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Abstract 

The present study focuses on the estimation of technical 

efficiency of a normal exponential stochastic frontier 

production and the application of it in the estimation of 

technical efficiency of schools of three different sectors namely 

public, private and aided schools in Coimbatore and Tirupur 

districts. The analysis was done based on the results from a 

survey report on Mathematics subject at their X and XII 

standard levels. The Translog Normal Exponential Stochastic 

Frontier Production Model depicted a maximum technical 

efficiency score of 99.23 % and minimum technical efficiency 

score of 87.13% at their XII standard level and a maximum 

technical efficiency of 99.45% and a minimum of 87.39% at 

their X standard level. The Cobb-Douglas Normal Exponential 

Stochastic Frontier Production Model gave a maximum 

Technical Efficiency score of 99.10% and minimum technical 

efficiency score of 82.19% and a maximum technical efficiency 

score of 99.09% and a minimum technical efficiency score of 

82.39% at their X standard level.  The correlation coefficient 

value is observed as r=0.584, 0.579 at their X and XII standard 

levels respectively while analyzing using Translog Normal 

Exponential Stochastic Frontier Production Model and r= 

0.786, 0.793 at their X and XII standard levels respectively 

while analyzing using Cobb-Douglas Normal Exponential 

Stochastic Frontier Production Model. The Chi-Square values 

were obtained as 1.3632 and 1.4592 at their X and XII standard 

levels respectively in case of efficiency estimation using 

Translog Normal Exponential Stochastic Frontier Production 

Model and the Chi-square values were observed as 1.1171 and 

1.9896 at their X and XII standard levels in case of efficiency 

estimation using Cobb-Douglas Normal Exponential 

Stochastic Frontier Production Model.  

Keywords: Technical Efficiency, Normal Exponential 

Stochastic Production Frontier Model, Translog Production 

Function, Cobb-Douglas Production Function, Mathematics 

 

INTRODUCTION 

Stochastic Frontier Analysis 

Stochastic Frontier Analysis is a method of mathematical 

modelling and is widely used probabilistic model to estimate 

the individual efficiency scores. The Stochastic Frontier 

Analysis was first proposed by Aigner et al (1977) [1] and 

Meeusen and Van de Broeck(1977)[2]. The purpose of 

Stochastic Frontier Analysis is to measure how efficient a firm 

is with the given observations of input and output by using two 

error terms, u and v. 

The parametric estimation is based on the pioneering work of 

Aigner and Chu(1986)[3],. The Technical Efficiency of a 

producer is given by 

      𝑇𝐸𝑖 =
𝑦𝑖

𝑓(𝑥𝑖 , 𝛽)𝑒𝑥𝑝{𝑣𝑖}
 

where 𝑦𝑖- scalar output of producer i ; 𝑓(𝑥𝑖 , 𝛼)- production 

frontier, 𝛼 – vector of parameters to be estimated and 𝑣𝑖-non-

negative technical inefficiency component. 

which defines Technical Efficiency as the ratio of observed 

output to the maximum feasible output, conditional on 𝑒𝑥𝑝{𝑣𝑖} 

as discussed by Kumbhakar and Lovell (2003)[4]. Technical 

Efficiency 𝑇𝐸𝑖 can be attained by the exponential conditional 

expectation of u given the composed error term ϵ , which is 

given by 

 𝑇𝐸𝑖 = 𝑒𝑥𝑝 [−𝐸 (
𝑢𝑖

∈𝑖
⁄ )] as suggested by Johndrow et 

al(1982)[5]. 

This paper involves four sections namely 

Section I: Derivation of the Normal-Exponential Stochastic 

Production Frontier Model. 

Section II: Estimation of the parameters of the Normal-

Exponential Stochastic Production Frontier Model.                    

Section III: Measurement of the Technical Efficiency of the 

Normal-Exponential Stochastic Production Frontier Model . 

Section IV: Estimation of Technical Efficiency of Schools in 

Coimbatore and Tirupur districts with regard to their 

Mathematics subject score at their secondary and higher 

secondary levels using Normal Exponential Stochastic 

Production Frontier Model. 

 

DATA 

The primary data was collected from about 900 students during 

the year 2013-2017 in Coimbatore and Tirupur districts with 

the aid of student-oriented survey methodology. The 

questionnaire invokes various input factors for analysis, among 
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which seven input factors pertaining to the score in 

Mathematics subject at their secondary and higher secondary 

levels were chosen for analysis using Translog and Cobb-

Douglas Normal Exponential Stochastic Frontier Production 

Models.  

The input variables considered in this study can be listed out as 

follows 

(i) Student-Teacher Ratio (𝑥1) 

(ii) School facilities (𝑥2) 

(iii) Socio-Economic Status (𝑥3) 

(iv) Syllabus (𝑥4) 

(v) Teaching Related Factors (𝑥5) 

(vi) Learning disability (𝑥6) 

(vii) Extra Tuition Classes (𝑥7) 

 

STOCHATIC PRODUCTION FUNCTIONS USED: 

The stochastic frontier model in terms of a general production 

function for the ith production unit is 𝑦𝑖 =  𝑓(𝑥𝑖 , 𝛽)𝑒𝑥𝑝{𝑣𝑖 −
𝑢𝑖} where 𝑣𝑖 is the two-sided noise component and 𝑢𝑖 is the 

non-negative technical inefficiency component of the error 

term. 

 

TRANSLOG STOCHASTIC PRODUCTION FUNCTION 

The Empirical Model of the study can be formulated as below 

The technical efficiency of the students regarding their 

Mathematics learning at their school level with respect to the 

input factors considered was estimated. The empirical 

formulation with the aid of Translog production function can 

be specified as 

ln 𝑦 = 𝛽0 + ∑ 𝛽𝑖 ln  𝑥𝑖

7

𝑖=1

+
1

2
∑ ∑ 𝛽𝑖𝑖

7

𝑖=1

7

𝑖=1

(ln 𝑥𝑖)
2

+ ∑ ∑ 𝛽𝑖𝑗

7

𝑗=1

7

𝑖=1

(ln 𝑥𝑖) ∗ (ln 𝑥𝑖) 

COBB-DOUGLAS STOCHACTIC PRODUCTION 

FUNCTION 

The general form of Cobb-Douglas Production function is 

𝑙𝑛𝑦𝑖 = 𝛼0 + ∑ 𝛼𝑛𝑙𝑛

𝑛

𝑥𝑛𝑖 − 𝑢𝑖 

I.ESTIMATION OF NORMAL EXPONENTIAL 

STOCHASTIC PRODUCTION FRONTIER MODEL 

In this paper in the derivation of Normal-Exponential 

Stochastic Production Frontier Model the following 

distributional assumptions were made. 

