1-movable Connected 2-domination in Graphs

Jocecar Lomarda-Hinampas

College of Teacher Education, Bohol Island State University-Main Campus, CPG North Avenue, 6300 Tagbilaran City, Bohol, Philippines

Abstract:

This paper characterized of 1-movable connected 2-dominating sets in the join of two connected graphs and some bounds or exact values of the 1-movable connected 2-domination number were determined.

Mathematics Subject Classification: 05C69

Keywords: 1-movable connected 2-domination, connected 2-domination, 1-movable domination, 2-domination, domination,

1. INTRODUCTION

Let G = (V(G), E(G)) be a graph and $v \in V(G)$. The open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$.

A subset S of V(G) is a dominating set of G if for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $uv \in E(G)$. The domination number of G is denoted by $\gamma(G)$ is the smallest cardinality of a dominating set of G. A dominating set of G with cardinality equal to $\gamma(G)$ is called a γ -set of G.

A nonempty subset S of V(G) is a 1-movable dominating set of G if S is a dominating set of G and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of G or there exists a vertex $u \in (V(G) \setminus S) \cap N(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a dominating set of G. The 1-movable domination number of G denoted by $\gamma_m^1(G)$ is the smallest cardinality of a 1-movable dominating set of G. A 1-movable dominating set with cardinality equal to $\gamma_m^1(G)$ is called γ_m^1 -set of G. This concept was investigated by Blair, Gera and Horton in [1] and Hinampas and Canoy in [4].

A nonempty subset S of V(G) is a 2-dominating set of G if for every $v \in V(G)\backslash S$, has at least two neighbors in S. The 2-domination number of G denoted by $\gamma_2(G)$ is the smallest cardinality of a 2-dominating set of G. A 2-dominating set of G with cardinality equal to $\gamma_2(G)$ is called a γ_2 -set of G. This concept was studied in [2] and in [3]. A 2-dominating set S of G is called a connected 2-dominating set of G if the subgraph $\langle S \rangle$ is connected. The connected 2-domination number of G denoted by $\gamma_{2c}(G)$ is the smallest cardinality of a connected

2-dominating set of G. A connected 2-dominating set of G with cardinality equal to $\gamma_{2c}(G)$ is called a γ_{2c} -set of G. This concept was studied by Leonida in [5].

A nonempty subset S of V(G) is a 1-movable connected 2-dominating set of G if S is a connected 2-dominating set of G and for every $v \in S$, $S \setminus \{v\}$ is a connected 2-dominating set of G or there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a connected 2-dominating set of G. The 1-movable connected 2-domination number of a graph G, denoted by $\gamma^1_{m2c}(G)$, is the smallest cardinality of a 1-movable connected 2-dominating set of G. A 1-movable connected 2-dominating set of G with cardinality equal to $\gamma^1_{m2c}(G)$ is called γ^1_{m2c} -set of G.

2. RESULTS

Define a collection \mathscr{R}^1_{m2c} be the family of all graphs with 1-movable connected 2-dominating sets. This paper focuses only to those graphs which belong to \mathscr{R}^1_{m2c} .

Remark 2.1. For every connected graph G of order $n \geq 3$, $2 \leq \gamma_{m2c}^1(G) \leq n$.

Theorem 2.2. Let G be a connected graph G of order $n \geq 3$. Then $\gamma^1_{m2c}(G) = 2$ if and only if there exist vertices $w, x, y, z \in V(G)$ with $xy, xw, yz \in E(G)$ and the sets $\{x,y\}$, $\{x,w\}$ and $\{y,z\}$ are 2-dominating sets of G.

