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Abstract 

The present research deals with the time-harmonic deformation in 

homogeneous, thermally conducting, Monoclinic, thermoviscoelastic material 

due to uniformly distributed thermal source for nonlocal thermoelasticity 

theory.  The matrix differential equation is formed by using Fourier transforms 

into the considered equations of displacement, stresses and temperature 

distribution, which are solved by eigenvalue approach. The nonlocality effect 

has been studied numerically and presented graphically for zinc crystal-like 

material in context of Lord-Shulman (L-S) model. 

Key words: Generalized thermoelasticity, monoclinic crystal, relaxation time, 
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1. Introduction 

Anisotropic materials are widely used in Materials Science and Engineering, 

Structural Engineering, Geomechanics, Biomechanics, Aerospace Engineering, 

Automotive Engineering, Civil Engineering and Nanotechnology. The thermoelastic 

stresses and strains that form inside anisotropic structures as a result of thermal 

treatments or temperature changes in the surrounding environment cause the structural 

integrity to deteriorate. For this reason, thermoelastic analysis of anisotropic materials 

has persisted as a crucial subject in engineering practice. 

The Fourier law-based classical model of thermoelasticity offers accurate 

approximations for the description in a variety of engineering applications. It does, 

however, give rise to the dilemma of the infinite heat pulse propagation speed and, in 
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certain real-world scenarios, may result in an insufficient explanation of heat 

conduction. Since the middle of the 20th century, numerous hyperbolic thermoelastic 

models have been created in an effort to address these flaws in conventional 

thermoelasticity. The Maxwell-Cattaneo law, which generalised the Fourier law and 

took into account a single relaxation period, replaced the Lord and Shulman (1967) 

model's Fourier law of heat conduction. Noor and   Camin (1976) studied symmetry 

considerations for anisotropic shells. Zhang and Evans (1988) discussed numerical 

prediction of the mechanical properties of anisotropic composite materials. Li  (1992) 

investigated generalized theory of thermoelasticity for an anisotropic medium. 

Bhaskar, Varadan  and  Ali (1996) explained  thermoelastic solutions for orthotropic 

and anisotropic composite laminates. Chao and   Gao (2001) discussed mixed 

boundary-value problems of two-dimensional anisotropic thermoelasticity with 

elliptic boundaries. Kuo and Chen (2005) investigated steady and transient Green’s 

functions for anisotropic conduction in an exponentially graded solid. Kumar and 

Rani (2007) studied disturbances due to thermomechanical sources in orthorhombic 

thermoelastic material. Hou, Leung and He (2008) discussed three-dimensional 

Green’s functions for transversely isotropic thermoelastic biomaterials. Shiah and Lee 

(2011) discussed boundary element modeling of 3D anisotropic heat conduction 

involving arbitrary volume heat source. Ramp type heating in thermally conducting 

cubic crystal has been studied by Abbas et al. (2015). Rani and Singh (2018) studied 

thermal disturbances in twinned orthotropic thermoelastic material. Rani and Shekhar 

(2020) investigated the response of ramp-type heating in a monoclinic generalized 

thermoelastic material. Hobiny and  Abbas (2021) discussed the generalized 

thermoelastic interaction in a two-dimensional orthotropic material caused by a pulse 

heat flux. Hobiny and  Abbas (2023) considered the generalized thermoelastic 

interaction in orthotropic media under variable thermal conductivity using the finite 

element method 

In the nonlocal elasticity model, Eringen [2002] assumed that the stress field at a 

particular point in an elastic continuum not only depends on the strain field at that 

point but also on strains at all other points of the body. Hence, the nonlocal continuum 

theory contains information about long-range forces of atoms or molecules and, thus, 

an internal length scale parameter should be introduced in the formulation. Over the 

past forty years, numerous mathematicians have expanded the notion of nonlocal 

elasticity to include nonlocal thermoelsticity. Eringen and Edelen (1972) discussed 

non-local elasticity. Eringen (1974) proposed theory of nonlocal thermoelasticity. 