(i)  The error term represents the statistical noise 

𝑣𝑖~𝑖𝑖𝑑 𝑁(0, 𝜎𝑛
2)  

(ii)  The error term representing the technical 

efficiency  𝑢𝑖~𝑖𝑖𝑑 𝑁+(0, 𝜎𝑒
2)  

 (i.e exponential). 

(iii)  𝑣𝑖 and 𝑢𝑖 are distributed independently of 

each other and of the regressors. 

The probability density function of v is  

𝑓(𝑣) =
1

√2𝜋𝜎𝑛
𝑒𝑥𝑝 {

−𝑣2

2𝜎𝑛
2}      (1) 

The probability density function of u is 

𝑓(𝑢) =
1

𝜎𝑒
𝑒𝑥𝑝 {

−𝑢

𝜎𝑒
}      (2) 

𝑓(𝑢, 𝑣) = 𝑓(𝑢). 𝑓(𝑣)      (3) 

𝑓(𝑢, 𝑣) =
1

√2𝜋𝜎𝑛
𝑒𝑥𝑝 {

−𝑣2

2𝜎𝑛
2} .

1

𝜎𝑒
𝑒𝑥𝑝 {

−𝑢

𝜎𝑒
}    (4) 

𝑓(𝑢, 𝑣) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

𝑣2

2𝜎𝑛
2 − 

𝑢

𝜎𝑒
}    (5) 

Let 𝑣 = 𝑢 + 𝜖 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

(𝑢+𝜖)2

2𝜎𝑛
2 − 

𝑢

𝜎𝑒
}    (6) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {− 

𝑢

𝜎𝑒
−

(𝑢2+𝜖2+2𝑢𝜖)

2𝜎𝑛
2 }    (7) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {− 

𝑢

𝜎𝑒
−

𝑢2

2𝜎𝑛
2 −

𝜖2

2𝜎𝑛
2 −

2𝑢𝜖

2𝜎𝑛
2}   (8) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {− 

𝑢

𝜎𝑒
−

𝑢2

2𝜎𝑛
2 −

𝜖2

2𝜎𝑛
2 −

𝑢𝜖

𝜎𝑛
2}   (9) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 + 2 (

𝑢𝜖

𝜎𝑛
2 +

𝑢

𝜎𝑒
) +

𝜖2

𝜎𝑛
2]}  (10) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 + 2𝑢 (

𝜖

𝜎𝑛
2 +

1

𝜎𝑒
) +

𝜖2

𝜎𝑛
2]}  (11) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 +

2𝑢𝜎𝑛

𝜎𝑛
(

𝜖

𝜎𝑛
2 +

1

𝜎𝑒
) +

𝜖2

𝜎𝑛
2]} (12) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 +

2𝑢

𝜎𝑛
(

𝜖

𝜎𝑛
+

𝜎𝑛

𝜎𝑒
) +

𝜖2

𝜎𝑛
2]}  (13) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 +

2𝑢

𝜎𝑛
(

𝜖

𝜎𝑛
+

1

𝜆
) +

𝜖2

𝜎𝑛
2]}  (14) 
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𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [

𝑢2

𝜎𝑛
2 +

2𝑢

𝜎𝑛
(

𝜖

𝜎𝑛
+

1

𝜆
) + (

𝜖

𝜎𝑛
+

1

𝜆
)

2

− (
𝜖

𝜎𝑛
+

1

𝜆
)

2

+
𝜖2

𝜎𝑛
2]}    (15) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
 [(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

− (
𝜖

𝜎𝑛
+

1

𝜆
)

2

+
𝜖2

𝜎𝑛
2]}     (16) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]} 𝑒𝑥𝑝 {−
1

2
 [− (

𝜖

𝜎𝑛
+

1

𝜆
)

2

+
𝜖2

𝜎𝑛
2]}    (17) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]} 𝑒𝑥𝑝 {−
1

2
 [−

𝜖2

𝜎𝑛
2 −

1

𝜆2 −
2𝜖

𝜆𝜎𝑛
+

𝜖2

𝜎𝑛
2]}   (18) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]} 𝑒𝑥𝑝 {
1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]}     (19) 

𝑓(𝑢, 𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} 𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]}     (20) 

The marginal density function of 𝜖 is given by 

𝑓(𝜖) = ∫ 𝑓(𝑢, 𝜖) 𝑑𝑢
∞

0
          (21) 

𝑓(𝜖) = ∫
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} 𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]}  𝑑𝑢
∞

0
    (22) 

𝑓(𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} ∫ 𝑒𝑥𝑝 {−

1

2
[(

𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
))

2

]}  𝑑𝑢
∞

0
    (23) 

Let 𝑥 =
𝑢

𝜎𝑛
+ (

𝜖

𝜎𝑛
+

1

𝜆
)  

𝑑𝑥 =
𝑑𝑢

𝜎𝑛
  

𝑑𝑢 = 𝜎𝑛𝑑𝑥  

 

Limits 

U 0 ∞ 

X 𝜖

𝜎𝑛
+

1

𝜆
 

∞ 

𝑓(𝜖) =
1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} ∫ 𝑒𝑥𝑝 {−

𝑥2

2
} 𝜎𝑛 𝑑𝑥

∞
𝜖

𝜎𝑛
+

1

𝜆

      (24) 

𝑓(𝜖) =
1

√2𝜋𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} ∫ 𝑒𝑥𝑝 {−

𝑥2

2
} 𝑑𝑥

∞
𝜖

𝜎𝑛
+

1

𝜆

       (25) 