Proof. Suppose $\gamma^1_{m2c}(G)=2$. Then G has a γ^1_{m2c} -set say $\{x,y\}$ for some $x,y\in V(G)$. Hence $xy\in E(G)$ and $\{x,y\}$ is a 2-dominating set of G. Since S is a 1-movable connected 2-dominating set of G, there exists $w\in (V(G)\setminus S)\cap N_G(y)$ such that $S\setminus\{y\}\cup\{w\}=\{x,w\}$ is a connected 2-dominating set of G. Hence, $xw\in E(G)$ and $\{x,w\}$ is a 2-dominating set of G. Also, there exists $z\in (V(G)\setminus S)\cap N_G(x)$ such that $S\setminus\{x\}\cup\{z\}=\{y,z\}$ is a connected 2-dominating set of G. Hence, $yz\in E(G)$ and $\{y,z\}$ is a 2-dominating set of G.

For the converse, suppose there exist vertices $w, x, y, z \in V(G)$ with $xy, xw, yz \in E(G)$ and the sets $\{x, y\}, \{x, w\}$ and $\{y, z\}$ are 2-dominating sets of G. Then the sets $S = \{x, y\}, S \setminus \{x\} \cup \{z\} = \{y, z\}$ and $S \setminus \{y\} \cup \{w\} = \{x, w\}$ are

connected 2-dominating sets of G. Hence, S is a 1-movable connected 2-dominating set of G. Since |S|=2, S is a γ^1_{m2c} -set of G. Hence, $\gamma^1_{m2c}(G)=|S|=2$.

Corollary 2.3. For every complete graph K_n of order $n \geq 3$, $\gamma_{m2c}^1(K_n) = 2$.

Remark 2.4. For every cycle C_n of order $n \ge 4$, $\gamma_{m2c}^1(C_n) = n$.

Theorem 2.5. Let G and H be connected nontrivial graphs. A subset S of V(G+H) is a 1-movable connected 2-dominating set of G+H if and only if one of the following statements is true:

- (i) S is a 1-movable connected 2-dominating set of G or S is a connected 2-dominating set of G and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of G and $\gamma(H) = 1$ whenever |S| = 2;
- (ii) S is a 1-movable connected 2-dominating set of H or S is a connected 2-dominating set of H and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of H and $\gamma(G) = 1$ whenever |S| = 2;
- (iii) $S = D_1 \cup D_2$ where $D_1 \subseteq V(G), D_2 \subseteq V(H),$ $|D_1| \geq 2, |D_2| \geq 2$ and for every $v \in D_1, N_G(v) \cap (V(G) \setminus D_1) \neq \emptyset$ or D_2 or $D_2 \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D_2$ whenever $|D_1| = 2$ and for every $v \in D_2, N_H(v) \cap (V(H) \setminus D_2) \neq \emptyset$ or D_1 or $D_1 \cup \{a\}$ is a dominating set of G for some $a \in V(G) \setminus D_1$ whenever $|D_2| = 2$;
- (iv) $S = D_1 \cup D_2$ where $D_1 \subseteq V(G), D_2 \subseteq V(H),$ $|D_1| = 1, |D_2| \ge 2, D_2$ is dominating set of H and either $N_G(v) \cap (V(G) \setminus D_1) \ne \emptyset$ or D_2 or $D_2 \cup \{u\}$ is a connected 2-dominating set of H for some $u \in V(H) \setminus D_2$ and for all $v \in D_2, D_1$ and $D_2 \setminus \{v\}$ are dominating sets of G and H, respectively or $D_1 \cup \{a\}$ is a dominating set of G for some $a \in V(G) \setminus D_1$ or $D_2 \setminus \{v\} \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D_2$ whenever $|D_2| = 2$;
- (v) $S = D_1 \cup D_2$ where $D_1 \subseteq V(G), D_2 \subseteq V(H),$ $|D_1| \geq 2, |D_2| = 1, D_1$ is a dominating set and either $N_H(v) \cap (V(H) \setminus D_2) \neq \emptyset$ or D_1 or $D_1 \cup \{u\}$ is a connected 2-dominating set of G for some $u \in V(G) \setminus D_1$ and for all $v \in D_1, D_1 \setminus \{v\}$ and D_2 are dominating sets of G and G and G are dominating set of G for some G and G is a dominating set of G for some G is a dominating set of G for some G in G is a dominating set of G for some G in G in G is a dominating set of G for some G in G in G is a dominating set of G for some G in G in G in G in G is a dominating set of G for some G in G in
- (vi) $S = D_1 \cup D_2$ where $D_1 \subseteq V(G), D_2 \subseteq V(H),$ $|D_1| = 1 = |D_2|, D_1$ and D_2 are dominating sets

