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Abstract

Here, we will state and prove sufficient optimality conditions
for a composite non smooth mathematical programming
problem with respect of equilibrium constrains under
generalized univexity condition. Further, we deduced Wolfe
and Mond-Weir type dual models for the chosen problem
using convexiticators. Also, we state and prove we are and
strong dudity theorems.
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1. INTRODUCTION:

Convexificators concept was introduced by Demyanov [6].
This concept is used to generalize the concepts in optimization
and the theory of non smooth analysis (Refer [16], [1], [32],
[19], [20]). Further, the concept of Clarke sub differentials,
Michel Pinot sub differentials and Treiman sub
differentials of a Locally Lpschitz real valued functions for
convexiticators were introduced by Luc, DT. [20] and the
latest development one can refer [16], [17], [18], [19].

Also, the concept of mathematical programming program with
respect to equilibrium constraints (MPECT1) is usually studied
for optimization problem in which the required constraints
functions were defined by using complementary system or by
using auxiliary parametric variational inequality. In the
literature, various equilibrium phenomena were introduced to
study applications on economics and engineering which was
characterized either by a variational inequality or an
optimization problem. This justifies the name mathematical
programming problem with equilibrium constraints. This was
studied for both smooth case [11], [36] and for the non
smooth case ([29], [30] [37]). In another development, Luc et
al. [20] introduced and studied a comprehensive study on
mathematical programming with Equilibrium constraints.
Consequently, Flegal and Kanzow [8,9] obtained the
optimality conditions for MPECI1 by using FJ — conditions.
Also in [9], Flegal and Kanzow introduced a new, constraint
called “Slater type constraints qualifications and a new
Abadie type constraint qualification for the MPECI.

Further on, the concept of convexity and generalized play an
important role in the field of optimization, control theory,
Economics, Game Theory and so on. The most important
generalization of convexity is invexity of function, which was
introduced by Hanson [11] and the name coined by Craven
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[5]. Since last three and half decades, optimality and duality
condition in convexity and generalized convexity (invexity)
were introduced many researchers (see [4, 23]; [24], [26].
Duality results have many applications in Numerical
Algorithm in the field of nonlinear programming problem for
solving certain class of optimization programs. Consequently,
the concept of duality helped the society to develop stopping
rules and to solve primal and dual problems both in Linear
and Nonlinear optimization problem.

In this context, Wolfe [35] and Mond-Weir [27] dual models
were very popular in the field of nonlinear programming
problem very recently, B.C. Joshi, etal. [16] derived
sufficient optimality conditions for global optimality for the
chosen mathematical programming problem with equilibrium
constraints under generalized univexity.

By make use of the above arguments in this paper, we
introduce composite mathematical programming problem for
equilibrium constraints by using generalized univexity
assumptions. Also, we state and prove duality results of Wolfe
and Mond — Weir types to the MPECI.

This papers is organized is as follows. Section 2 gives
elementary basic definitions and notations. Section 3 contains
sufficient optimality condition for the chosen MPECI1 using
generalized univexity. Finally, section 4 gives Weak and
Strong duality results in the frame work of generalized
convexitications with respect to generalized univexity
condition.

2. NOTATIONS AND DEFINITIONS:

Definition 2.1: Let F:R" —)RU{+OO} be a generalized

real-valued function, convexifications at

X €R" and M:R"xXR" = R" be a Kernal function, then,
f is said to be:

which admit

a) 0 —V —p— univexity, with respect to 77,6 if for the

very X € R", we have

9((X,)~()(F(X)—F()~())) > (énT (X,f()),v € G*F(F1 (f())
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(b) & —V— p — pseudo univexity with respect to 77,6 if

for every x € R", we have
Je0"F(F' (%)), (&n" (x.%))=0

=F(F'(x))2F(F ()).
(iii) 6" —V —p— quasi univexity at X with respect to 7
and @ if for every x € R",

0(x,%)(F(F'(x))) - F(
S(&nT(x,i))
ved'F(F (x

3. OPTIMALITY:
In the sequel, we need the following notations from [16, 32].

They are
I ={iel:y} =0,y >0}

Iy ={1€I v =0,y —0}
5 ={ied:y} >0}
K;z{ieK:yi“’>0}

We will state and prove that the following optimality
conditions with respect to 8" —V —p— univexity.