𝑓(𝜖) =
1

𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} 

1

√2𝜋
∫ 𝑒𝑥𝑝 {−

𝑥2

2
} 𝑑𝑥

∞
𝜖

𝜎𝑛
+

1

𝜆

      (26) 

𝑓(𝜖) =
1

𝜎𝑒
𝑒𝑥𝑝 {

1

2
 [

1

𝜆2 +
2𝜖

𝜆𝜎𝑛
]} [1 − 𝛷 (

𝜖

𝜎𝑛
+

1

𝜆
)]       (27) 

MEAN 

𝐸(𝜖) = 𝐸(𝑣 − 𝑢) = 𝐸(𝑣) − 𝐸(𝑢) = 0 − 𝐸(𝑢)       (28) 

𝐸(𝜖) = −𝐸(𝑢)           (29) 
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𝐸(𝑢) = ∫ 𝑢 𝑓(𝑢)𝑑𝑢
∞

0
          (30) 

𝐸(𝑢) = ∫ 𝑢 
1

𝜎𝑒
𝑒𝑥𝑝 {

−𝑢

𝜎𝑒
} 𝑑𝑢

∞

0
         (31) 

Let 
𝑢

𝜎𝑒
= 𝑦    𝑑𝑢 = 𝜎𝑒 𝑑𝑦 

Limits      

U 0 ∞ 

Y 0 ∞ 

 

𝐸(𝑢) = ∫ 𝑦𝜎𝑒
1

𝜎𝑒
𝑒𝑥𝑝{−𝑦}𝜎𝑒𝑑𝑦

∞

0
         (32) 

𝐸(𝑢) = 𝜎𝑒 ∫ 𝑦𝑒𝑥𝑝{−𝑦}𝑑𝑦
∞

0
         (33) 

𝐸(𝑢) = 𝜎𝑒[𝑦 𝑒𝑥𝑝{−𝑦}(−1) − 𝑒𝑥𝑝{−𝑦}]0
∞        (34) 

𝐸(𝑢) = 𝜎𝑒           (35) 

𝐸(𝑢2) = ∫ 𝑢2 𝑓(𝑢)𝑑𝑢
∞

0
          (36) 

𝐸(𝑢2) = ∫ 𝑢2  
1

𝜎𝑒
𝑒𝑥𝑝 {

−𝑢

𝜎𝑒
} 𝑑𝑢

∞

0
         (37) 

Let 
𝑢

𝜎𝑒
= 𝑦   𝑑𝑢 = 𝜎𝑒 𝑑𝑦 

Limits      

U 0 ∞ 

Y 0 ∞ 

 

𝐸(𝑢2) = ∫ 𝑦2𝜎𝑒
2 1

𝜎𝑒
𝑒𝑥𝑝{−𝑦}𝜎𝑒𝑑𝑦

∞

0
        (38) 

𝐸(𝑢2) = 𝜎𝑒
2 ∫ 𝑦2𝑒𝑥𝑝{−𝑦}𝑑𝑦

∞

0
         (39) 

𝐸(𝑢2) = 2𝜎𝑒
2           (40) 

 

 

VARIANCE 

𝑉𝑎𝑟(𝑢) = 𝐸(𝑢2) − [𝐸(𝑢)]2         (41) 

𝑉𝑎𝑟(𝑢) = 2𝜎𝑒
2 − 𝜎𝑒

2          (42) 

𝑉𝑎𝑟(𝑢) = 𝜎𝑒
2           (43) 

𝑉𝑎𝑟(𝜖) = 𝑉𝑎𝑟(𝑣) − 𝑉𝑎𝑟(𝑢)         (44) 

𝑉𝑎𝑟(𝜖) = 𝜎𝑛
2 − 𝜎𝑒

2          (45) 
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II.    ESTIMATION OF THE PARAMETERS  

𝐿(𝑠𝑎𝑚𝑝𝑙𝑒) = ∏ 𝑓(𝜖𝑖)
𝑝
𝑖=1           (46) 

Let 𝜎2 = 𝜎𝑒
2 + 𝜎𝑛

2, 𝜆 =
𝜎𝑒

𝜎𝑛
 , 𝜎𝑒

2 = , 𝜎𝑛
2 =

𝜎2

(1+𝜆2)
 

The log-likelihood function of the Normal Exponential Stochastic production frontier model is given by 

ln 𝐿 = −
𝑝

2
(ln 𝜎𝑒

2) + ∑ ln [1 − 𝛷 (
𝜖𝑖

𝜎𝑛
+

1

𝜆
)] +

𝑝

2𝜆2 + ∑
𝜖𝑖

𝜆𝜎𝑛

𝑝
𝑖=1

𝑝
𝑖=1      (47) 

Let     𝜖𝑖 = 𝑦𝑖 − 𝛼′𝑥𝑖 and 𝑥𝑖 being [1xK] vectors. 

ln 𝐿 = −
𝑝

2
(ln 𝜎𝑒

2) + ∑ ln [1 − 𝛷 (
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)−1/2 +
1

𝜆
)] +

𝑝

2𝜆2 + ∑
(𝑦𝑖−𝛼′𝑥𝑖)

𝜆𝜎(1+𝜆2)−1/2

𝑝
𝑖=1

𝑝
𝑖=1    (48) 

ln 𝐿 = −
𝑝

2
(ln

𝜎2

(1+𝜆−2)
) + ∑ ln [1 − 𝛷 (

(𝑦𝑖−𝛼′𝑥𝑖)

𝜎𝑛
+

1

𝜆
)] +

𝑝

2𝜆2 + ∑
(𝑦𝑖−𝛼′𝑥𝑖)

𝜆𝜎𝑛

𝑝
𝑖=1

𝑝
𝑖=1    (49) 

The parameters 𝜎2, λ and α are estimated using first order conditions of the likelihood function as follows 

𝜕 ln 𝐿

𝜕𝜎2 = −
𝑝

2

1

𝜎2 −
1

2𝜎3
∑

ϕ(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

1−𝛷(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

𝑝
𝑖=1

(𝑦𝑖−𝛼′𝑥𝑖)