of G and H, respectively, for $v \in D_1$, either D_1 is a 1-movable dominating set of G or $D_2 \cup \{u\}$ is a connected 2-dominating set of H for some $u \in V(H) \setminus D_2$ and for $v \in D_2$, either D_2 is a 1-movable dominating set of H or $D_1 \cup \{a\}$ is connected 2-dominating set of G for some $a \in V(G) \setminus D_1$.

Proof. Suppose S is a 1-movable connected 2-dominating set of G + H and suppose $S \subseteq V(G)$. Then S is a connected 2-dominating set of G. Let $v \in S$. Since S is a 1-movable connected 2-dominating set of G + H, $S \setminus \{v\}$ is a connected 2-dominating set of G. Suppose $S \setminus \{v\}$ is not a connected 2-dominating set of G. By assumption, there exists $u \in$ $V(G+H)\backslash S\cap N_{G+H}(v)$ such that $S\backslash \{v\}\cup \{u\}$ is a connected 2-dominating set of G + H. If $u \in (V(G) \setminus S) \cap N_G(v)$, then $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G. Hence, S is a 1-movable connected 2-dominating set of G. If $u \in V(H)$, then $S \setminus \{v\}$ must be a dominating set of G. Suppose |S| = 2. Since $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G + H, $\{u\}$ must also be a dominating set of H. Thus, $\gamma(H) = |\{u\}| = 1$. Hence, (i) holds. Similar arguments follow if $S \subseteq V(H)$. Thus, (ii) holds. Suppose $S = D_1 \cup D_2$ where $D_1 \subseteq V(G)$, $D_2 \subseteq V(H)$, $|D_1| \ge 2$ and $|D_2| \geq 2$. Suppose further that $|D_1| = 2$. Let $v \in D_1$. Since S is a 1-movable connected 2-dominating set of G + H, $S \setminus \{v\} = D_1 \setminus \{v\} \cup D_2$ is a connected 2-dominating set of G + H. This implies that D_2 must be a dominating set of H. Suppose $S \setminus \{v\}$ is a not connected 2-dominating set of G + H. By assumption, there exists $u \in V(G+H) \setminus S \cap N_{G+H}(v)$ such that $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G + H. If $u \in V(G)$, then $N_G(v) \cap (V(G) \setminus D_1) \neq \emptyset$. If $u \in V(H)$, then $S \setminus \{v\} \cup \{u\} = D_1 \setminus \{v\} \cup (D_2 \cup \{u\})$ is a connected 2-dominating set of G+H. Hence, $D_2 \cup \{u\}$ must be a dominating set of H. Similar arguments follow if $v \in D_2$ and $|D_2|=2$. Hence, (iii) holds. Suppose $|D_1|=1$ and $|D_2|\geq 2$. Then D_2 must be a dominating set of H. Let $v \in S$ and suppose $v \in D_1$. Suppose $S \setminus \{v\} = (D_1 \setminus \{v\}) \cup D_2 = D_2$ is a connected 2-dominating set of G + H. Then D_2 is a connected 2-dominating set of H. Suppose $S \setminus \{v\} = D_2$ is not a connected 2-dominating set of G + H. By assumption, there exists $u \in (V(G+H) \setminus S) \cap N_{G+H}(v)$ such that $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G + H. If $u \in V(H) \setminus D_2$, then $D_2 \cup \{u\}$ is a connected 2-dominating set of H. If $u \in V(G)$, then $N_G(v) \cap (V(G) \setminus D_1) \neq \emptyset$. Suppose $v \in D_2$ and $|D_2| = 2$. Suppose $S \setminus \{v\} = D_1 \cup D_2 \setminus \{v\}$ is a connected 2-dominating set of G + H. Hence, D_1 and $D_2 \setminus \{v\}$ must be dominating sets of G and H, respectively. Suppose $S \setminus \{v\} = D_1 \cup D_2 \setminus \{v\}$ is not a connected 2-dominating set of G + H. By assumption, there exists $u \in (V(G+H) \setminus S) \cap N_{G+H}(v)$ such that $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G+H. Suppose $u \in V(G) \setminus D_1$.