Cracium (1996) studied the nonlocal thermoelsticity. Non-local effects in radial heat 

transport in silicon thin layers and grapheme sheets has been discussed by Sellitto, 

Jou and Bafaluy (2011).  Yu, Tian and Xiong (2016) investigated the nonlocal 

thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Luo, Li 

and Tian (2021) discussed nonlocal thermoelasticity and its application 

in thermoelastic problem with temperature-dependent thermal conductivity. Mallick 

and Biswas (2024) discussed thermoelastic diffusion in nonlocal orthotropic medium 

with porosity.  

The present article is concerned with a two-dimensional nonlocal thermoelasticity 

https://www.sciencedirect.com/science/article/pii/S0020768300004030
https://www.sciencedirect.com/science/article/pii/S0020768300004030
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theory for Monoclinic thermoviscoelastic material for a homogeneous,isotropic, 

thermally conducting half-space  whose surface is subjected to a thermal shock. The 

eigen value approach has been used to obtain the exact analytical solutions of the 

problem. Numerical results for the nonlocality effect have been shown for the 

temperature, displacements and thermal stresses distribution. To the best of the 

authors’ knowledge the problems of Nonlocal thermoelasticity theory for monoclinic 

thermoviscoelastic material has not been treated systematically in the scientific 

literature. 

 

2. Formulation Of The Problem 

We consider a homogenous, monoclinic, nonlocal thermoelastic half-space in 

undeformed state at uniform temperature T0. The rectangular Cartesian co-ordinate 

system (x,y,z) having  origin on  the plane surface z=0 with  z-axis  pointing vertically 

into medium is introduced. The surface of the half-space is subjected to  thermal 

source acting at z=0. We consider a plane strain problem with displacement vector 𝑢⃗  
= (u,0,w) and  temperature change T(x, z, t), then the field equations and constitutive 

relations for such a medium in the absence of body forces and heat sources can be 

written, by following the equations  given by  Dhaliwal and Sherief (1980), Eringen 

(2002)  and L- S (1967) as  

 

𝑐11
𝜕2 𝑢

𝜕𝑥2 + 𝑐55
𝜕2 𝑢

𝜕𝑧2 + (𝑐13  + 𝑐55)
𝜕2𝑤

𝜕𝑥𝜕𝑧
 - 𝛽1

𝜕𝑇

𝜕𝑥
=  𝜌(1 − ∈2 ∇2)

𝜕2 𝑢

𝜕𝑡2 ,   (1) 

𝑐55
𝜕2 𝑤

𝜕𝑥2  +  𝑐33
𝜕2 𝑤

𝜕𝑧2 + (𝑐13  + 𝑐55)
𝜕2 𝑢

𝜕𝑥𝜕𝑧
 - 𝛽3

𝜕𝑇

𝜕𝑧
  = 𝜌(1 −∈2 ∇2)

𝜕2 𝑤

𝜕𝑡2 , (2) 

𝐾𝑖𝑗𝑇,ij = 𝜌𝑐𝑒 ( Ṫ  + 𝜏𝑜𝑇̈) +  T𝑜𝛽𝑖𝑗(𝑢̇𝑖,𝑗 + 𝜏𝑜 𝛿1𝑘𝑢̈𝑖,𝑗),   (3) 

 

and 

 (1 − ∈2 ∇2)𝑡𝑧𝑧  =  𝑐13
𝜕𝑢

𝜕𝑥
 + 𝑐33

𝜕𝑤

𝜕𝑧
 - 𝛽3T,      (4) 

 

(1 − ∈2 ∇2) tzx  =  c55(
𝜕𝑤

𝜕𝑥
 +

𝜕𝑢

𝜕𝑧
),      (5) 

 

where cij  are isothermal elastic parameters, 𝜌 , c𝑒 are the density, specific  heat  at  

constant  strain.𝛽1, 𝛽3   are thermal moduli along x and z axis. 𝐾1 and 𝐾3  are  the  

coefficient  of   thermal conductivity. u and w are displacement components along x 

and  z directions respectively,  t is  time,  𝛻 = 𝑖̂
𝜕

𝜕𝑥
+ 𝑘̂

𝜕

𝜕𝑧
 , 𝑇𝑜 is the temperature of the 

medium in its natural state. T is temperature change.  tzx  and  tzz  are  stresses. ∈= e0𝑎 

is elastic non local parameter (1984), a is the internal characteristic length (e.g. atomic 
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lattice parameter in crystal, average granular distance in granular solids etc.) and e0 is 

material constant. Note that in the absence of nonlocality (i.e., ∈= 0), the equations 

of motion given in (1)–(2) reduce to those for a local monoclinic  thermoelastic solid. 