Theorem 3.1: Suppose X is a feasible — GA — Stationary
point of MPECI. Also, assume that F (F') is 0" —V —p —

univexity at X wrt to the kernals 77, € and
gj(Gj),(jeIg),ihm(Hm),(m=1,2,....,p)
0. (i € fSUIl),—\jli (i € IlUK) ared —V—p— quasi

univexity at X with respect to the some common Kernals 77
and 6. 1f 1) UIY UVIT UK
global optimal solution of problem MPECI.

=@, then X is said to be

Proof:
Suppose x is any arbitrary feasible point
=g,(G;(x))<0=g;(g;(X)). by definition of

0*—V —p univexity, we have
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(&2.n" (x.%))+p116(x. %) IP

(3.7)
<0,VEY €0 g;(G,(%))viel,
Similarly, we have
(T,.n" (x,%))+pl10(x,%)IF<0
VT, €d'h, (H,(X)),(X),Vm={L2,......q} (G.8)
(%om')(x. %) +p10(x,%) [P0,
vxmea*(—hm(Hm)(i)),sz{l,z, ...... Q69
&' (x.X)+pll0(x.%)IF<
Vel ed . (-0")(X ) VieSuUl (3.10)
Y n(x.%)+pll0(x.%) <
Vei“’eé*.(—\yi)(i),VieIuK (3.11)

Suppose I?U Iy US; UK; =¢, also multiply equation
(3.7)to (3.11),by T¥ >0

(iel,).Tp >0,m=1,2,

T'>0,T°>0,i e SUL TY >0 iel UK, respectively
and finally by sum rule,

x)I’<0,

we have

:

D TeeE +ZTh T, +vm A

IEI

ST YT ar’j,
i=1 i=1

n' (x,f()+p||9(x,
forall £ € conagj( )T econd’h ( )
A, €cond (—h, )(X),& econd” (-6,)(X) and
&' e cond” (—y;)(X).

which implies by using generalized GA-stationary of X, and
also select & & € con a*F(FI (i)), so that

<&M (x,%)+pll0(x,X)IF=0
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Also, by definition of 0 -V- P — univexity of F' (F 1) at

X with respect to the some common kernals of 77 and 6, we
have

b(X, i)(F(FI (X))) —F(FI (i)) >0, for all feasible
points of x.

Thus, by def, X is a global optimal point of MPEC1.

4. DUALITY RESULTS
Here, we will discuss Wolfe and Mond-Weir type dual

3k
problems under generalized O —V —p —univexity with
convoxificators.

The Wolfe type dual programming problem for MPECI is :

(CWD) max(u,u){FLFl +2 1ig (G, (M))J}

jel,

=] 10,0 ) (w (w (w))
p=

subject to conditions:

0 econ 6*F(F1 (u)),

+> pécond'g, (Gj (u))

jely

+Zq:[ﬂl:nc°n o'h,, (H, (u))]

m=]

200 b, (Hy (w))

m=]

+y" cond” (—hm (H, )(u))
+§:[“? cond’ (_ej)(u)]

+u! cond & (—wg (u))
HE 20, 1y, vy 20, m=h

4.1)
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Theorem 4.1 (Wear Duality)

Let X be a feasible solution for the problem (MPECI), (u,t)
be feasible for the dual problem (CWD) and the

corresponding  index  sets Igj,S, II,K are defined

accordingly.

Suppose that F(Fl),gj(Gj),(J elg), +h (Hm)

>q)’_ej(e§)’

(] € SUII),—\IJj (Wﬁ)(g EIUK) admit bounded upper

*
semi — regular convexificators and are 0 —V — P — univex

functions at u, with respect to the some common Kernals 1
and 6.

If IgVI:’ US; UK;r =@ then any w feasible for the
problem MPECI1, we have
(F

b(u, w)[F(Fl (u)) —F
h (Hm (u

w)) |23 A (G (u)

Jel
q
£ M )
m=1

i[xee (6} (

k=1

w))+ v (v (u))]

Proof:

Suppose w is any feasible point for the composite problem
MPECI.