Take u = a and $S \setminus \{v\} \cup \{u\} = S \setminus \{v\} \cup \{a\} =$ $(D_1 \cup \{a\}) \cup (D_2 \setminus \{v\})$ is a connected 2-dominating set of G + H. This implies that $D_1 \cup \{a\}$ is a dominating set of G. Suppose $u \in (V(H) \setminus D_2) \cap N(v)$. Then, $S \setminus \{v\} \cup \{u\} =$ $D_1 \cup (D_2 \setminus \{v\} \cup \{u\})$ is a connected 2-dominating set of G + H. Hence, $(D_2 \setminus \{v\}) \cup \{u\}$ is a dominating set of H. Thus, (iv) holds. Similar arguments follow if $|D_1| \geq 2$ and $|D_2| = 1$. Hence, (v) also holds. Suppose $|D_1| = 1 = |D_2|$. Then D_1 and D_2 must be dominating sets of G and H, respectively. Let $v \in S$ and suppose $v \in D_1$. Since S is a 1-movable connected 2-dominating set of G + H, there exists $u \in (V(G+H) \setminus S) \cap N_{G+H}(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a connected 2-dominating set of G + H. If $u \in V(G) \setminus D_1$, then $(S \setminus \{v\}) \cup \{u\} = (D_1 \setminus \{v\} \cup \{u\}) \cup D_2$ is a connected 2-dominating set of G + H. Hence, $D_1 \setminus \{v\} \cup \{u\}$ is a dominating set of G. Thus, D_1 is a 1-movable dominating set of G. If $u \in V(H) \setminus D_2$, then $(S \setminus \{v\}) \cup \{u\} =$ $(D_1 \setminus \{v\}) \cup (D_2 \cup \{u\}) = D_2 \cup \{u\}$ is a connected 2-dominating set of G + H and hence a connected 2-dominating set of H. Similarly if $v \in D_2$, then either D_2 is a 1-movable dominating set of H or $D_1 \cup \{a\}$ is dominating set of G for some $a \in V(G) \setminus D_1$. Thus, (vi) holds.