Here 𝜏0 is the thermal relaxation time given by L-S theory. 

 

Initially the displacements, temperature  and their velocities are zero. 

 

Regularity conditions are given by 

                             lim
𝑧→∞

𝑢 = 0,   lim
𝑧→∞

𝑤 = 0, lim
𝑧→∞

𝑇 = 0.                               (6) 

 

In order to account for the material damping behavior the material coefficients 𝑐ij  are 

assumed to be function of the time operator   D= 
𝜕

𝜕𝑡
, i.e. 

      𝑐ij = 𝑐ij
∗           (7) 

where 𝑐ij
∗= 𝑐ij(𝐷) 

 Assuming that the viscoelastic nature of the material is described by the Voigt 

model of linear viscoelasticity (1963), we write  

                                                      𝑐ij(𝐷) =𝑐ij (1+𝜏0
𝜕

𝜕𝑡
),   (8) 

where 𝜏0 is the relaxation time assumed to be identical for each 𝑐ij. 

 

3. Solution of The Problem 

Assuming time harmonic behavior 

(𝑢, 𝑤, 𝑇)(𝑥, 𝑧, 𝑡) = (𝑢,𝑤, 𝑇)(𝑥, 𝑧)𝑒𝑖𝜔𝑡.                                                         (9) 

with 𝜔 is the circular frequency.  

 

We introduce dimensionless quantities as 

 

𝑥′  =  
𝜔1

∗𝑥

𝑣1
  ,      z′  =  

𝜔1
∗𝑧

𝑣1
 ,       𝑡′  =  𝜔1

∗𝑡  ,       u′  =  
𝜌𝑣1𝜔1

∗

𝛽1𝑇0
u  ,      w′  =  

𝜌𝑣1𝜔1
∗

𝛽1𝑇0
w ,  

c𝟑
∗ =

𝒄𝟑𝟑
∗

𝒄𝟏𝟏
∗     ,     c𝟏

∗ =
𝒄𝟓𝟓
∗

𝒄𝟏𝟏
∗  ,      c𝟐

∗ =
𝒄𝟏𝟑
∗ +𝒄𝟓𝟓

∗

𝒄𝟏𝟏
∗  ,      K̄  =  

𝐾3

𝐾1
 ,       

 

τ0
′ = ω1

∗τ0 ,𝜔′ =
𝜔

𝜔1
∗ , ∈1 =  

𝛽1
2𝑇𝑜

𝜌2 𝑐𝑒𝑣1
2  ,   T′  =  

𝑇

𝑇0
      (10) 
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tzz
′  =  

tzz

β1T0
  ,        tzx

′ = 
tzx

β1T0
 ,                 (11) 

 

and 𝑣1  =  (
𝑐11
∗

𝜌
)

1

2
 and 𝜔1

∗ = 
𝑐𝑒 𝑐11

∗

𝐾1
 are, respectively, the velocity of compressional 

waves in x-direction and characteristic frequency of the medium.   

         

Equations (1)-(3) with the help of equations (7)-(11), can be written in non-

dimensional form as (dropping the dashes for convenience) 

𝜕2𝑢

𝜕𝑥2
+ 𝑐1

∗ 𝜕2𝑢

𝜕𝑧2
 +  𝑐2

∗  
𝜕2𝑤

𝜕𝑥𝜕𝑧
 - 

𝜕𝑇

𝜕𝑥
 = {1 − 𝛿1(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
)}

𝜕2 𝑢

𝜕𝑡2   ,   (12) 

          𝑐1
∗ 𝜕2 𝑤

𝜕𝑥2  + 𝑐3
∗  

𝜕2 𝑤

𝜕𝑧2  +  𝑐2
∗ 𝜕2 𝑢

𝜕𝑥𝜕𝑧
 - 𝛽∗ 𝜕𝑇

𝜕𝑧
   =  {1 − 𝛿1(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2)}
∗ 𝜕2 𝑤

𝜕𝑡2 , (13) 