By def, we have
g (GJ (W)) <0
and h_ (Hm (W)) =0, Vm=1,2,

Since F (F) is 0 —V —p—univex at u with respect to the

some common Kernals 7] and @, then, we get
b(u,w)| F(F'(u) - F(F'(w))) |
> (é,nT (u,w))+p 16(u, w) I’
v ed'F(F (u))

4.2)

b(u, W) ng (Gj (u)) — & (Gj (W))J
>(&2.0" (w.w)+pll o(u, w))IP,

VE; eﬁ*gj(Gj (u)),jelg (4.3)
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b(u,w)[hm (Hm (u) —hm)(Hm (w))](km eDh, (Hm (u))),
>(A,om" (W) +p[10(u, W) IF)¥m=12,.....q (4.4)
b(u,w)L—hm (Hm (u)—hm (Hm (w)))JVum €d (—hm (Hm (u)))‘v’m=l, 2,.eq (4.5)

> (&0 (u,w))+pl10(u,w) I

vm=12,...... .q (4.6)
b(u, w)| -0, (0} (u)-+9; (6)(w)) | > (& n(ww)+pl16(u,w)IF)¥ <] ' (-2;(6}(w))),

Viedul, (4.7)
b, w)| =y (w} () +w; (wi (W) |2 (&m0 (w, w)) +p 110 (u,w) P V) e TUK. 438)

If I? VU IY U S] UK = p and then multiply the equations
. g . h
(4.4), @8) with 1£ >0 (iel,), ), >0

( jeou I) A >0 ( jelu K) , respectively and then finally adding the equations
(4.3)— (4.8),

we have

b(u,w)LF(F1 (u))—F(Fl (Fl( ))J (u,w {ijgj( u))-> rfg (G, (W))J

jel jelg

S ()3 (0, )3 (11,0 3 (11,()
-1 (0 (61 () + o (0 0 () - v (v () + T i (v ()

k=1

[a+2xgag+2[x; w, +An “‘“]J Z[Tea +T &Y | (ww)+pl10(uw) P

jel

From equation (2.2), there exists E econd’ (F(Fl (u)))
& econd'g, (Gj (u)),?im econd’h, (Hm (u)), I, econd L—hm (H,)(w),&] econd’ (—Oj (63 (W)))J
and a/ econd’ (—wK (\u}( ))(W)S.t

g+2xgg +Z{ AN ﬁm+ZTe§k+T“’§“’ }

Jjelg
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Thus, we have

b(u"’)(F(F1 (n)))_F(Fl(W)) +2 Mg, (Gj (U))—Z%?gj (GJ(W)) +2 ko b, (Hm (u))_gxi h,, (W)

Jjelg Jjely m=1

_mzq;ui; h,, (H,, (u))+ Zum h, (H, ))+ZT" (00 2T (00 (w) =2 w (i () + T (i (w) 20

= k=1 =
Now, by applying the feasibility condition of MPEC1, i.e. g; (gj (u)) <0,h (Hm (u)) =0,
6, (6} (u)) >0, y, (\y} (u)) >0, hence it follows that

o) [F(F (0)-F(F ()| ~Zose,(6,(0)
3 b (1 (0) 43512 (1 () £ 0001 0) 42w (v (1) 20

Hence, it follows that
() F(F(0)F(F () T (6, (0) | 35 (1 (1) 170,000 30, w10

Hence proved.

Theorem 4.2 (Strong Duality) the problem MPECI are satisfied, it follows that, there exists
~ 1 * (=~
If U be a local optimal solution for the problem MPEC1 and & €cond F(F (u))7

also assume that F(F]) is locally Lipschitz near U . Let us };jé econ a*gj (GJ_ (ﬁ))aim ccond h,_ (Hm (ﬁ))
woe v FEBOHIS) g cons (o (1, )@),
+h, (H, )(m=12,.....q),  ccond(_0,(0(
-0, (6})(1 eIuES),—\yl (1 eIuK) admit bounded upper E"l econ (_ u )
1
semi — regular convexificators and are 0 —V —p— univex &+ ZHJ & +Z[P~J7km +0,T :|+ Z[Tf)é? +T1W!1m] =0
K=1

. ~ I
function at U with respect to the same common Kernel 77 Il

and @,. According to [16, 30], if Gs — AC on holds at U then

there exists [l = (ﬂg,ﬂh,}]e,ﬂw ) e RM" 5 (ﬁ,ﬂ) is an
optimal solution of the dual (CWD) and the corresponding Tf >0 =T1:V >0 k=1,....... ,1 and the remaining
objective values of MPECI and CWD are equal. v _F0 _Zo 3y

=L ==& =&/ =0

Proof: VieL& =T =0

If U be local optimal solution for the problem MPEC1 and (ﬁ’ ﬁ) is feasible for the (CWD).