For the converse, suppose (i) holds. Suppose first that S is a 1-movable connected 2-dominating set of G. By definition of the join of graphs, S is also a 1-movable connected 2-dominating set of G + H. Suppose S is a connected 2-dominating set of G. Then S is also a connected 2-dominating set of G+H. Let $v \in S$. By assumption, $S \setminus \{v\}$ is a dominating set of G. If $|S| \geq 3$, then $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G+H for some $u \in V(H)$. Suppose |S| =2. By assumption, $\gamma(H) = 1$. Hence, there exists $u \in V(H)$ such that $\{u\}$ is a dominating set of H. Thus, $S \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of G + H. Therefore, Squalifies to be a 1-movable connected 2-dominating set of G+H. Similarly, if (ii) holds, then S is a 1-movable connected 2-dominating set of G + H. Suppose (iii) holds. By definition of the join of two graphs, S is a connected 2-dominating set of G + H. Let $v \in S$ and suppose $v \in D_1$. If $|D_1| \geq 3$, then $|D_1 \setminus \{v\}| \geq 2$. Hence, $S \setminus \{v\} = (D_1 \setminus \{v\}) \cup D_2$ is a connected 2-dominating set of G + H. Suppose $|D_1| = 2$. By assumption, D_2 is a dominating set of H. Hence, $S \setminus \{v\} =$ $(D_1 \setminus \{v\}) \cup D_2$ is a connected 2-dominating set of G + H. Suppose D_2 is not a dominating set of H. By assumption, $D_2 \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D_2$. Hence, $(S \setminus \{v\}) \cup \{u\} = (D_1 \setminus \{v\}) \cup (D_2 \cup \{u\})$ is a connected 2-dominating set of G + H. Suppose $D_2 \cup \{u\}$ is not a dominating set of H for some $u \in V(H) \setminus D_2$. By assumption, $N_G(v) \cap (V(G) \setminus D_1) \neq \emptyset$. Hence, there exists $u \in (V(G) \setminus D_1) \cap N_G(v)$ Thus, $|D_1 \setminus \{v\} \cup \{u\}| \geq 2$. Thus, $(S \setminus \{v\}) \cup \{u\} = (D_1 \setminus \{v\} \cup \{u\}) \cup D_2$ is a connected 2-dominating set of G + H. Similar arguments

follow if $v \in D_2$. Therefore, S is a 1-movable connected 2-dominating set of G + H. Suppose (iv) holds. Since D_2 is a dominating set of H, $S = D_1 \cup D_2$ is a connected 2-dominating set of G + H. Let $v \in S$ and suppose $v \in D_1$. By assumption, $N_G(v) \cap (V(G) \setminus D_1) \neq \emptyset$. Hence, there exists $u \in (V(G) \setminus D_1) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\} =$ $D_1 \setminus \{v\} \cup \{u\} \cup D_2$ is a connected 2-dominating set of G + H. Suppose $N_G(v) \cap (V(G) \setminus D_1) = \emptyset$. By assumption, D_2 is a connected 2-dominating set of H and hence of G+H. Then $S \setminus \{v\} = D_1 \setminus \{v\} \cup D_2 = D_2$ is a connected 2-dominating set of G + H. Suppose D_2 is not a connected 2-dominating set of H. By assumption, $D_2 \cup \{u\}$ is a connected 2-dominating set of H and hence of G + H for some $u \in V(H) \setminus D_2$. Thus, $S\setminus\{v\}\cup\{u\}=D_1\setminus\{v\}\cup(D_2\cup\{u\})=D_2\cup\{u\}$ is a connected 2-dominating set of G + H. Suppose $v \in D_2$ and $|D_2| \geq 3$. Then $|D_1 \cup \{a\}| = 2$ for some $a \in V(G) \setminus D_1$ and $|D_2| \geq 2$. Hence, $S \setminus \{v\} \cup \{a\} = D_1 \cup \{a\} \cup D_2 \setminus \{v\}$ is a connected 2-dominating set of G + H. Suppose $|D_2| = 2$. By assumption, D_1 and $D_2 \setminus \{v\}$ are dominating sets of G and H, respectively. Hence, $S \setminus \{v\} = D_1 \cup D_2 \setminus \{v\}$ is a connected 2-dominating set of G + H. Suppose D_1 and $D_2 \setminus \{v\}$ are not dominating sets of G and H, respectively. By assumption, $D_1 \cup \{a\}$ is a dominating set of G for some $a \in V(G) \setminus D_1$. Hence, $S \setminus \{v\} \cup \{a\} = D_1 \cup \{a\} \cup D_2 \setminus \{v\}$ is a connected 2-dominating set of G + H. Suppose $D_1 \cup \{a\}$ is not a dominating set of G for all $a \in V(G) \setminus D_1$. By assumption, $D_2 \setminus \{v\} \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D_2$. Hence, $S \setminus \{v\} \cup \{u\} = D_1 \cup (D_2 \setminus \{v\} \cup \{u\})$ is a connected 2-dominating set of G + H. Therefore, S is a 1-movable connected 2-dominating set of G + H. Similar arguments follow if (v) holds. Hence, S is also a 1-movable connected 2-dominating set of G + H. Suppose (vi) holds. Then $S = D_1 \cup D_2$ is a connected 2-dominating set of G + H. Let $v \in S$ and suppose $v \in D_1$. Suppose D_1 is a 1-movable dominating set of G. Then there exists $u \in V(G) \setminus D_1 \cap N(v)$ such that $D_1 \setminus \{v\} \cup \{u\}$ is a dominating set of G. Hence, $S \setminus \{v\} \cup \{u\} = (D_1 \setminus \{v\} \cup \{u\}) \cup D_2$ is a connected 2-dominating set of G + H. Suppose D_1 is not a 1-movable dominating set of G. By assumption, $D_2 \cup \{u\}$ is a connected 2-dominating set of H for some $u \in V(H) \setminus D_2$. Hence, $S \setminus \{v\} \cup \{u\} = (D_1 \setminus \{v\}) \cup (D_2 \cup \{u\}) = D_2 \cup \{u\} \text{ is }$ a connected 2-dominating set of G + H. Similar arguments follow if $v \in D_2$. Therefore, S is a 1-movable connected 2-dominating set of G + H.