T,xx + 𝐾̄T,zz = (𝑇̇ + 𝜏0𝑇̈) +∈1 {(𝑢̇ + 𝜏0𝑢̈),𝑥 + 𝛽∗(𝑤̇ + 𝜏0𝑤̈),𝑧},  (14) 
   where dot notation represents time differentiation, 

          𝛿1 =
∈2𝜔1

∗2

𝑣1
2 , 𝛽∗ =

𝛽3

𝛽1
,   𝐾̅=

𝐾3

𝐾1
 

 

Applying the Fourier transforms 

          𝑓(𝜉,  𝑧,  t) = ∫ 𝑓(𝑥,  𝑧,  t)
∞

−∞
𝑒𝑖𝜉𝑥𝑑𝑥 .      (15) 

 

      on  the resulting expressions, we obtain    

𝑑2𝑢

𝑑𝑧2 = 𝑀11𝑢̃ + 𝑀13𝑇̃ + 𝑀15
𝑑𝑤̃

𝑑𝑧
,       (16) 

𝑑2𝑤̃

𝑑𝑧2
= 𝑀22𝑤̃ + 𝑀24

𝑑𝑢

𝑑𝑧
+ 𝑀26

𝑑𝑇̃

𝑑𝑧
,       (17) 

𝑑2𝑇̃

𝑑𝑧2 = 𝑀31𝑢̃ + 𝑀33𝑇̃ + 𝑀35
𝑑𝑤̃

𝑑𝑧
.       (18) 

where 

𝑀11 = −
{𝜔2(1 + 𝛿1𝜉

2) − 𝜉2}

(𝑐1
∗ − 𝛿1𝜔2)

,      𝑀13 =
−𝑖𝜉𝑐2

∗

(𝑐1
∗ − 𝜔2𝛿1)

,     𝑀15

=                                   

=
𝑖𝜉

(𝑐1
∗ − 𝛿1𝜔2)

,                                                                                   

 𝑀22 =
𝜉2(𝑐1

∗ − 𝛿1𝜔
2) − 𝜔2

(𝑐3
∗ − 𝛿1𝜔2)

, 𝑀26 = − 
𝑐2
∗𝑖𝜉

(𝑐3
∗ − 𝛿1𝜔2)

, 𝑀24

= −
𝛽∗

(𝑐3
∗ − 𝛿1𝜔2)

,               
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𝑀31 = −
𝑖𝜉𝜀1𝑁1

𝐾̄
,            𝑀33 =

{𝜉2 + 𝑁1}

𝐾̄
,             𝑀35 =

𝛽∗𝜀1𝑁1

𝐾̄
, 

𝑁1 = 𝑖𝜔 − 𝜏0𝜔
2. 

The equations (16)-(18) can be written as  

𝑑

𝑑𝑧
𝑊(𝜉, 𝑧, 𝑝) = 𝐴(𝜉, 𝑝)𝑊(𝜉, 𝑧, 𝑝),                                                                       (19) 

where  

𝑊 = [
𝑈
𝑈′] ,              𝐴 = [

𝑂          I

𝐴1     𝐴2
] ,          𝑈 = [

𝑢̃
𝑤̃
𝑇̃

] ,         𝑈′ = [
𝑢̃′

𝑤̃′

𝑇̃′
] ,        

𝑂 = [
0    0    0

0    0    0

0    0    0

] ,         𝐼 = [
1    0    0

0   1    0

0    0    1

] ,         𝐴1 = [

0              M15          0

𝑀24         0               M26

0              R35           0

] , 

 𝐴2 = [

𝑀11          0               M13

0              R22               0

𝑀31          0               M33

] ,                                                                 

To solve the equation (16),we take 

𝑊(𝜉, 𝑧, 𝜔) = 𝑋(𝜉, 𝜔) 𝑒𝑞𝑧                                                                                   (20)   

