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Abstract

The present research deals with the time-harmonic deformation in
homogeneous, thermally conducting, Monoclinic, thermoviscoelastic material
due to uniformly distributed thermal source for nonlocal thermoelasticity
theory. The matrix differential equation is formed by using Fourier transforms
into the considered equations of displacement, stresses and temperature
distribution, which are solved by eigenvalue approach. The nonlocality effect
has been studied numerically and presented graphically for zinc crystal-like
material in context of Lord-Shulman (L-S) model.
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1. Introduction

Anisotropic materials are widely used in Materials Science and Engineering,
Structural Engineering, Geomechanics, Biomechanics, Aerospace Engineering,
Automotive Engineering, Civil Engineering and Nanotechnology. The thermoelastic
stresses and strains that form inside anisotropic structures as a result of thermal
treatments or temperature changes in the surrounding environment cause the structural
integrity to deteriorate. For this reason, thermoelastic analysis of anisotropic materials
has persisted as a crucial subject in engineering practice.

The Fourier law-based classical model of thermoelasticity offers accurate
approximations for the description in a variety of engineering applications. It does,
however, give rise to the dilemma of the infinite heat pulse propagation speed and, in
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certain real-world scenarios, may result in an insufficient explanation of heat
conduction. Since the middle of the 20th century, numerous hyperbolic thermoelastic
models have been created in an effort to address these flaws in conventional
thermoelasticity. The Maxwell-Cattaneo law, which generalised the Fourier law and
took into account a single relaxation period, replaced the Lord and Shulman (1967)
model's Fourier law of heat conduction. Noor and Camin (1976) studied symmetry
considerations for anisotropic shells. Zhang and Evans (1988) discussed numerical
prediction of the mechanical properties of anisotropic composite materials. Li (1992)
investigated generalized theory of thermoelasticity for an anisotropic medium.

Bhaskar, Varadan and Ali (1996) explained thermoelastic solutions for orthotropic
and anisotropic composite laminates. Chao and  Gao (2001) discussed mixed
boundary-value problems of two-dimensional anisotropic thermoelasticity with
elliptic boundaries. Kuo and Chen (2005) investigated steady and transient Green’s
functions for anisotropic conduction in an exponentially graded solid. Kumar and
Rani (2007) studied disturbances due to thermomechanical sources in orthorhombic
thermoelastic material. Hou, Leung and He (2008) discussed three-dimensional
Green'’s functions for transversely isotropic thermoelastic biomaterials. Shiah and Lee
(2011) discussed boundary element modeling of 3D anisotropic heat conduction
involving arbitrary volume heat source. Ramp type heating in thermally conducting
cubic crystal has been studied by Abbas et al. (2015). Rani and Singh (2018) studied
thermal disturbances in twinned orthotropic thermoelastic material. Rani and Shekhar
(2020) investigated the response of ramp-type heating in a monoclinic generalized
thermoelastic material. Hobiny and Abbas (2021) discussed the generalized
thermoelastic interaction in a two-dimensional orthotropic material caused by a pulse
heat flux. Hobiny and Abbas (2023) considered the generalized thermoelastic
interaction in orthotropic media under variable thermal conductivity using the finite
element method

In the nonlocal elasticity model, Eringen [2002] assumed that the stress field at a
particular point in an elastic continuum not only depends on the strain field at that
point but also on strains at all other points of the body. Hence, the nonlocal continuum
theory contains information about long-range forces of atoms or molecules and, thus,
an internal length scale parameter should be introduced in the formulation. Over the
past forty years, numerous mathematicians have expanded the notion of nonlocal
elasticity to include nonlocal thermoelsticity. Eringen and Edelen (1972) discussed
non-local elasticity. Eringen (1974) proposed theory of nonlocal thermoelasticity.
Cracium (1996) studied the nonlocal thermoelsticity._ Non-local effects in radial heat
transport in silicon thin layers and grapheme sheets has been discussed by Sellitto,
Jou and Bafaluy (2011). Yu, Tian and Xiong (2016) investigated the nonlocal
thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Luo, Li
and Tian (2021) discussed nonlocal thermoelasticity and its application
in thermoelastic problem with temperature-dependent thermal conductivity. Mallick
and Biswas (2024) discussed thermoelastic diffusion in nonlocal orthotropic medium
with porosity.

