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Abstract 

This paper considers control systems with an increased 

potential for robust stability in the output of an object in the 

class of one-parameter structurally stable mappings from 

catastrophe theory. The study of the dynamic compensator with 

a high potential for robust stability is performed by the 

gradient-velocity method of Lyapunov vector functions. The 

area of robust stability of the control system for the object 

output is obtained in the form of a system of the simplest 

inequalities for the matrix of controller parameters and the 

monitoring device. 
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1. INTRODUCTION  

The modern control systems are characterized by the ever-

increasing complexity of the control objects as well as the 

requirements for high efficiency. In these systems, uncertainty 

can be caused both by the presence of uncontrolled 

disturbances acting on the control object [1], the lack of 

knowledge of the true values of the parameters of control 

objects and unpredictable changes in time [1,2,3,4]. 

The actual problem is the design of control systems that provide 

in some sense the best protection against uncertainty in the 

knowledge of the properties of an object and the instability of 

control systems.  

The ability of a control system to maintain stability under 

parametric or non-parametric uncertainty is understood as the 

robustness of the system. In the general formulation of the 

study of the system for robust stability, it is necessary to 

indicate the restrictions applied to the fluctuation of uncertain 

parameters of the control system, under which stability is 

maintained. A large number of papers have been devoted to the 

problem of studying robust stability of control systems.  

These works mainly investigated the robust stability of 

polynomials, matrices within the framework of the linear 

stability principle [2, 3, 4]. 

It should be noted that the instability is determined by the 

output of uncertain system parameters beyond the boundaries 

of robust stability. Known approaches do not allow to expand 

the area of stability of the system based on the choice of the 

control law. 

In practical tasks related to the development and creation of 

control systems under conditions of substantial parametric 

uncertainty, an increase in the robust stability potential 

[5,6,7,8,9] is one of the key factors guaranteeing the control 

system from the instability mode. In this regard, under 

conditions of uncertainty, this paper proposes methods for the 

synthesis and research of a control system with a guaranteed 

wide area of robust stability, called control systems with an 

increased potential for robust stability [5, 6]. 

The concept of building a control system with a high potential 

for robust stability is based on the applied results of catastrophe 

theories [10,11]. 

This analysis is devoted to building and researching control 

systems with an increased potential for robust stability with 

respect to the output of a dynamic volume with uncertain 

parameters, with an approach to building control systems in the 

class of one-parameter structurally stable mappings [5, 6, 7], 

which make it possible to maximally increase the potential of 

robust control system stability. 

 

2. MATERIAL AND METHODS 

The actual problem is the creation of control systems for the 

object's output, when in practice it is not the state vector that is 

available for measurement, but the object's output. In this case, 

the control law does not use the object state variables 

themselves, but their estimates obtained using an observing 

device [12,13,14,15] and it is required to build a control system 

for the output of the object in the form of a dynamic 

compensator [12] with a high robust potential sustainability. 

The paper also proposes a method for the study of stability and 
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synthesis of control systems for the output of an object based 

on the gradient-velocity method of Lyapunov vector functions 

[5,8,9,16,17].  

The study of the stability of a closed-loop control system for 

the output of an object and the solution of the problem of 

regulator synthesis (determining the elements of the 

amplification matrix) and the observer (calculating the 

elements of the matrix of the observing device) are based on 

the direct method of Lyapunov [18,19,20].  

The proposed gradient-velocity method of Lyapunov vector 

functions in the study of the output control system of the object 

eliminates complex and ambiguous calculations and canonical 

transformations and allows one to determine the region of 

choice of controller parameters and the observer, providing the 

desired transition characteristics of a closed system. 

3. RESULTS 

To simplify the system, you can transform the equation of state. 

For this, we use the error of estimation ),(ˆ)()( txtxt   and 

(1) - (3) can be converted to the form: 

 

,)(, 00 xtxBuAx
dt
dx

        (1) 

 

xkxu ˆˆ3           (2) 

 

000
ˆ)(,)( xxtLCA

dt
d

 


      (3) 

 

Here, the control law is specified in the form of one-parameter 

structurally stable mappings with respect to the state vector

 и and the error vector )(t )()()(ˆ ttxtx  , and  

)(3)( 33   xxkkxxtu  . 