so that 

𝐴(𝜉, 𝜔)𝑊(𝜉, 𝑧, 𝜔) = 𝑞𝑊(𝜉, 𝑧, 𝜔) 

which leads to an eigenvalue problem. The characteristic equation corresponding to 

matrix A is given by 

                                 det[A-qI]=0                                                                        (21) 

which on expansion leads to 

𝑞6 − 𝜆1𝑞
4 + 𝜆2𝑞

2 − 𝜆3 = 0                                                                               (22) 

where 

𝜆1=M15 M24+M33+M22+ M11+ M26M35 

𝜆2 = 𝑀15𝑀24𝑀33 − 𝑀13𝑀24𝑀35 + 𝑀22𝑀33 + 𝑀11𝑀26𝑀35 
−𝑀31𝑀15𝑀26 + 𝑀11𝑀33 − 𝑀31𝑀13 + 𝑀11𝑀22  

𝜆3 = 𝑀22(𝑀11𝑀33 − 𝑀31𝑀13), 

The roots of equation (19) are ±𝑞ℓ(ℓ = 1, 2, 3). 

The eigenvalues of the matrix A are roots of equation (22).The eigenvector X(𝜉, 𝜔) 

corresponding to the eigenvalues  𝑞ℓ  can be determined by solving the homogeneous 

equation 

                                   [A-qI] X(𝜉, 𝜔)=0                                                             (23) 

The  set of eigenvectors 𝑋ℓ (𝜉, 𝜔),  (ℓ =1,2,3,4,5,6) may be obtained as 
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𝑋ℓ (𝜉,𝜔)= [
𝑋ℓ1(𝜉,𝜔)
𝑋ℓ2(𝜉,𝜔)

] 

Where 

𝑋ℓ1 (𝜉, 𝜔)= [
−𝜉
𝑎ℓ𝑞ℓ

𝑏ℓ

] ,        𝑋ℓ2(𝜉,𝜔) = [

−𝜉𝑞ℓ

𝑎ℓ𝑞ℓ
2

𝑏ℓ𝑞ℓ

] ,           q = 𝑞ℓ, ℓ = 1,2,3. 

𝑋ℓ𝑎1 (𝜉, 𝜔)= [
−𝜉
−𝑎ℓ𝑞ℓ

   𝑏ℓ

] ,      Xℓ𝑎2(𝜉 , 𝜔) = [

𝜉𝑞ℓ

𝑎ℓ𝑞ℓ
2

−𝑏ℓ𝑞ℓ

] ,    ℓ𝑎 = ℓ + 3,   q = −𝑞ℓ, ℓ =

1,2,3.  

 

and 

𝑎ℓ =
{(𝛽∗ − 𝑐2

∗)𝜉2 − 𝜔2𝛽∗ − 𝑐1
∗𝛽∗𝑞ℓ

2}

𝛥ℓ
, 

𝑏ℓ =
{𝑐1

∗𝑞ℓ
2𝜉−(𝜉2−𝜔2)𝜉}{(𝑐1

∗𝜉2−𝜔2)−𝑞ℓ
2(𝑐3

∗−𝑐1
∗𝛽∗)}−𝑞ℓ

2𝑐2
∗𝜉 {(𝜉2−𝜔2)−𝑐1

∗𝑞ℓ
2}𝛽∗−𝑐2

∗𝜉2}

𝜉𝛥ℓ
, 

𝛥ℓ = 𝑖{(𝑐1
∗𝜉2 − 𝜔2) − (𝑐3

∗ − 𝑐2
∗𝛽∗)𝑞ℓ

2},           ℓ = 1,2,3. 

The solution of equation (23) is given by 

𝑊(𝜉, 𝑧, 𝑝) = ∑ [𝐵ℓ
3
ℓ=1 𝑋ℓ(𝜉, 𝑝) 𝑒𝑥𝑝( 𝑞ℓ𝑧) + 𝐵ℓ+3𝑋ℓ+3(𝜉, 𝑝) 𝑒𝑥𝑝( − 𝑞ℓ𝑧)],    (24) 

 

where𝐵ℓ(ℓ = 1,2,3,4,5,6) are arbitrary constants. 