The present article is concerned with a two-dimensional nonlocal thermoelasticity


https://www.sciencedirect.com/science/article/pii/S0020768300004030
https://www.sciencedirect.com/science/article/pii/S0020768300004030
https://www.sciencedirect.com/science/article/pii/S0020768300004030
https://www.sciencedirect.com/science/article/pii/S089571771100327X
https://www.sciencedirect.com/science/article/pii/S089571771100327X
https://www.tandfonline.com/author/Hobiny%2C+Aatef
https://www.tandfonline.com/author/Abbas%2C+Ibrahim
https://www.tandfonline.com/author/Hobiny%2C+Aatef
https://www.tandfonline.com/author/Abbas%2C+Ibrahim

Nonlocal thermoelasticity theory... 3

theory for Monoclinic thermoviscoelastic material for a homogeneous,isotropic,
thermally conducting half-space whose surface is subjected to a thermal shock. The
eigen value approach has been used to obtain the exact analytical solutions of the
problem. Numerical results for the nonlocality effect have been shown for the
temperature, displacements and thermal stresses distribution. To the best of the
authors’ knowledge the problems of Nonlocal thermoelasticity theory for monoclinic
thermoviscoelastic material has not been treated systematically in the scientific
literature.

2. Formulation Of The Problem

We consider a homogenous, monoclinic, nonlocal thermoelastic half-space in
undeformed state at uniform temperature To. The rectangular Cartesian co-ordinate
system (x,y,z) having origin on the plane surface z=0 with z-axis pointing vertically
into medium is introduced. The surface of the half-space is subjected to thermal
source acting at z=0. We consider a plane strain problem with displacement vector %
= (u,0,w) and temperature change T(X, z, t), then the field equations and constitutive
relations for such a medium in the absence of body forces and heat sources can be
written, by following the equations given by Dhaliwal and Sherief (1980), Eringen
(2002) and L- S (1967) as

% u 9% u 2w oT % u
Cigs + Cssoz + (i3 +055)g— -Big-= p(1 - €2 V2, @)

% w 7w 2% u oT 2 o2 % w
Css5z T Cazgz (€3 +Css)5— -B35- =p(1-€V)—, (2
KiTii = pce (T + 1,T) + ToBij(ity; + T S1xilyf), (3)
and
(1-€2V0)t,, = 13 + ¢y BT (4)

zZZ 13 ax 33 az 34
ow ou

(1 - EZ Vz) tx = CSS(E + E)r (5)

where cjj are isothermal elastic parameters, p , c, are the density, specific heat at
constant strain.,, 85 are thermal moduli along x and z axis. K; and K; are the
coefficient of thermal conductivity. u and w are displacement components along x

and z directions respectively, tis time, V = i;—x + IQ%,TO is the temperature of the

medium in its natural state. T is temperature change. tx and t,; are stresses. €= eya
is elastic non local parameter (1984), a is the internal characteristic length (e.g. atomic
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lattice parameter in crystal, average granular distance in granular solids etc.) and e, is
material constant. Note that in the absence of nonlocality (i.e., €= 0), the equations
of motion given in (1)—(2) reduce to those for a local monoclinic thermoelastic solid.
Here t, is the thermal relaxation time given by L-S theory.

Initially the displacements, temperature and their velocities are zero.

Regularity conditions are given by
limu=0, limw=0,limT =0. (6)

Z—00 Z—00 Z—00

In order to account for the material damping behavior the material coefficients c;; are

assumed to be function of the time operator D= %, i.e.

Cij = Ci}f (7)
where ¢;= ¢;;(D)

Assuming that the viscoelastic nature of the material is described by the Voigt
model of linear viscoelasticity (1963), we write

cii(D) =c;i (1+7 %), 8)

where 7, is the relaxation time assumed to be identical for each ;.

3. Solution of The Problem
Assuming time harmonic behavior

(ww, T)(x,2t) = (u,w,T)(x,z)et, 9)
with w is the circular frequency.