(1+𝜆2)
−

1
2

− ∑
(𝑦𝑖−𝛼′𝑥𝑖)

2𝜎3𝜆(1+𝜆2)
−

1
2

= 0
𝑝
𝑖=1     (50) 

𝜕𝑙𝑛𝐿

𝜕𝜆
=

𝑝(1+𝜆−2)

𝜆3 + ∑

ϕ(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

−
1

𝜆2)

1−𝛷(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

𝑝
𝑖=1 (

(𝑦𝑖−𝛼′𝑥𝑖)𝜆

𝜎(1+𝜆2)
−

1
2

−
1

𝜆2) −
𝑝

𝜆3 + ∑
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎
[−

1

𝜆2

1

(1+𝜆2)
−

1
2

−
1

(1+𝜆2)
1
2

] = 0
𝑝
𝑖=1   (51) 

𝜕 ln 𝐿

𝜕𝛼
= ∑

ϕ(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

1−𝛷(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

[
𝑥𝑖

𝜎(1+𝜆2)
−

1
2

]
𝑝
𝑖=1 + ∑ [

𝑥𝑖

𝜎(1+𝜆2)
−

1
2𝜆

] = 0
𝑝
𝑖=1      (52) 

Let A be an pxk matrix, B be an px1 vector, 𝛆 be an px1 vector(𝜀1, 𝜀2, … , 𝜀𝑝), 

𝛾𝑖 =

ϕ(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

1−𝛷(
(𝑦𝑖−𝛼′𝑥𝑖)

𝜎(1+𝜆2)
−

1
2

+
1

𝜆
)

         (53) 

−
𝑝

2

1

𝜎2 −
1

2𝜎3

(𝛾𝑖𝐵−𝛾𝑖𝛼′𝐴)

(1+𝜆2)
−

1
2

−
1

2𝜎3

(𝐵−𝛼′𝐴)

𝜆(1+𝜆2)
−

1
2

= 0       (54) 

𝑝 +
1

𝜎(1+𝜆2)
−

1
2

[𝛾𝑖𝐵 − 𝛾𝑖𝛼
′𝐴 −

(𝐵−𝛼′𝐴)

𝜆
] = 0       (55) 

𝑝 +
1

𝜎𝜆(1+𝜆2)
−

1
2

[𝛾𝑖𝐵𝜆 − 𝛾𝑖𝛼
′𝐴𝜆 − (𝐵 − 𝛼′𝐴)] = 0      (56) 

1

𝜎𝜆(1+𝜆2)
−

1
2

[𝛾𝑖𝐵𝜆 − 𝛾𝑖𝛼
′𝐴𝜆 − (𝐵 − 𝛼′𝐴)] = −𝑝      (57) 
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1

−𝑝𝜆(1+𝜆2)
−

1
2

[𝛾𝑖𝐵𝜆 − 𝛾𝑖𝛼
′𝐴𝜆 − (𝐵 − 𝛼′𝐴)] = 𝜎      (58) 

−𝛾𝑖𝐴

𝜎(1+𝜆2)
−

1
2

−
𝐴

𝜎𝜆(1+𝜆2)
−

1
2

= 0         (59) 

𝐴

𝜆
= −𝛾𝑖𝐴          (60) 

𝜆 = −
𝐴

𝛾𝑖𝐴
          (61) 

−𝑝 −
(𝛾𝑖𝐵−𝛾𝑖𝛼′𝐴)

𝜎(1+𝜆2)
−

1
2

−
(𝐵−𝛼′𝐴)

𝜆𝜎(1+𝜆2)
−

1
2

= 0        (62) 

Post multiplying by 𝐴−1 

−𝑝 𝜎(1 + 𝜆2)−
1

2𝜆𝐴−1 − 𝛾𝑖𝐵𝐴−1𝜆 + 𝛾𝑖𝛼
′𝜆 − 𝐵𝐴−1 + 𝛼′ = 0     (63) 

𝑝 𝜎(1 + 𝜆2)−
1

2𝜆𝐴−1 + 𝛾𝑖𝐵𝐴−1𝜆 + 𝐵𝐴−1 = 𝛾𝑖𝛼
′𝜆 + 𝛼′     (64) 

𝑝 𝜎(1 + 𝜆2)−
1

2𝜆𝐴−1 + 𝛾𝑖𝐵𝐴−1𝜆 + 𝐵𝐴−1 = (𝛾𝑖𝜆 + 1)𝛼′     (65) 

 

III.  ESTIMATION OF TECHNICAL EFFICIENCY                                       

𝑓(𝑢|𝜖) =
𝑓(𝑢,𝜖)

𝑓(𝜖)
           (66) 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛𝜎𝑒
𝑒𝑥𝑝{

1

2
 [

1

𝜆2+
2𝜖

𝜆𝜎𝑛
]}𝑒𝑥𝑝{−

1

2
[(

𝑢

𝜎𝑛
+(

𝜖

𝜎𝑛
+

1

𝜆
))

2

]}

1

𝜎𝑒
𝑒𝑥𝑝{

1

2
 [

1

𝜆2+
2𝜖

𝜆𝜎𝑛
]} [1−𝛷(

𝜖

𝜎𝑛
+

1

𝜆
)]

       (67) 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2
[(

𝑢

𝜎𝑛
+(

𝜖

𝜎𝑛
+

1

𝜆
))

2

]}

 [1−𝛷(
𝜖

𝜎𝑛
+

1

𝜆
)]

        (68) 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2
[(

𝑢

𝜎𝑛
+(

𝜖

𝜎𝑛
+

𝜎𝑛
𝜎𝑒

))

2

]}

 [1−𝛷(
𝜖

𝜎𝑛
+

𝜎𝑛
𝜎𝑒

)]
        (69) 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2
[(

𝑢

𝜎𝑛
+(

𝜖

𝜎𝑛
+

𝜎𝑛
2

𝜎𝑒𝜎𝑛
))

2

]}

 [1−𝛷(
𝜖

𝜎𝑛
+

𝜎𝑛2

𝜎𝑒𝜎𝑛
)]