the Generalized Slater and ACQ is satisfied at U and also by
using corollary 4.6 of [1, 16], there exists

fi= (e, A A0,0Y ) e R 5 e R e (R0,00,07)

eR "' the corresponding GS — stationary conditions for
By applying theorem 4.1, we get
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q 1
b(up)(F(F' () ~F(F' (1)) > e (G, (1) + 200 by (Hy (1)) 210 (85 (1)) +T v (i (1)) @9)
jelg m=1 k=1
Here 7»21 represents u?n —Tnl; for any feasible solution (},l, T) for the considered dual (CWD).
Now by applying the feasibility condition of the problem MPEC1 and its corresponding dual CWD,
djel,().g (GJ (ﬁ)) =0,
h,, (H,, (@))=0,(m=1,2....q),6, (6} (1)) =0

VkeduUl, and y (\y}( (ﬁ)) =0, V kel UK, it follows that

b(uw, &) (F(F' (u))-F(F (8))) = Y. g(G,())

+;7~“1 h,, (H,, (u))—g[ﬂ? ek(ek(et)ﬁ)} +TY v (wi (8)) (4.10)

Applying (4. 9) and (4.10) and the indices A" T" — i’ we set

m “m

b(ﬁ,ﬁ)[(F(Fl)(ﬁ))—F(Fl)(ﬁ)}+§ﬁfgj( )+Zxh A (H, () i(Te (0} (9)))

~
Il
—_

Thus (ﬁl,fll)is an optimal solution for the dual problem subject to conditions:

CND and respective objective values of the two problems Oecon a*F(F1 (u)) + z;hjscon G*gj (Gj (u))
MPEC1 and CWD are equal. jel,

5. MOND-WEIR DUALITY +Zq:(u condé'h,, (H,, (u))+ T} cond" (~h,H, (u)))

m=l
Here, we will formulate and discuss the Mond-Weir type dual

problem (CMWD) for the chosen problem MPECI. Finally + 7» cond ( 0" Y(u)+2AYcond" <_ "(u ))
we will discuss duality theorem by using convexificators. Z:; ( K )( ) k Vi (Wk ( ))

(CMWD) max {F(Fl)(u)} g; (GJ( ))_0 (Jelg),hm(Hm(u)):O,m:1,2, ....... ,q
0, (0} (u))<0(k e3ULT)
v, (Wi (1)) <0 (ke TUK)
A2 20, pp, Th >0,m=1,2,......q

2973



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 12 (2019) pp. 2968-2977
© Research India Publications. http://www.ripublication.com

Kle(, A, uﬁ,ur >0, k=12,.....L defined accordingly. Also, let us suppose that F (Fl) is
A = Ay = T, = T =0, Vi el, (5.1) 0" —V —p pseudounivex at V. with respect to the some
common kernals n, and 6, and

Here A = (keauh’ThaTw) e R*7 g; (Gj)(jelg),ihm (Hm) admit bounded upper semi-

= . * . .
and T = (Th , IO, TY ) eRP =R regular convexificators and are0 —V —p quasi univex
functions as with respect to the some common Kernals 77, and

. 0 + +
Theorem 5.1 (Weak Dualtiy) 6, Let us suppose, if W, UWy UK, =W, then for any

Suppose U, is a feasible solution for the problem MPEC, and othertt, feasible for the problem MPECI, it follows

(Vl,‘cl) be a feasible solution for the corresponding dual thatF(Fl (ﬁl)) ZF(FI)({/I)'

(CMWD) and also the index sets I, 3, I, K be deﬂned Proof: Let us assume that U, as some feasible point,
accordingly. Also, suppose that the composite functions

F(Fl),gj (G,).+h,, (H,),(m=12,.....q), H(F(Fl )(ﬁl)) < F(Fl)(\ﬁ) .

-0, (QL )(k edUI),—y, (\VL )(k elUK) admit  Then by definition of " —V —p pseudounivexity of F(F1 )
bounded upper semi — regular convexificators and are at \71 with respect to some common kernals 1, and 91 , we
0" —V —p— univex functions at v, with respect to the some have

0 \ + + _ ~ . -
common 77 and 6. If we denote I, U I WS, UK =¢, (élaan)(ulaVl)"'pl e, (ul’vl) IP<0
then for any u, is feasible for the problem MPECI, then vél cO'F (Fl (\71 )) (5.2)

F(F' (u,))=F(F (1))
Proof: Proofis similar to theorem 4.1

Theorem 5.2 (Strong Duality) gajg € coné*g.(G (v )) A € con 0'h ( (% )),

If i, is a local optimal solution for the problem MPECI and  fi,, €cond’ (<h,, (-H,,))(¥,),& econd’ (-6, (6})) (%)