We introduce dimensionless quantities as

x wiz pYLW] pYLw]
x’ — 1 , ZI — 1 t, — w;t , u/ — 1 , WI — 1%t ,
21 v B1To B1To
* * * *
ol = 33 o = 55 ot = C13+Css K3
37 176y 2 ca Ky’
2
’ * I w BiTo l T
Tp = W Ty ,w =—, €/ = T = — 10
0 140 » w; ) 1 ,02 Ce‘IJz H T, ( )
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rooo [t P
tZZ - B1To ’ tZX_ B1To s (11)

1
ci1\z2 Ce €] . . .
and v; = (f)z and w] = eK—“are, respectively, the velocity of compressional
1

waves in x-direction and characteristic frequency of the medium.

Equations (1)-(3) with the help of equations (7)-(11), can be written in non-
dimensional form as (dropping the dashes for convenience)

d%u « 0%u . 02w 92 . d%u
TEtCTE G S = (- aGa e (12)
02w . 02w L 0%u . 0T
o Gt G B = (1= G+ ) T (09
T, +KT,, = (T +7,T) +€; {(@ + 7oil) , + B*(W + ToW) ,}, (14)

where dot notation represents time differentiation,

EZ B3
8 =55 g =2 K—Kl

Applying the Fourier transforms

f& 2z 0=[" flx z 1e’¥dx. (15)

on the resulting expressions, we obtain

d2
F —_ Mllu + M13T + M15 (16)
d*w
iz - = M22W+M24 +M26d (17)
azt -
E: M31u+M33T+M3SE. (18)
where
{w?(1+6,8%) - &%} —ic;
Mll == * 2 § M13 = Tx 28\’ M15
(cf — 6,w?) (c] — w?6y)
__ ¢
(¢~ w?)’
§%(c; — 8,0%) — w? 318
My, = yMag = — ———F——<, M2,

(c3 — 6,0%) (c;3 — 61w?)

(c3— 5w?)’
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i$e Ny {&2 4+ Ny} p*e1Ny
M3, = — [ ’ M33 = ———, M;5 = 7 ,

N; = iw — Tow?.

The equations (16)-(18) can be written as

d
EW(& Z, P) = A(E, p)W(E' Z, p)' (19)
where
W o1 = ,[E
W_[I]l A_[Al AZ:II U_‘./.,V' U—‘ﬂ/,:
T T
0 0 O 1 0 0 0 Mis 0
o=|o o o, I=]0 1 0f, A = | My, 0 M|,
0 0 0 0 0 1 0 Rjs 0
My, 0 M3
A2 =10 R22 0 ,
My, 0 M33
To solve the equation (16),we take
W, z,w) =X, w) e (20)
so that

A, )W (§,z,w) = qW (¢, z, w)
which leads to an eigenvalue problem. The characteristic equation corresponding to
matrix A is given by

det[A-gl]=0 (21)
which on expansion leads to
q° —Mq* + 24> — 23 =0 (22)

where
A1=Mis M24+M3zz+Mz2+ M11+ M2sMss

Ay = MysMyyMg3 — MygMyy M35 + My Mys + My My Mss
—M3 MysMyg + My M33 — M31My3 + M1 M3,

A3 = My (My1 M3z — M3 My3),
The roots of equation (19) are +q,(¢¥ = 1, 2, 3).

The eigenvalues of the matrix A are roots of equation (22).The eigenvector X(¢, w)
corresponding to the eigenvalues g, can be determined by solving the homogeneous
equation

[A-gl] X(¢, w)=0 (23)
The set of eigenvectors X, (¢, w), (£ =1,2,3,4,5,6) may be obtained as
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Xfl(faw)
X W)= [
¢ C0F |y, (ew)
Where
—& —&qyp
Xp1 (€, w)= [WCM]» Xp(60) = |aeq; |, q=q,t=123.
b, beq,
=< $qyp
Xt’al (E’ (1)): [_ai’qi’ ’ Xi’aZ(E , W) = at’Q{% , La=2+3, q=—qp,t=
b, —bq,
1,2,3.
and
BT = )& — w?Br —ciBq;
a, = )
iy
by = (17§20 PP -wH)—aj(c3-cif"N-ajczd (P-w?)-ciap}f"—c;¢%)
&4y ’
A, = i{(c18% — w?) = (c; — 3Bz}, ¢=123.