        (70) 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2𝜎𝑛
[(𝑢+(𝜖+

𝜎𝑛
2

𝜎𝑒
))

2

]}

 [1−𝛷(
𝜖

𝜎𝑛
+

𝜎𝑛2

𝜎𝑒𝜎𝑛
)]

        (71) 

 

Let 𝛾′ = 𝜖 +
𝜎𝑛

2

𝜎𝑒
 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 14 (2019) pp. 3159-3170 

© Research India Publications.  http://www.ripublication.com 

3165 

𝑓(𝑢|𝜖) =

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2𝜎𝑛
[(𝑢+𝛾′)

2
]}

 [1−𝛷(
𝛾′

𝜎𝑛
)]

         (72) 

𝐸(𝑢|𝜖) = ∫ 𝑢
∞

0
 𝑓(𝑢|𝜖) 𝑑𝑢         (73) 

𝐸(𝑢|𝜖) = ∫ 𝑢
∞

0

1

√2𝜋𝜎𝑛
𝑒𝑥𝑝{−

1

2𝜎𝑛
[(𝑢+𝛾′)

2
]}

 [1−𝛷(
𝛾′

𝜎𝑛
)]

 𝑑𝑢        (74) 

𝐸(𝑢|𝜖) =

1

√2𝜋𝜎𝑛

[1−𝛷(
𝛾′

𝜎𝑛
)]

∫ 𝑢
∞

0
 𝑒𝑥𝑝 {−

1

2𝜎𝑛
(𝑢 + 𝛾′)2}  𝑑𝑢       (75) 

Let 𝑧 =
𝑢+ 𝛾′

𝜎𝑛
 

𝑢 = 𝜎𝑛𝑧 + 𝛾′  

𝑑𝑢 = 𝜎𝑛𝑑𝑧  

Limits 

U 0 ∞ 

Z 𝛾′

𝜎𝑛
 

∞ 

𝐸(𝑢|𝜖) =

1

√2𝜋𝜎𝑛

[1−𝛷(
𝛾′

𝜎𝑛
)]

∫  (𝜎𝑛𝑧 + 𝛾′)
∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
) 𝜎𝑛𝑑𝑧      (76) 

𝐸(𝑢|𝜖) =

1

√2𝜋

[1−𝛷(
𝛾′

𝜎𝑛
)]

[∫ 𝜎𝑛𝑧 
∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
)  𝑑𝑧 + ∫ 𝛾′ 

∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
)  𝑑𝑧]    (77) 

𝐸(𝑢|𝜖) =

1

√2𝜋

[1−𝛷(
𝛾′

𝜎𝑛
)]

∫ 𝜎𝑛𝑧 
∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
)  𝑑𝑧 +

1

√2𝜋

[1−𝛷(
𝛾′

𝜎𝑛
)]

∫ 𝛾′ 
∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
)  𝑑𝑧   (78) 

𝐸(𝑢|𝜖) =

𝜎𝑛

√2𝜋
𝑒𝑥𝑝(−

𝛾′2

2𝜎𝑛
2)

[1−𝛷(
𝛾′

𝜎𝑛
)]

+

𝛾′

√2𝜋

[1−𝛷(
𝛾′

𝜎𝑛
)]

∫  
∞
𝛾′

𝜎𝑛

𝑒𝑥𝑝 (−
𝑧2

2
)  𝑑𝑧     (79) 

𝐸(𝑢|𝜖) =
𝜎𝑛𝜙(

𝛾′

𝜎𝑛
)+𝛾′[1−𝛷(

𝛾′

𝜎𝑛
)]

[1−𝛷(
𝛾′

𝜎𝑛
)]

        (80) 

𝐸(𝑢|𝜖) = 𝛾′ +
𝜎𝑛𝜙(

𝛾′

𝜎𝑛
)

[1−𝛷(
𝛾′

𝜎𝑛
)]

         (81) 

Technical Efficiency 

 𝑇𝐸 = 𝑒𝑥𝑝[−𝐸(𝑢𝑖|𝜖𝑖)]        (82) 

𝑇𝐸 = 𝑒𝑥𝑝 [− {𝛾′ +
𝜎𝑛𝜙(

𝛾′

𝜎𝑛
)

[1−𝛷(
𝛾′

𝜎𝑛
)]

}]        (83) 
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IV.  ESTIMATION OF TECHNICAL EFFICIENCY OF 

SCHOOLS IN COIMBATORE AND TIRUPUR 

DISTRICTS WITH REGARD TO THEIR 

MATHEMATICS SUBJECT USING NORMAL-

EXPONENTIAL STOCHASTIC PRODUCTION 

FRONTIER MODEL 

Translog Normal Exponential Stochastic Production 

Frontier Model 

Estimation of Frontier Production Function Using 

Translog Normal Exponential Stochastic Production 

Frontier Model 

The results of maximum likelihood estimates (MLE) of the 

translog normal exponential stochastic production frontier 

model are presented in Table 1. The coefficients of Learning 

disability and teaching related factors were of positive sign for 

MLE estimates showing efficient allocation of those input 

resources. However, the negative coefficient values of student-

teacher ratio, socio-economic status, syllabus, school facilities 

and extra tuition classes showed an inefficient allocation of 

those inputs. 