Corollary 2.6. Let G and H be a connected nontrivial graphs, then $\gamma^1_{m2c}(G+H)=2$ if one of the following holds:

- (i) $\gamma_{m2c}^1(G) = 2$;
- (ii) $\gamma_{m2c}^1(H) = 2;$
- (iii) $\gamma_m^1(G) = 1 = \gamma_m^1(H)$.

Theorem 2.7. Let H be a connected graph of order $n \geq 2$. Then

 $S \subseteq V(K_1 + H)$ is a 1-movable connected 2-dominating set of $K_1 + H$ if and only if one of the following statements holds:

- (i) $S = V(K_1) \cup D$, D is a dominating set of H, and either D or $D \cup \{z\}$ is a connected 2-dominating set of H for some $z \in V(H) \setminus D$ and for every $v \in D, D \setminus \{v\}$ or $D \setminus \{v\} \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D \cap N_H(v)$;
- (ii) S is a 1-movable connected 2-dominating set of H or S is a connected 2-dominating set of H and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of H.

Proof. Suppose S is a 1-movable connected 2-dominating set of $K_1 + H$. Suppose $S = V(K_1) \cup D$ where $D \subseteq V(H)$. Then D must be a dominating set of H. Let $v \in S$ and suppose $v \in V(K_1)$. Suppose $S \setminus \{v\} = V(K_1) \setminus \{v\} \cup D = D$ is a connected 2-dominating set of $K_1 + H$. Then D is a connected 2-dominating set of H. Suppose $S \setminus \{v\}$ is not a connected 2-dominating set of $K_1 + H$. By assumption, there exists $z \in V(K_1 + H) \setminus S) \cap N(v)$ such that $S \setminus \{v\} \cup \{z\} =$ $V(K_1) \setminus \{v\} \cup D \cup \{z\} = D \cup \{z\}$ is a connected 2-dominating set of $K_1 + H$. Hence, $D \cup \{z\}$ is a connected 2-dominating set of H. Suppose $v \in D$. Suppose $S \setminus \{v\} = V(K_1) \cup D \setminus \{v\}$ is a connected 2-dominating set of $K_1 + H$. Then $D \setminus \{v\}$ must be a dominating set of H. Suppose $S \setminus \{v\} = V(K_1) \cup D \setminus \{v\}$ is not a connected 2-dominating set of $K_1 + H$. By assumption, $u \in V(K_1 + H) \setminus S) \cap N(v)$ such that $S \setminus \{v\} \cup \{u\} =$ $V(K_1) \cup D \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of $K_1 + H$. Hence, $D \setminus \{v\} \cup \{u\}$ must be a dominating set of H. Thus, (i) holds. Suppose $S \subseteq V(H)$. Then S must be a connected 2-dominating set of H. Since S is a 1-movable connected 2-dominating set of $K_1 + H$, S is also a 1-movable connected 2-dominating set of H. Suppose S is not a 1-movable connected 2-dominating set of H. Let $v \in S$. By assumption, there exists $u \in V(K_1) \cap N(v)$ such that $S \setminus \{v\} \cup \{u\} = V(K_1) \cup S \setminus \{v\}$ is a connected 2-dominating set of $K_1 + H$. Hence, $S \setminus \{v\}$ must be a dominating set of H.