Thus equation (24) represents the solution of the general problem in the plane strain 

case of generalized homogeneous thermoelasticity by employing the eigenvalue 

approach and therefore can be applied to a broad class of problems in the Fourier 

transforms. Displacements and temperature distribution that satisfy the regularity 

conditions (6) are given by 

𝑢̃(𝜉, 𝑧, 𝑝) =   − 𝜉(𝐵4 e
-q1𝑧

+ 𝐵5 e
-q2𝑧

+ 𝐵6 e
-q3𝑧),          (25) 

𝑤̃(𝜉, 𝑧, 𝑝) =   − (𝑎1𝑞1𝐵4 e
-q1 𝑧

+ 𝑎2𝑞2𝐵5 e
-q2𝑧 + 𝑎3𝑞3𝐵6 e

-q3𝑧
),        (26) 

𝑇̃(𝜉, 𝑧, 𝑝) =   (𝑏1𝐵4 e
-q1 𝑧

+ 𝑏2𝐵5 e
-q2𝑧 + 𝑏3𝐵6 e

-q3𝑧
),         (27) 

 

4. Application 

Dynamic thermoelastic case: 

Thermoelastic Interactions due to Thermal Source 
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The boundary conditions at the plane surface are  

  t𝑧𝑧 = 0,     t𝑧𝑥 = 0,                at z = 0 
 

 
𝜕𝑇

𝜕𝑧
(x,z = 0) = 𝑟(𝑥, 𝑡),           for the temperature gradient boundary, 

  𝑜𝑟 

 𝑇(𝑥, 𝑧 = 0) = 𝑟(𝑥, 𝑡),             for the temperature input boundary,.         (28) 

 

where r(x,t)= 𝜂(𝑥)𝑒𝑖𝜔𝑡 

Making use of equations (9)-(11), applying the transforms defined by (15) and with 

the help of equations (25)–(27) in the boundary conditions (28), we obtain the 

expressions for displacement components, stresses, temperature distribution as 

𝑢̃ =
−𝜉  𝜂̃(𝜉)

𝛥
(𝛥1

″𝑒̄𝑞1𝑧 − 𝛥2
″𝑒̄𝑞2𝑧 + 𝛥3

″𝑒̄𝑞3𝑧)𝑒𝑖𝜔𝑡,  

                    𝑤̃ =
−𝜂̃(𝜉)

𝛥
(𝑎1𝑞1𝛥1

″𝑒̄𝑞1𝑧 − 𝑎2𝑞2𝛥2
″𝑒̄𝑞2𝑧 + 𝑎3𝑞3𝛥3

″𝑒̄𝑞3𝑧)𝑒𝑖𝜔𝑡, 

𝑇̃ =
𝜂̃(𝜉)

𝛥
(𝑏1𝛥1

″𝑒̄𝑞1𝑧 − 𝑏2𝛥2
″𝑒̄𝑞2𝑧 + 𝑏3𝛥3

″𝑒̄𝑞3𝑧)𝑒𝑖𝜔𝑡, 

𝑡̃𝑧𝑧 =
𝜂̃(𝜉)

𝛥
(𝐸34𝛥1

″𝑒̄𝑞1𝑧 + 𝐸35𝛥2
″𝑒̄𝑞2𝑧 + 𝐸36𝛥3

″𝑒̄𝑞3𝑧)𝑒𝑖𝜔𝑡, 

                     𝑡̃𝑧𝑥 =
𝜂̃(𝜉)

𝛥
(𝐸41𝛥1

″𝑒̄𝑞1𝑧 + 𝐸42𝛥2
″𝑒̄𝑞2𝑧 + 𝐸43𝛥3

″𝑒̄𝑞3𝑧)𝑒𝑖𝜔𝑡,                    (29) 

 

 

 where  

𝛥1
∗  =𝐸34(𝐸42𝑏3𝑞3 − 𝑏2𝑞2𝐸43)-𝐸35(𝐸41𝑏3𝑞3 − 𝑏1𝑞1𝐸43) + 𝐸36(𝐸41𝑏2𝑞2 − 𝑏1𝑞1𝐸42) 