 

Estimation of Technical Efficiency using Translog Normal 

Exponential Stochastic Production Frontier Model 

The parameters were estimated using the Method of Maximum 

Likelihood Estimation and the results were depicted in the 

following section 

Table 1: Maximum Likelihood Estimate of Average 

Performance in Mathematics and Science Using Translog 

Normal Exponential Stochastic Production Frontier Model 

Variables Parameters Coefficients 

X XII 

Constant 𝛽0 296.345 298.254 

ln STR 𝛽1 -40.231 -42.658 

ln SES 𝛽2 -8.923 -9.541 

ln SF 𝛽3 -5.856 -6.223 

ln LD 𝛽4 1.005 1.128 

ln SYL 𝛽5 -0.398 -0.429 

ln TF 𝛽6 5.012 6.137 

ln ETC 𝛽7 -20.089 -22.122 

ln STR x ln STR 𝛽11 2.798 3.389 

ln SES x ln SES 𝛽22 -0.715 -0.825 

ln SF x ln SF 𝛽33 -0.451 -0.571 

ln LD x ln LD 𝛽44 -0.742** -0.812** 

ln SYL x ln SYL 𝛽55 -0.069 -0.071 

ln TF x ln TF 𝛽66 -0.156 -0.168 

Variables Parameters Coefficients 

X XII 

ln ETC x ln ETC 𝛽77 -0.201 -0.268 

ln STR x ln SES 𝛽12 0.623 0.716 

ln STR x ln SF 𝛽13 0.119 0.138 

ln STR x ln LD 𝛽14 -0.538 -0.659 

ln STR x ln SYL 𝛽15 0.062 0.089 

ln STR x ln TF 𝛽16 0.059 0.067 

ln STR x ln ETC 𝛽17 2.852 3.015 

ln SES x ln SF 𝛽23 0.697 0.725 

ln SES x ln LD 𝛽24 0.624 0.756 

ln SES x ln SYL 𝛽25 0.078 0.082 

ln SES x ln TF 𝛽26 -0.635 -0.715 

ln SES x ln ETC 𝛽27 0.746 0.836 

ln SF x ln LD 𝛽34 0.208 0.319 

ln SF x ln SYL 𝛽35 0.141 0.173 

ln SF x ln TF 𝛽36 0.245* 0.361** 

ln SF x ln ETC 𝛽37 -0.085 -0.096 

ln LD x ln SYL 𝛽45 0.211 0.337 

ln LD x ln TF 𝛽46 0.192 0.210 

ln LD x ln ETC 𝛽47 0.245 0.314 

ln SYL x ln TF 𝛽56 -0.027 -0.035 

ln SYL x ln ETC 𝛽57 -0.314 -0.411 

ln TF x ln ETC 𝛽67 -0.459** -0.562** 

𝜆 =
𝜎𝑢

𝜎𝑣
 

0.9015 0.9125 

𝜎 = √𝜎𝑢
2 + 𝜎𝑣

2 0.0514 0.0605 

Log-likelihood 307.1895 308.1996 

 Estimated Variances of the underlying 

variables 

v 0.00145 0.00158 

u 0.00096 0.00099 

𝜀                              0.00241 0.00257 

𝛾 =
𝑉𝑎𝑟(𝑢)

𝑉𝑎𝑟(𝜀)
 

0.52000 0.61500 

*Significant at 5% level                              (Table 1 continued..) 

**Significant at 1% level 
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The significant level of the parameter λ showed that there exists 

sufficient evidence to suggest the presence of technical 

inefficiency. The estimates of the error variances (𝜎𝑢
2,  𝜎𝑣

2) 

were (0.00145, 0.00096) and (0.00158,0.00099) respectively at 

their X  and XII standard level in case of the Mathematics 

subject .Therefore, it could be easily seen that the variance of 

the one-sided error, 𝜎𝑢
2 is larger than the variance of the 

random error  𝜎𝑣
2.Thus the value of λ=0.9015 and λ=0.9125 in 

case of Mathematics in their X and XII standards respectively 

of more than one clearly showed the dominant share of the 

estimated variance of the one-sided error term, u, over the 

estimated variance of the whole error term. This further implied 

that greater part of the residual variation in output was 

associated with the variation in technical inefficiency rather 

than with ‘measurement error’, which was associated with 

incontrollable factors related to the production process. 

Moreover, both λ and σ variables of Coimbatore and Tirupur 

districts of Tamil Nadu entered the output of all students 

positively and significantly. The estimate of γ, which is the ratio 

of the variance of student-specific performance of technical 

efficiency of the total variance of output was 0.52000 and 

0.61500 respectively at their X and XII standards indicating 

that the difference between the observed and frontier output 

was primarily due to the factors which were 52% and 62% at 

their X and XII standards respectively were  under the control 

of the schools. 

The level of technical efficiency for each of the 900 sample 

students was calculated using Translog Exponential Stochastic 

Frontier Production Model by estimating the one-sided error 

component 𝑢𝑖. The (max, min) estimated technical efficiency 

was (99.89 %, 89.98%) at their X standard level and was 

(99.96%, 89.97%) at their XII standard level using Translog 

Normal Exponential Stochastic Production Frontier Model. 

The mean level of Technical Efficiency was 94.94% and 

94.97% at their X standard level and XII standard level which 

implied that the sample students realized 94.94% and 94.97%  

of their technical abilities at their X and XII standard levels 

with regard to their Mathematics subject and the mean level of 

Technical Efficiency was 94.84% and 94.89% at their X 

standard level and XII standard level in case of Science subject 

which implied that the sample students realized 94.84% and 

94.89%and of their technical abilities at their X and XII 

standard levels with regard to their Science subject. A firm is 

considered technically inefficient even if the firm registered a 

technical efficiency of 82%. By this standard, 100% of the 

students were considered technically efficient in the sample 

under study using Translog Normal Exponential Stochastic 

Production Frontier Model as no student has reported the 

technical efficiency score of less than 88 %. 

However, for better indication of the distribution of individual 

efficiencies, a frequency distribution of predicted technical 

efficiencies within ranges of five using Translog Normal 

Exponential Stochastic Production Frontier Model is depicted 

in Table 2. This indicated less variations in the level of 

technical efficiency across students. 

Table 2 Frequency Distribution of Student Specific Technical 

Efficiency Estimates Using Translog Normal Exponential 

Stochastic Production Frontier Model. 

Efficiency 

Score(%) 

X-Standard XII-Standard 

Number 

of 

Students 

Percentage Number 

of 

Students 

Percentage 

Below 85 - - - - 

85-90 10 1.11 8 0.89 

90-95 80 8.89 77 8.56 

95-100 810 90 815 90.56 

 

The highest number of students (810,815) at their X and XII 

standard levels respectively were found in the technical 

efficiency class of 95-100%. However the model range lies 

between 94.94% and 94.97% at their X standard level and XII 

standard level. No student has reported a technical efficiency 

score of less than 85 percent. 

