \(h \) are defined in Section 2.

Put

\[
M^* = \max \left\{ \prod_{i=0}^{h-1} a(n+im) : 0 \leq n \leq \omega - 1 \right\},
\]
\[M_\ast = \min \left\{ \prod_{i=0}^{h-1} a(n + im) : 0 \leq n \leq \omega - 1 \right\}, \]

\[\delta^\ast = \frac{M_\ast - 1}{M_\ast(M^\ast - 1)}. \]

Clearly, \(\delta^\ast \in (0, 1) \). We define a cone by

\[P = \{ y \in X : y(n) \geq 0, n \in \mathbb{Z}, y(n) \geq \delta^\ast \| y \| \}, \]

and a mapping \(T : X \to X \) by

\[(Tx)(n) = \left(1 - \prod_{i=0}^{h-1} \frac{1}{a(n + im)} \right)^{-1} \sum_{i=0}^{h-1} \left(\prod_{j=0}^{i} \frac{1}{a(n + jm)} \right) \times f(n + im, x(n + im - \tau(n + im))). \]

It is not difficult to verify that \(T(P) \subset P \) is completely continuous. Let

\[\tilde{\varphi}(s) = \max \left\{ \frac{f(n, u)}{a(n) - 1} : n \in [0, \omega - 1], u \in [\delta^\ast s, s] \right\}, \]

\[\tilde{\psi}(s) = \min \left\{ \frac{f(n, u)}{(a(n) - 1)u} : n \in [0, \omega - 1], u \in [\delta^\ast s, s] \right\}, \]

\[\tilde{\varphi}_0 = \lim_{s \to 0^+} \frac{\tilde{\varphi}(s)}{s}, \quad \tilde{\varphi}_\infty = \lim_{s \to \infty} \frac{\tilde{\varphi}(s)}{s}, \]

\[\tilde{\psi}_0 = \lim_{s \to 0^+} \tilde{\psi}(s), \quad \tilde{\psi}_\infty = \lim_{s \to \infty} \tilde{\psi}(s). \]

Theorem 3.2. Assume that \((H^\ast) \) holds, and there exist two positive constants \(a, b \) with \(a \neq b \) such that \(\tilde{\varphi}(a) \leq a \) and \(\tilde{\psi}(b) \geq 1 \). Then the equation (1.8) has at least one positive solution \(x \in X \) with \(\min \{a, b\} \leq \| x \| \leq \max \{a, b\} \).

Corollary 3.3. Assume that \((H^\ast) \) holds, and one of the following conditions holds:

(i) \(\tilde{\varphi}_0 < 1 \) and \(\tilde{\psi}_\infty > 1 \),

(ii) \(\tilde{\varphi}_\infty < 1 \) and \(\tilde{\psi}_0 > 1 \).

Then the equation (1.8) has at least one positive solution \(x \in X \) with \(\| x \| > 0 \).

Theorem 3.4. Assume that \((H^\ast) \) holds, and there exist \(N + 1 \) positive constants \(p_1 < p_2 < \cdots < p_N < p_{N+1} \) such that one of the following conditions is satisfied:

(i) \(\tilde{\varphi}(p_{2k-1}) < p_{2k-1}, k = 1, 2, \ldots, [(N + 2)/2], \)
\[\tilde{\psi}(p_{2k}) > 1, k = 1, 2, \ldots, [(N + 1)/2], \]
(ii) \(\tilde{\psi}(p_{2k-1}) > 1, \ k = 1, 2, \ldots, [(N + 2)/2], \)
\(\tilde{\varphi}(p_{2k}) < p_{2k}, \ k = 1, 2, \ldots, [(N + 1)/2], \)

where \([d]\) denotes the integer part of \(d\). Then the equation (1.8) has at least \(N\) positive solutions \(x_k \in X, k = 1, 2, \ldots, N\) with \(p_k < \|x_k\| < p_{k+1}\).

Corollary 3.5. Assume that \((H^*)\) holds, and the following conditions are satisfied:

(i) \(\tilde{\varphi}_0 < 1 \) and \(\tilde{\varphi}_\infty < 1 \),

(ii) there exists a positive constant \(b\) such that \(\tilde{\psi}(b) > 1\).

Then the equation (1.8) has at least two positive solutions \(x_1, x_2 \in X\) with

\[0 < \|x_1\| < b < \|x_2\| < \infty.\]

Corollary 3.6. Assume that \((H^*)\) holds, and the following conditions are satisfied:

(i) \(\tilde{\varphi}_0 > 1 \) and \(\tilde{\varphi}_\infty > 1 \),

(ii) there exists a positive constant \(a\) such that \(\tilde{\varphi}(a) < a\).

Then the equation (1.8) has at least two positive solutions \(x_1, x_2 \in X\) with

\[0 < \|x_1\| < a < \|x_2\| < \infty.\]

4. Some Examples

In this section, we apply the main results obtained in the previous sections to several examples.

Example 4.1. Consider the difference equation

\[x(n + 2) = a(n)x(n) + \frac{1}{1 + x(n - 2)},\]

(4.1)

where \(a\) is an \(\omega\)-periodic function with \(0 < a(n) < 1\) for all \(n \in [1, \omega]\). Obviously \(f(n, x) = 1/(x + 1)\) and \(\varphi_\infty = 0, \ \psi_0 = \infty\). By Corollary 2.3, (4.1) has at least one positive \(\omega\)-periodic solution.

Example 4.2. Consider the difference equation

\[x(n + 3) = a(n)x(n) + x^{100}(n - 5) + \frac{101}{100} \sin x(n - 5),\]

(4.2)

where \(a\) is an \(\omega\)-periodic function with \(0 < a(n) < 0.01\) for all \(n \in [1, \omega]\). It is clear that \(\psi_\infty = \infty, \ \psi_0 = 1.01 > 1\). Put \(a = \pi/6\). Then

\[f(n, x) = x^{100} + \frac{101}{100} \sin x < \frac{99}{100}a, \ 0 < x \leq a.\]
By Corollary 2.5, (4.2) has at least two positive ω-periodic solutions.

Example 4.3. Consider the difference equation

$$x(n + 5) = a(n)x(n) - b(n)x^2(n + \tau(n)), \quad (4.3)$$

where a, b, τ are ω-periodic functions with $a(n) > 1$, $b(n) > 0$ for all $n \in [1, \omega]$ and $\tau : \mathbb{Z} \to \mathbb{Z}$. By Corollary 3.3, (4.2) has at least one positive ω-periodic solution.

References