For the converse, suppose (i) holds. Since D is a dominating set of $H, S = V(K_1) \cup D$ is a connected 2-dominating set of $K_1 + H$. Let $v \in S$. Suppose $v \in V(K_1)$. By assumption, D is a connected 2-dominating set of H. Hence, $S \setminus \{v\} = D$ is

a connected 2-dominating set of $K_1 + H$. Suppose D is not a connected 2-dominating set of H. By assumption, $D \cup \{z\}$ is a connected 2-dominating set of H for some $z \in V(H) \setminus D$. Hence, $S \setminus \{v\} \cup \{z\} = D \cup \{z\}$ is a connected 2-dominating set of $K_1 + H$. Suppose $v \in D$ and $D \setminus \{v\}$ is a dominating set of H. Hence, $S \setminus \{v\} = V(K_1) \cup D \setminus \{v\}$ is a connected 2-dominating set of $K_1 + H$. Suppose $D \setminus \{v\}$ is not a dominating set of H. By assumption, $D \setminus \{v\} \cup \{u\}$ is a dominating set of H for some $u \in V(H) \setminus D \cap N(v)$. Hence, $S \setminus \{v\} \cup \{u\} = V(K_1) \cup D \setminus \{v\} \cup \{u\}$ is a connected 2-dominating set of $K_1 + H$. Therefore, S is a 1-movable connected 2-dominating set of $K_1 + H$. Suppose (ii) holds. Suppose S is a 1-movable connected 2-dominating set of H. By definition of the join of graphs, S is a 1-movable connected 2-dominating set of $K_1 + H$. Suppose S is not a 1-movable connected 2-dominating set of H. By assumption, S is a connected 2-dominating set of H. Hence S is a connected 2-dominating set of $K_1 + H$. Let $v \in S$. By assumption, $S \setminus \{v\}$ is a dominating set of H. Hence, $S \setminus \{v\} \cup V(K_1)$ is a connected 2-dominating set of $K_1 + H$. Therefore, S is a 1-movable connected 2-dominating set of $K_1 + H$.

Corollary 2.8. Let H be a connected graph of order $n \geq 2$. Then

$$\gamma_{m2c}^1(K_1+H)=2 \text{ if } \gamma_{m2c}^1(H)=2.$$

REFERENCES

- [1] J. Blair, R. Gera and S. Horton. *Movable dominating sensor sets in networks*. Journal of Combinatorial Mathematics and Combinatorial Computing, 77 (2011) ,103-123.
- [2] M. Blidia, M. Chellali and O. Favaron. *Independence* and 2-domination in trees. Australasian Journal of Combinatorics, 33 (2005), 317-327.
- [3] M. Chellali. *Bounds on the 2-domination number in cactus graphs*. Opuscula Mathematica, 26 (2005),5-12.
- [4] R.G. Hinampas, Jr., and S.R. Canoy, Jr. *1-movable domination in graphs*. Applied Mathematical Sciences, 8 (2014), no. 172, 8565-8571.
- [5] R.E. Leonida Connected 2-domination in the join of graphs. Applied Mathematical Sciences, 9 (2015), no. 64, 3181-3186.