To test whether the model Translog Normal Exponential 

Stochastic Frontier Model predicted technical efficiency 

accurately, correlation coefficient between observed efficiency 

and technical efficiency has been calculated and presented in 

the following section. 

 

Chi-square Test for Goodness of Fit of Translog normal 

Exponential Stochastic Production Frontier Model- 

The Chi-square value was obtained as 1.3632 and 1.4592  at 

their X and XII standard levels respectively.  

 

Correlation Analysis for Translog Normal Exponential 

Stoochastic Production Frontier Model 

The strength of relationship between the observed efficiency 

and technical efficiency using Translog Normal Exponential 

Stochastic Production Frontier model was given by the 

correlation coefficient ,‘r’, 0.584,0.579 at their X and XII 

standard levels respectively. 

 

Cobb-Douglas Normal Exponential Stochastic Production 

Frontier Model 

Estimation of Frontier Production Using Cobb-Douglas 

Normal Exponential Stochastic Production Frontier Model 

The Cobb-Douglas production function model considered for 

the study involved a total of seven independent variables. The 

results of the maximum likelihood(MLE) estimates of the 

Cobb-Douglas Normal Exponential Stochastic Frontier 

Production Model were presented in Table 3. The coefficient 

value of the input variable learning disability was of positive 

value with 1% significant level in all the cases considered 

showing its efficient allocation. Moreover, this positive and 

significant value indicated that there was a scope to increase the 

score in the subjects. The coefficient value of the variable extra 

tuition classes was -0.139 and -0.152 for the students at their X 
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and XII standard levels respectively, which was also significant 

at 1% level. This gives an indication that many of the students 

were having extra tuition classes. Though the coefficient of the 

variables socio-economic status and syllabus were of positive 

values, they do not have much impact on output as they were 

significant neither at 1% nor at 5% levels. 

 

Table 3: Maximum Likelihood Estimates of the Cobb-Douglas 

Normal Exponential Stochastic Production Frontier Model 

Variables Parameters Coefficients 

X XII 

Constant 𝜷𝟎 7.736** 8.254** 

ln STR 𝜷𝟏 -0.140 -0.165 

ln SES 𝜷𝟐 0.049 0.052 

ln SF 𝜷𝟑 0.015 0.019 

ln LD 𝜷𝟒 0.238** 0.312** 

ln SYL 𝜷𝟓 0.017 0.019 

ln TF 𝜷𝟔 -0.028 -0.036 

ln ETC 𝜷𝟕 -0.139** -0.152** 

𝜆 =
𝜎𝑢

𝜎𝑣
 1.2279 1.3158 

𝜎 = √𝜎𝑢
2 + 𝜎𝑣

2 0.0567 0.0598 

Log-likelihood 271.9871 280.5986 

Estimated variances of the underlying variables 

v 0.00129 0.00136 

u 0.00187 0.00193 

𝜀 0.00316 0.00319 

𝛾 =
𝑉𝑎𝑟(𝑢)

𝑉𝑎𝑟(𝜀)
 

0.60158 0.61055 

 

The estimates of the error variances (𝜎𝑢
2
, 𝜎𝑣

2) were (0.00129, 

0.00187 ) and (0.00136,0.00193)at their X and XII standard 

levels respectively. The variance of one-sided error term, 

𝜎𝑢
2 was larger than that of the random error, 𝜎𝑣

2. Thus the 

value of λ were 1.2279 and 1.3158 at their X and XII standard 

levels respectively. Hence, a greater part of the residual 

variation in output was associated with the variation in the 

technical inefficiency rather than the measurement error, which 

was associated with uncontrollable factors. The estimate of γ 

was 0.60158 and 0.61055 at their X and XII standard levels 

respectively indicating the fact that the difference between the 

observed and frontier output was primarily due to the factors, 

which were approximately 60% under the control of the sample 

schools in all the cases. 

 

Estimation of Technical Efficiency Using Cobb-Douglas 

Normal Exponential Stochastic Production Frontier Model 

The level of technical efficiency for each student was 

calculated and was given in  

Table 4.. In this model, technical efficiency of sample students 

ranged between 82.45 % and 99.02% with an average of 

95.79% with the judicious use of existing resources and 

technology. 

 

Table 4: Frequency Distribution of Student Specific Technical 

Efficiency Estimates Using Cobb-Douglas Normal 

Exponential Stochastic Production Frontier Model 

Efficiency 

Score(%) 

X-Standard XII-Standard 

Number 

of 

students 

Percentage Number 

of 

Students 

Percentage 

Below 80 - - - - 

80-85 24 2.75 29 3.22 

85-90 24 2.75 35 3.89 

90-95 208 25.00 202 22.44 

95-100 644 71.50 634 70.44 

 

The frequency distribution of student-specific technical 

efficiency scores using Cobb-Douglas Normal Exponential 

Stochastic Production Frontier Model is depicted in Table 4 

which indicated less variation in the level of technical 

efficiency across sample students. The highest number of 

students was found in the most efficient class 95-100 percent 

followed by 90-95 percent class and 85-90 percent class. No 

student operated in the efficiency score below 80% using Cobb-

Douglas Stochastic Production Frontier Model. 

 

Correlation Analysis for Cobb-Douglas Stochastic 

Production Frontier model. 

The strength of relationship that exists between the observed 

efficiency and technical efficiency using Cobb-Douglas 

Normal Exponential Stochastic Production Frontier Model was 

given by correlation coefficient r-0.786,0.793 at their X and XII 

standard levels respectively.  