𝛥2
∗=𝐸34(𝐸42𝑏3 − 𝑏2𝐸43)-𝐸35(𝐸41𝑏3 − 𝑏1𝐸43) + 𝐸36(𝐸41𝑏2 − 𝑏1𝐸42) 

𝛥1
″ = (𝐸35𝐸43 − 𝐸42𝐸36), 

𝛥2
″ = −(𝐸34𝐸43 − 𝐸41𝐸36), 

𝛥3
″ = (𝐸34𝐸42 − 𝐸41𝐸35),   𝛿2 = 1 + 𝛿1𝜉

2 

𝐸34 = (−𝛿1𝑞1
2 + 𝛿2)𝐸31, 

𝐸35 = (−𝛿1𝑞2
2 + 𝛿2)𝐸32, 

𝐸36 = (−𝛿1𝑞3
2 + 𝛿2)𝐸33, 

𝐸31 = (−𝑖𝜉2𝑐13
∗ 𝑇∗ + 𝑐33

∗ 𝑇∗𝑎1𝑞1
2 − 𝛽∗𝑏1), 

𝐸32 = (−𝑖𝜉2𝑐13
∗ 𝑇∗ + 𝑐33

∗ 𝑇∗𝑎2𝑞2
2 − 𝛽∗𝑏2), 

𝐸33 = (−𝑖𝜉2𝑐13
∗ 𝑇∗ + 𝑐33

∗  𝑇∗𝑎3𝑞3
2 − 𝛽∗𝑏3), 
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𝑇∗ =
1

𝜌𝑣1
2,       

𝐸41 = −𝑐55
∗ 𝑇∗(𝑖𝜉𝑎1 − 1)(−𝛿1𝑞1

2 + 𝛿2)𝑞1, 

𝐸42 = −𝑐55
∗ 𝑇∗(𝑖𝜉𝑎2 − 1)(−𝛿1𝑞2

2 + 𝛿2)𝑞2, 

𝐸43 = −𝑐55
∗ 𝑇∗(𝑖𝜉𝑎3 − 1)(−𝛿1𝑞3

2 + 𝛿2)𝑞3. 

On replacing 𝛥 𝑏𝑦  (
𝜔1

∗𝑇0

𝑣1
)𝛥1

∗  and  𝑇0 𝛥2
∗ , respectively, we obtain the expressions for 

temperature gradient boundary and temperature input boundary. 𝜂̃(𝜉) is the 

transformed function of 𝜂(𝑥). 

The solution  due  to  uniformly  distributed  source applied   on  the half-space  surface  

is obtained by setting  

      𝜂(𝑥) = {
1     if   |𝑥| ≤ 𝑎 ,    

0    if   |𝑥| > 𝑎 , 
                                                               

in equation (28), where 2a is the width of strip load. Using equations (9)-(11) (after 

suppressing the primes) and applying the transforms defined by equation (15), we get 

     𝜂̃(𝜉) = [2 𝑠𝑖𝑛 (
𝜉𝑣1𝑎

𝜔1
∗ ) 𝜉⁄ ] ,  𝜉 ≠ 0. 

 

6. Particular cases: 

Transversely isotropic materials  

This type of medium has only one axis of thermal and elastic symmetry. We take the 

z-axis along the axis of symmetry. Then the non-vanishing elastic and thermal 

parameters are 

𝒄𝟏𝟏 = 𝒄𝟑𝟑,    K1 = 𝐾3,     𝛼1 = 𝛼3,. 

 

Cubic crystal  

For cubic crystals, the nonvanishing elastic and thermal parameters are 

𝑐11 = 𝑐33,    K1 = 𝐾3 = 𝐾,     𝛽1 = 𝛽3 = 𝛽,      𝛼1 = 𝛼3 = 𝛼𝑡 

Isotropic media 

For isotropic material, every direction is a direction of elastic as well as thermal 

symmetry and the nonvanishing elastic and thermal parameters are 

𝑐11 = 𝑐33 = 𝜆 + 2𝜇,    c13 = 𝜆,    c55 = 𝜇,     K1 = 𝐾3 = 𝐾,    
𝛼1 = 𝛼3 = 𝛼𝑡,        𝛽1 = 𝛽3 = 𝛽 = (3𝜆 + 2𝜇)𝛼𝑡 

5. Inversion of the Transforms 

To obtain the solution of the problem in the physical domain, we must invert the 

transforms in (30), for the L-S theory. These expressions are functions of z and  the  
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parameter  of  Fourier transform  and  hence  are of the form   𝑓 (, z, t). To get the 

function f (x,z,t) in the physical domain, we invert the Fourier transform using 

 

 

where fe and f0 are, respectively, the even and odd parts of the function   𝑓 (, z, t).   

