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Abstract 

This paper describes the development of a new methodology 

for searching a common quadratic Lyapunov function for 

switched linear systems based on differential evolution 

algorithm. This method aims to assure the stabilization of this 

class of systems. To illustrate the proposed methodology two 

examples are exploited. 
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I. Introduction 

During the past several years, there have been many 

researches activities about the stability analysis and the 

stabilization for switched systems, considering that the 

switched systems have numerous applications in the control of 

mechanical systems, process control, automotive industry, 

power systems, aircraft and traffic control, and many other 

fields. [1][2][3]. 

The switched system is a class of hybrid dynamical systems . 

A switched system consists of a family of a finite number of 

subsystems which are described by differential or difference 

equations and a switching signal that a logical law indicates 

an active subsystem. 

It is important to be able to ensure the existence of a common 

quadratic Lyapunov function (CQLF) for a given switched 

system because this is proof that the system is asymptotically 

stable. There exists a switched quadratic Lyapunov function to 

check asymptotic stability of the switched discrete-time 

system in [4]. 

In recent years, several researches have been done to analyze 

the stability of switched systems. Which may be mentioned as 

those based on inverse Lyapunov theorem, switched quadratic 

Lyapunov functions and common quadratic Lyapunov 

functions (CQLFs) [5]. 

In addition, the existence of a CQLF has been widely 

explored, by directing the efforts to the determination of 

conditions of existence and non-existence of a CQLF [5][6]. 

The design of a method for finding a CQLF given its 

existence by solving the linear matrix inequalities (LMI). 

A concise description of stability analysis and stabilization of 

the switched discrete-time systems using Lyapunov stability 

theorem and genetic algorithm has been recently developed 

[7]. The development of a new methodology for calculating a 

common quadratic Lyapunov function CQLF based on 

particle swarm optimization (PSO) once the existence of a 

CQLF has been assured [8]. Moreover, a method for 

determining the non-existence of a common quadratic 

Lyapunov function for switched linear systems based on 

particle swarm optimization was designed and was described 

[9]. Besides, other methods for finding a CQLF was 

developed with the aim of improving the limitations of LMI 

tools, and the most outstanding is the gradient-based method 

[10]. 

As a direct consequence of analyzing the scenario described 

above, it is clear that a new methodology for the calculation of 

a CQLF and stabilization of switched linear systems, more 

efficient and less restrictive, must be developed. Then in this 

article, a new general methodology based on the differential 

evolution algorithm technique is proposed. The performance 

of the proposed method is validated through an example of 

application. This paper is organized as follows: The 

differential evolution algorithm is described in Section 2. In 

section 3, the stabilization of switched system is developed. 

Section 4 is devoted to presenting two examples of application 

for switched systems in order to illustrate our result, and a 

concluding section is presented in Section 5. 

 

 

II. DIFFERENTIAL EVOLUTION ALGORITHM 

A. Differential evolution algorithm 

Differential evolution (DE) belongs to to the family of 

metaheuristics. It was invented by Storn and Price in 1995 

[11], [12]. The majority of search results on differential 

evolution algorithms have not given an important number of 

theoretical results [12], [13], [14], [15]. The majority of the 

results are eventually focused on the operations of the 

mutation, crossover and selection that are related to objective 

function values and characteristics. 

DE algorithm was inspired from the phenomena of nature as 

PSO and genetic algorithm. It is a simple and powerful 

algorithm that simulates natural evolution combined with 

relations of mutation and crossover to multiple search 

directions based on the distribution of generate solutions in 

the current population. This algorithm is also used for system 

optimization. Now, in this paper we use it to stabilize the 

switched systems. Each matrix ,i GP  in the population at 

generation G, called at this moment of reproduction as the 
target matrix will generate one offspring , 1i GP  , called trial 
matrix. The trial matrix is generated with the following 

process: A search direction is defined by calculating the 
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difference between a pair of matrices 1,r GP  and 2,r GP , called 

differential matrix, both of them are chosen at random from 

the population. This difference matrix is also scaled by using a 

user-defined parameter 0  . This scaled difference matrix 

is then added to a third matrix 3,r GP , called base matrix. As a 

result, a new matrix , 1i GP   is obtained, known as the mutation 
matrix, according to the following equation of evolution [16] 