 

Chi-square Test for Goodness of Fit of Cobb-Douglas 

Normal Exponential Stochastic Production Frontier model 

The Chi-square value was obtained as 1.11712,1,9896 at their 

X and XII standard levels respectively. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 14 (2019) pp. 3159-3170 

© Research India Publications.  http://www.ripublication.com 

3169 

Table 5: Comparison of Frequency Distribution of Student 

Specific Technical Efficiency Estimates 

Efficiency 

Score (%) 

Number of Students(Percentage) 

Translog Exponential 

Production Function 

Cobb-Douglas 

Exponential Production 

Function 

X XII X XII 

55-60 - - - - 

60-65 - - - - 

65-70 - - - - 

70-75 - - - - 

75-80 - - - - 

80-85 - - 24(2.75) 29(3.22) 

85-90 10(1.11) 8(0.89) 24(2.75) 23(2.5) 

90-95 80(8.89) 77(8.56) 208(25) 216(24) 

95-100 810(90) 815(90.56) 644(71.5) 634(70.5) 

 

Table 6: Summary Statistics of Efficiency Estimates 

Statistic Efficiency Score of 

Translog Exponential 

Model 

Efficiency Score of 

Cobb-Douglas 

Exponential Model 

X XII X XII 

Mean 93.42 93.18 90.74 90.65 

Minimum 87.39 87.13 82.39 82.19 

Maximum 99.45 99.23 99.09 99.10 

 

Potential of Technical Efficiency Improvement in 

Efficiency of Schools 

The present analysis focuses on the achievement of higher 

scores in Mathematics and Science subjects with the existing 

resources technology. Based on the technical efficiency of the 

most efficient student in each of the chosen models, the average 

potential to increase the score in the subjects was determined 

using the formula (Saha and Jain 2004)[9] 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑟𝑒
} = 

 

[1 − (
𝑀𝑒𝑎𝑛 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
)] ∗ 100 

The average potential of increasing the score through technical 

efficiency improvement across various schools are presented in 

Table 7. 

Table 7: Increasing Technical Efficiency Potential using 

Various Models 

Model 

Mean 

Technical 

Efficiency 

Maximum 

Technical 

Efficiency 

Mean 

Potential to 

Increase 

Technical 

Efficiency 

X XII X XII X XII 

Translog 

Normal 

Exponential 

Stochastic 

Production 

Frontier 

Model 

93.42 93.18 99.45 99.23 6.06 6.10 

Cobb-Douglas 

Normal 

Exponential 

Stochastic 

Production 

Frontier 

Model 

90.74 90.65 99.09 99.10 8.43 8.53 

 

Table 8: Statistical Association of the Models Under Study 

Model Correlation 

Coefficient 

Chi-square 

Value 

X XII X XII 

Translog Normal 

Exponential Stochastic 

Production Frontier Model 

0.584 0.579 1.3632 1.4592 

Cobb-Douglas Normal 

Exponential Stochastic 

Production Frontier Model 

0.786 0.793 1.1171 1.9896 

 

CONCLUSION 

The analysis done among 900 students in Coimbatore and 

Tirupur districts from three sectors of school regarding their 

views on Mathematics subject at their X and XII standard levels 

revealed the following results 

(i) The mean technical efficiency obtained using 

Translog Normal Exponential Stochastic Frontier 

Production Model was high compared to the meam 

technical efficiency obtained using Cobb-Douglas 

Normal Exponential Stochastic Frontier Production 

Model. 

(ii) On comparing the efficiency scores with respect tot 

heir views and scores at their X and XII standard 

levels shows that the scores of the technical efficiency 

was high at their X standard levels compared to their 

XII standard level. 
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(iii) Among the seven input factors considered for 

analysis, learning disability plays a major role in 

affecting the technical efficiency(i.e technical 

inefficiency factor). 

 

REFERENCES 

[1] Aigner D.J, Knox Lovell C.A, Schmidt P., 1977, 

“Formulation and Estimation of Stochastic Frontier 

Production Functions”,  Journal of Econometrics, 6, 21-

37. 

[2] Meeusen, W. and van den Broeck, J. (1977). "Efficiency 

Estimation from Cobb-Douglas Production Functions 

With Composed Error", International Economic Review 

18, 435-444. 1977. 

[3] Aigner D. and Chu. S. F (1968): On Estimating the 

Industry Production Function,  

[4] American Economic Review, 58. 

[5] S. C. Kumbhakar and C. A. Knox Lovell, “Stochastic 

Frontier Analysis,” Cambridge University Press, 

Cambridge, 2003. 

[6] Jondrow, J., C. A. Knox Lovell, Ivan S. Materov, and 

Peter Schmidt., 1982, “On the estimation of technical 

inefficiency in the stochastic frontier production function 

model”, Journal of Econometrics 19, 233–238. 

[7] Alejandra Mizala, Pilar Romaguera, 2002, “Technical 

Efficiency of Schools in Chile”, Article in Applied 

Economics 34(12), 1533-52. 

[8] Battese G.E, Coelli T.J., 1995, “ Frontier Production 

Functions, Technical Efficiency and Panel Data: With 

Applications to Paddy Farmers in India”, Journal of 

Productivity Analysis, 3,  153-169. 

[9] Christopher F. Parmeter and Subal C. Kumbhakar., 2014, 

“Efficiency Analysis:A Primer on recent advances”, 

University of  Miami, State University of New York at 

Binghamton.2014. 

[10] Coelli, T.J., Rao, D.S.P., O'Donnell, C.J., Battese, G.E., 

2005, “An Introduction to Efficiency and Productivity 

Analysis”, 2nd Edition, Springer. 

[11] Charles W. Cobb, Paul H. Douglas, “ A Theory of 

Production”, The American Economic Review, Vol.18, 

No.1, March 1928, Pages 139-165.  

[12] Dennis Aigner, C.A.Knox Lovell, Peter Schmidt, 

“Formulation and Estimation of Stochastic Production 

Frontier Models”, Journal of Econometrics, Volume 6, 

Issue1, July 1977, Pages 21-37. 

[13] Farrell, M., 1957, “The Measurement of Productive 

Efficiency”, Journal of the Royal Statistical Society 

Series A (General), 120 (3), 253-281.  

[14] Jill Johnes,2013, “Efficiency And Mergers In English 

Higher Education 1996/97 To 2008/09:  Parametric And 

Non-Parametric Estimation of The Multi-Input Mutli-

Output Distance Function, the article published in The 

Manchester School, Wiley Publications, Volume 82, 

Issue 34,pp-385-507. 