The solution of equation (23) is given by
W (&,2,p) = X3=1[Be X¢ (£, D) exp(qez) + BpizXei3(E,p) exp(— qez)], (24)

whereB, (¢ = 1,2,3,4,5,6) are arbitrary constants.

Thus equation (24) represents the solution of the general problem in the plane strain
case of generalized homogeneous thermoelasticity by employing the eigenvalue
approach and therefore can be applied to a broad class of problems in the Fourier
transforms. Displacements and temperature distribution that satisfy the regularity
conditions (6) are given by

U zp)= —&Bye™ +Bse® +Bge™), (25)
w(,z,p)= —(a1q1B,4 e’ 4+ a,q,Bs e + azqsBe e_qu)a (26)
T(&zp)= (b1Bye™  +byBse™ +bsBse ™), (27)
4. Application

Dynamic thermoelastic case:
Thermoelastic Interactions due to Thermal Source
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The boundary conditions at the plane surface are

t,, =0, t,, =0, atz=10
T .
3, (x,z=0) =71(x,1t), for the temperature gradient boundary,
or
T(x,z=0)=r(xt), for the temperature input boundary,. (28)

where r(x,t)=n(x)e't

Making use of equations (9)-(11), applying the transforms defined by (15) and with
the help of equations (25)—(27) in the boundary conditions (28), we obtain the
expressions for displacement components, stresses, temperature distribution as
=218 are07 — A3e07 + A5E07)ele,

—71()
A

~ "=qz n"n=q,z " 5q32\ plwt
w (a1q,4787% — a,q,438%2% + azq343€93%)e'*",

T = —"f) (b1 47697 — bpA38%% + byd5e%%)e',

te = — (E3aA]e17 + E3c A5 6927 + Eo A5693%)ett,

F = L8 (B, 41607 + E,p 45607 + Eyp 856057t (29)

where
AT =E34(E42b3q3 — bq3E43)-E35(E41b3q3 — b1q1Ey3) + E36(E41b2qz — by1qqEy)
A3=E34(E4zb3 — byEy3)-E35(Eg1bs — b1 Ey3) + E36(Es by — biEyy)

A’1’ = (E3sE43 — E4zE56),
A’Z’ = —(E34E43 — E41E36),
A5 = (E34Eqy — E4qE35), 6, =1+ 6,¢2

Esy = (=819 + 8,)E3y,
Ess = (=895 + 8,)E3;,
Ese = (=8195 + 8,)E33,
E3y = (=i§%ci3T" + c33T " a1qf — B7by),
Esp = (=i&%cisT" + c33T"azq5 — B7by),
Es3 = (=i&%ci3T" + ¢33 T"azqs — B7b3),



Nonlocal thermoelasticity theory... 9

1
fol—
T"=—,

PV
Ey = —cisT*(i€ay — 1)(—61q7 + 82)q4,
Esp = —c5sT*(i8a; — 1)(—6145 + 8,)q2,
Eu3 = —c5sT*(i€az — 1)(—51Q§ + 62)9;3.

(UITO

On replacing 4 by (—)47 and T, 4%, respectively, we obtain the expressions for

V1
temperature gradient boundary and temperature input boundary. 7(¢) is the
transformed function of n(x).

The solution due to uniformly distributed source applied on the half-space surface
is obtained by setting

(1 if |x|<a,
77(95)—{0 if |x|>a,

in equation (28), where 2a is the width of strip load. Using equations (9)-(11) (after
suppressing the primes) and applying the transforms defined by equation (15), we get

1) = [2sin ((2) /5], € % 0

6. Particular cases:
Transversely isotropic materials

This type of medium has only one axis of thermal and elastic symmetry. We take the
z-axis along the axis of symmetry. Then the non-vanishing elastic and thermal
parameters are

€11 =¢€33, K; =K a; =as,.