, 1 3, 1, 2,( )i G r G r G r GP P P P     (1) 

After that, this mutation matrix is recombined with the target 

matrix (also called parent matrix) to generate a trial matrix 
(child matrix) by using discrete recombination (usually 

binomial crossover) controlled by a crossover parameter 

0 1CR   whose value determines how similar the trial 

matrix will be with respect to the target matrix. In this paper, 

the following crossover operations are used: 

 
,

, 1

      [0,1]
,

              

i G

i G

P if rand Cr
P i j

P otherwise


 


 (2) 

with i is matrix number and G is generation number and 

rand[0,1] is randomly chosen from [0,1]. 

The differential evolution algorithm could be summarized in 

the following flowchart: 

 

 
 

Fig.1. Flowchart of differential evolution algorithm 

 

 

B. Objective function 

The optimization problem is to minimize a function by 

assigning the variables on which it depends. More formally, 

let E be a set of candidate solutions, and F is a 

function :F E R , which is called objective function. It 

affects the various candidates from E to measurement 

solutions in R. So the optimization problem is to find the 

solution that minimizes candidate the function F. 

Based on the second functional presented in [9], in order to 

stabilize the switched system, we define the objective function 

as follows: 

{( ) )}, 1,..,( T
i iif P AMax ei Ag iP P N    (3) 

where eig(.) the function that gives the eigenvalues of a 

matrix. Finally, we obtain finally one P which satisfy the 

optimization of the switched linear system and the 

minimization of f  for all iterations. 

 

 

III. STABILISATION OF SWITCHED LINEAR 

SYSTEMS 

Consider the switched linear system: 

 ( ) ( ) 1 2( )  ( ),     , ,...,t t Nx t A x t A A A A A      (4) 

Where ( ) nx t   is the state vector, A  is a set of N  

Hurwitz matrices in 
n n

 and ( )t  is an arbitrary signal 

that define commutation among elements in A . 

We define a quadratic Lyapunov function candidate as 

  , 0,         T n nV x x Px P P R     (5) 

Which is positive definite, whose time derivative along any 

non-zero system trajectory of (4) is required to be negative 

definite, i.e. 

   ( ) 0,  0, 1, ,T T
i iV x x PA A P x x i N         (6) 

For which it is necessary that 

 0,         1, ,T
i iPA A P i N      (7) 

Then, if a matrix 0P   satisfying (2) and (4) iA A   

exists, the function ( )V x  is a CQLF for all subsystems 

( ) ( ),         {1, , }ix t A x t i N     (8) 

and its existence is a guarantee of uniform asymptotic stability 

of system (4). [5] 

Having discussed differential evolution algorithm, let us now 

investigate the asymptotic stabilization issue for switched 

linear systems (4) using this methodology. Here, in this note, 

only state feedback controllers are considered to stabilize the 

switched linear control system. 

 ( ) ( ),         1, ,u t K x t N       (9) 

with 

 ,         1, ,TK B P N       (10) 

we get the closed-loop system (10) as follows 

   ( ) ( ),      1, ,x t A B K x t N          (11) 

For the system to be stable, it is necessary that the eigenvalues 

of A B K    are strictly negatives. 

In this work, the objective function ensures the instability of 

the system (4) and looks for the best solution in each iteration 

by minimizing it. 

So that, before starting the selection (or evaluation) we have 

imposed some conditions for our corrected switched systems 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39285-39289 

© Research India Publications.  https://dx.doi.org/10.37622/IJAER/10.18.2015.39285-39289 

39287 

(11) will be stable as the eigenvalues of P  must be strictly 

positives and all the eigenvalues of  A B K    are strictly 

negatives. A reverse method was used. 