The method for evaluating this integral is described by Press et al. (1986), and it 

involves the use of Romberg’s integration with adaptive step size. This also uses the 

results from successive refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size tends to zero. 

 

6. Numerical Result and Discussion 

Following  Dhaliwal and Singh (1980) we   take   the  case  of  zinc  crystal-like  

material  for numerical calculations. The physical constants used are: 

𝜀 = 0.0221,                         𝑐11 = 1. 628 x 1011 Nm-2,               𝐶13 = 0.508 x 1011 Nm-2, 

 = 7.14 x 103 kgm-3  ,       𝑐33= 0.627 x 1011 Nm-2,                𝑐55 = 0.770 x 1011 Nm-2,  

 ce
 = 3.9 x 102 Jkg–1degree–1 ,𝜔1

∗ = 5.01𝑥10 111 s-1,K1= K3 = 1.24 x 102 Wm-

1degree-1, 

1 = 5.75 x 106 Nm-2degree-1,         T0 = 296 0 K,     3 = 5.17 x 106 Nm-2degree-1,. 

 The variations of normal boundary displacement w and boundary temperature 

field T  

with distance x at non-dimensional time t = 0.1 are shown graphically in figures 1-4  

for non-dimensional relaxation times 𝜏0 = 0.02. The computations were carried out 

for z=1.0 in the range 0 ≤ 𝑥 ≤ 10 for L-S theory. The results for distributed thermal 

source are presented for dimensionless width a=1.  

Thermal source on  the  surface  of  half-space  (Temperature  gradient 

boundary) 

Uniformly Distributed Thermal Source  

Figure 1 depicts the variation of normal displacement w with distance x. The values 

of normal displacement for nonlocality parameter ∈= 0.01 and ∈= 0.02 shows 

same oscillatory behavior about zero in the whole range. The values of normal 

displacement for nonlocality parameter ∈= 0.05 shows opposite oscillatory behavior 

in comparison to nonlocality parameter ∈= 0.01 and ∈= 0.02 in the range 0 ≤ 𝑥 ≤
10.  Figure 2. shows variation of temperature distribution T with distance x. The 

values of temperature T decreases as the value of nonlocality parameter increases in 

the range 0 ≤ 𝑥 ≤ 4.5 and shows opposite oscillatory pattern in rest of the range. 

Figure 3. depicts the variation of normal displacement w with distance x. The values 

of normal displacement for t=0.2 lies between the values for t=0.1 and t=0.5 in the 

whole range. The values of normal displacement for t=0.1 starts with sharp increase 

    , d )x)fsin( i - f )x(cos(
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and for t=0.5 starts with sharp decrease then become oscillatory in the whole range. 

Figure 4. shows variation of temperature distribution T with distance x. Near the point 

of application of source the values of temperature for t=0.1 starts with sharp decrease 

and for t=0.2 and t=0.5 starts with sharp increase and then become oscillatory in the 

whole range. The values of temperature T decrease as values of time decrease from 

t=0.5 to t=0.1 in the range  0.5 ≤ 𝑥 ≤ 4 and shows reverse oscillatory pattern in rest 

of the range. 

 

Conclusion 

1. The strong nonlocality effect has been observed on the values of normal 

displacement and temperature distribution. 

2. The values of normal displacement and temperature distribution for nonlocality 

parameter ∈= 0.02 lies between ∈= 0.01 and ∈= 0.05 in the whole range. 

3. The values of normal displacement and temperature distribution for time t=0.2 and 

t=0.5 show same oscillatory pattern and for t=0.1 show opposite oscillatory pattern 

in the whole range. 
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