Cubic crystal

For cubic crystals, the nonvanishing elastic and thermal parameters are
ci1=¢33 Ki=K3=K, pri=p3=8 ay=az3=a

Isotropic media

For isotropic material, every direction is a direction of elastic as well as thermal
symmetry and the nonvanishing elastic and thermal parameters are

C11 =C33 =A+2H, cl3 :A’ C55 = U, Kl =K3 =K'
a, =az = ag, p1=P3=0=0CA+2u)a,
5. Inversion of the Transforms

To obtain the solution of the problem in the physical domain, we must invert the
transforms in (30), for the L-S theory. These expressions are functions of z and the
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parameter of Fourier transform & and hence are of the form £ (&, z, t). To get the
function f (x,z,t) in the physical domain, we invert the Fourier transform using

f(x,z,t):zireiéx f ezt dg:lf(cos(gx) f -isinExf,)de,
T Ty

where fe and fo are, respectively, the even and odd parts of the function £ (&, z, t).
The method for evaluating this integral is described by Press et al. (1986), and it
involves the use of Romberg’s integration with adaptive step size. This also uses the
results from successive refinements of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the step size tends to zero.

6. Numerical Result and Discussion

Following Dhaliwal and Singh (1980) we take the case of zinc crystal-like
material for numerical calculations. The physical constants used are:

£=0.0221, ;1 = 1. 628 x 101t Nm2, ¢,5 = 0.508 x 101 Nm?2,
p=7.14x103kgm? , 5= 0.627 x 101t Nm?, ¢ss = 0.770 x 101 Nm?2,

Ce = 3.9 x 10% Jkg'degree? ,w; = 5.01x101** s Ki;= K3 = 1.24 x 10> Wm"

ldegree™,

B1=5.75 x 10° Nm-degree™, To=296°K, PBs=5.17 x 10° Nm=2degree™,.
The variations of normal boundary displacement w and boundary temperature

field T

with distance x at non-dimensional time t = 0.1 are shown graphically in figures 1-4
for non-dimensional relaxation times 7, = 0.02. The computations were carried out
for z=1.0 in the range 0 < x < 10 for L-S theory. The results for distributed thermal
source are presented for dimensionless width a=1.

Thermal source on the surface of half-space (Temperature gradient
boundary)

Uniformly Distributed Thermal Source

Figure 1 depicts the variation of normal displacement w with distance x. The values
of normal displacement for nonlocality parameter €= 0.01 and €= 0.02 shows
same oscillatory behavior about zero in the whole range. The values of normal
displacement for nonlocality parameter €= 0.05 shows opposite oscillatory behavior
in comparison to nonlocality parameter €= 0.01 and €= 0.02 intherange 0 < x <
10. Figure 2. shows variation of temperature distribution T with distance x. The
values of temperature T decreases as the value of nonlocality parameter increases in
the range 0 < x < 4.5 and shows opposite oscillatory pattern in rest of the range.
Figure 3. depicts the variation of normal displacement w with distance x. The values
of normal displacement for t=0.2 lies between the values for t=0.1 and t=0.5 in the
whole range. The values of normal displacement for t=0.1 starts with sharp increase
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and for t=0.5 starts with sharp decrease then become oscillatory in the whole range.
Figure 4. shows variation of temperature distribution T with distance x. Near the point
of application of source the values of temperature for t=0.1 starts with sharp decrease
and for t=0.2 and t=0.5 starts with sharp increase and then become oscillatory in the
whole range. The values of temperature T decrease as values of time decrease from
t=0.5 to t=0.1 in the range 0.5 < x < 4 and shows reverse oscillatory pattern in rest
of the range.

Conclusion

1.

4.
[1]

[2]

[3]

[4]
[5]

[6]

[7]

The strong nonlocality effect has been observed on the values of normal
displacement and temperature distribution.

The values of normal displacement and temperature distribution for nonlocality
parameter €= 0.02 lies between €= 0.01 and €= 0.05 in the whole range.

The values of normal displacement and temperature distribution for time t=0.2 and
t=0.5 show same oscillatory pattern and for t=0.1 show opposite oscillatory pattern
in the whole range.
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Figure 1: Variation of normal displacement w with distance x
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