 

 

IV. NUMERICAL EXAMPLES 

 

To illustrate the main results, two examples are considered. 

 

Example 1: 

Consider the linear switched system defined by 

 ( )  ( ),         1,2,3ix t A x t i   (12) 

where 

1

0.4872 0 0.0123 0.0048

0 0.4903 0 0.0274

0.0117 0.0035 0.8251 0.0123

0.0082 0.0028 0 1.2125

A

  
 
 
 
 

 

 (13a) 

2

0.0026 0 0.0163

0.0072 0.9181 0.0053 0.0035

0 0.001 0.4594 0

0.0054 0.0048 0.0032 0.886

1.2 6

7

24

A

 
 


 
 
 

 

 (13b) 

3

0 0.0024 0.0021

0.0031 0.7321 0 0.0098

0.0054 0 0.8534 0

0.0051 0.0013 0.0084 0.5621

1.4414

A

 
 

 
 
 

  



 (13c) 

It's evident that the system is initially unstable. 

By applying the algorithm of the differential evolution, we 

obtain the matrix P which is symmetric and positive, defined 

as: 

2.4200    0.0057    1.6312    0.4978

0.0057    3.4539    0.8349   -1.2821

1.6312    0.8349    4.5236   -0.5129

0.4978   -1.2821   -0.5129    2.9555

P

 
 
 
 
 
 

 (14) 

The following figure shows the diagram of all the objective 

functions obtained in each iteration from 1 to 15000. 

 

 
 

Fig. 2. Values of all objective functions for 15000 iterations 

 

 

Now, it is very interesting to see just the evolution of the best 

objective functions during all the iterations. 

 

 
 

Fig. 3. The evolution of the best objective function for 15000 

iterations 

 

 

It is clear that this is a minimization from the initial value 

until the optimal solution. 

The trajectories of the system (12) after stabilization are given 

in figures 4.a, 4.b, 4.c and 4.d for a switching 

during k 0,1,2,...,10 . The switching sequence is shown 

in figure 4.e. 

 

 
 

Fig. 4.a. The trajectory of 1x  
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Fig. 4.b. The trajectory of 2x . 

 

 
 

Fig. 4.c. The trajectory of 3x  

 

 
 

Fig. 4.d. The trajectory of 4x  

 

 
 

Fig. 4.e. The switching signals 

 

Example 2: 

Consider the linear switched system defined by 

 ( ) ( ),         1,2ix t A x t i   (15) 

where 

1

0.2703 0.1266

0 1.2214
A

 
  
 

 (16a) 

2

1.2067 0.0876

0.2662 0.1594
A

 
  
 

 (16b) 

After application of the differential evolution algorithm to the 

switched system (15) and simulation, we obtain the symmetric 

matrix 0P   which satisfies the linear matrix inequality (7) 

as follow 

1.3282   -0.2063

-0.2063    1.8063
P

 
  
 

 (17) 

 

 
 

Fig. 5. Values of all objective functions for 1000 iterations 

 

 
 

Fig. 6. The evolution of the best objective function for 1000 

iterations 

 

 

The trajectories of the system (15) after stabilization are given 

in figures 7.a, and 7.b, for a switching during k 0,1,2,...,10 . 

The switching sequence is shown in figure 7.c. 

 

 
 

Fig. 7.a. The trajectory of 1x  
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Fig. 7.b. The trajectory of 2x  

 

 
 

Fig. 7.c. The switching signals 

 

 

V. Conclusion 

In this paper a new methodology for stabilization of switched 

linear systems using the differential evolution algorithm is 

presented. Two examples is given to illustrate the usefulness 

of this result. One of the main conclusions reached is that 

differential evolution algorithm is a successful technique for 

finding a CQLF. Moreover, differential evolution algorithm is 

a multiobjective evolutionary algorithm so that we can use it 

to improve system performances. 
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