(1)-(3) present in the form: 
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Let’s consider a system with one input and one output, 

respectively, the system has a matrix of the form: 
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System (4), (5) in the expanded form we will present in the 

form: 
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In the absence of external influences, the processes in system 

(4) and (5) should asymptotically approach the processes in the 

system with a regulator as it was, as if the closed-loop control 

system of the state vector was exposed to damped disturbances. 

The role of these disturbances is played by the component  

dictated by equation (6). The error must be subside and the error 

subsidence rate is determined during the observer synthesis. 

The main property of system (4), (5) or (6) is asymptotic 

stability. Find the steady state of the system (6): 

0,...,0,0 21  nsss xxx и 
0,...,0,0 21  nsss 

   (7) 

and 

nik
b
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x isi
in

in
is ,...,1,0,

1

12,1 

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      (8) 

We study the robust stability of steady-state states of system (6) 

by the gradient-velocity method of Lyapunov vector functions 

[5, 7, 16]. The steady state (7) is oberved from the beginning. 

The next step is to find the gradient vector of the vector 

Lyapunov functions from the equation of state (6) of the 

)(tx
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From (6) the decomposition of the components of the velocity vector can be represented as: 
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The total time derivative of the Lyapunov function, defined as the scalar product of the gradient vector (9) and the velocity  

vector (10): 
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From (11) it follows that the total time derivative of the vector of Lyapunov function is a sign-negative function. 

The Lyapunov function with respect to the components of the gradient vector from (9) can be represented in the form: 
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The positive definiteness of functions (12) is not obvious, so we 

use the Morse lemma from the theories of catastrophes [10, 11]. 

The function (12) in the vicinity of the stationary state (7) 

satisfies all the conditions of the Morse Lemma. This allows 

functions (12) to be represented in the neighborhood of the 

steady state (7) as the following quadratic form:  
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The condition of existence of the Lyapunov function vector is 

determined by the positive definiteness of the quadratic form 

(13): 
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The equation of the system state (6) in deviations relative to the 

steady state (8) is written as: 
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The stability of the system (16) is investigated by the gradient-velocity method of Lyapunov vector functions [5, 7, 16, 17]. 

The total time derivative of the Lyapunov function vector is found in the form:  
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From (17) it follows that the total time derivative of a Lyapunov vector function is guaranteed to be a sign-negative function. 

The Lyapunov function can be represented by a scalar form in the form:  
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Function (18) in the vicinity of the stationary state (8) satisfies all the conditions of the Morse lemma from the theories of 

catastrophes. This allows functions (18) in the vicinity of the steady state (8) in the form of the following quadratic form.  
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From this, from (19) we obtain the condition for the existence of 

a Lyapunov vector function in the form: 
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System (4) and (5) is a dynamic compensator with an increased 

potential for operational stability. The steady state (7) exists and 

is stable when the uncertain parameters of the system change in 

region (14) and (15), and the steady state (8) appears and exists 

when the steady state (7) is unstable, and they do not exist at the 

same time. The steady state (8) will be stable if the system of 

inequalities (20) and (21) is fulfilled. 

 

4. CONCLUSION 

The known methods of control on the exit of the object are based 

on the model control on the exit of the object. The choice of the 

elements of the controller and observer matrix requires 

canonical transformations and complex and ambiguous 

calculations of the roots of the characteristic equation of a closed 

system. The roots of the characteristic polynomial of a closed 

system are obtained by combining the roots of the system with 

a model controller and the eigenvalues of the state observer. 

This paper has proposed an approach to determine the range of 

changes in the parameters of the object, the controller and the 

observer. The approach provides robust stability to the dynamic 

compensator for any changes in the uncertain parameters of the 

system and allows to control the instability modes in control 

systems. 

The gradient-speed method of Lyapunov vector functions 

allows one to solve the problem of constructing automatic 

control systems with a high potential for robust stability in the 

output of an object directly from the elements of the matrix of 

the controller object and the observer. 
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