But from (4.2), there exists %1 con 8*F(F1 (fll )),

let F(Fl) be locally Lipschitz nearer at U, Also let us and %W ccond (\V ) )
k
suppose that F(Fl),gj (Gj),jelg,i hm(Hm)

q
m=1,...... ,q,—@k(ei), keSuI,—wk(\yi) —ZT ig Z[T; %m+ytr11ﬁm:|
jel,
(k elu K) admit bounded upper semi - regular J
0 70 g * (s
convexificators and are 0 —V — P — univex functions at U, _5IUZ\;\/] T Sk~ W]ZU;(] T & €d F<F (Vl )) (5-3)

with respect to the some common kernals 77, and 6.
According to [1, 16], if GS — ACQ holds at U, then 3
T, B(ﬁ,,%,) is an optimal solution of the CMWD and the [ZT ig +Z|:,c 3 +'Y i :l Z Te%e i Z T\V%‘VJ

m m M'm k>k k>k |[»

respective objective function values of MPECI1 and (CMWD) 8UW, wiuk,
are equal.

Applying (5.2) one can obtain

jel

s T
. ) N (u1>V1)+p1 ||91(u1,V1)|| >0 (5.4)
Proof: This theorem can be proved as in Theorem 4.2 by

making use of assumptions in the statement. Now for cach je Ig, g, ( Gj (ﬁl )) <0< g, ( Gj ) ({71 )

Theorem 5.3 (Weak Duality)

Suppose U, is a feasible, solution for the considered problem By definition of 0 —V —p — quasiunivexity, we get
-~ . . . 2

MPEC, (V1 , T ) is another feasible solution for the [é N (ul, )_|_ p, 110 (ul’ 1) I }

corresponding dual CMWD and the index sets I_,0,, W, K, . N ) (5.5)
¢ <0, V&S0 gj(Gj(Vl)),V_]EIg
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Similarly, we can write the remaining as,
(tol (@ %)+, 110, (,,%,) 1),V 7, €8™c,,, F(F' (%))
(ot (4, %,)+p, 116, (@, %) IP) <0, Vi, 0" (<h,, (H,) (%)),

vm=12,......... ,q (5.6)
(&) (8,.9,)+p, 116, (T, 9,) ) <0.&] e a*(—ek (6} (vl))), vked UW,. (5.7)

(&rl (@, 9,)+p, 110, (,,%,)IP<0,V el ed” —y, (i (%)), Vkew, UK,. (53)

Above equations (5.3) — (5.8) given

gy (@, 9,)+p, 116, (4,%,) I°<0,(Viel, ),
T M (8,,9,)+p, 110, (0,,9,)IP<0,¥m=1,2,......q),
fpomt (0, 9,)+p, 110, (0,.9,) <0, vm=1,2,....q),
gt (8, 9,)+p, 116, (8, 9,) 1), Vies, UW,

<
{
{
€
(B0 (8,9,)+p 116, (8,9, I <0), Vk ek, UW,

By hypothesis, since Ws UWyU 5; ) K; = ¢, we set

<ZT &y (1, 9)+p, 116, (8, 1)||2>S
jel
q ~
<Z[T:1 }\’m+}\":1um} nl (u15V1)+p1 ||9 (ulavl)” >
< riés,nr(ﬁl,mmuel<ﬁ1,vl>n2>so
S UwW,;

< > e (8,9)+p, ||91(1~11,\7|)||230>

W, UK

Hence, we obtain as

<{JZ‘T gg+z A +AM J 6% rkguwé r;/gk>, n (8,,9,)+p, 116, (8,,9,)IF<0

Which is a contradiction to equation B B (5.9)
Hence b(d,, %,){(F(F'(d,)))~(F(F' (%))} =0

=F(F (8,))>(F(F (%))

Thus, the result is proved.
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Theorem (5.4) (Straong Duality) [8]

Suppose U is a local optimal solution for the problem
MPECI and also let F (F') be a locally Lipschitz near at U, .
Let in suppose that F (F') is 0 -V- p— pseudounivex at [9

U with respect to the some common kernals at 77, and

Flegel, M. L., and Kanzow, C., “A Fritz John approach
to first order optimality conditions for mathematical
programs with equilibrium constraints”, Optimization,
52 (2003) 277-286.

Flegel, M. L., and Kanzow, C., “Abadie-type constraint
qualification for mathematical programs with
equilibrium constraints”, Journal of Optimization

0,.2;(G;)(j€L,).+h, (H,).(m=1.....q).—0, (6} ).(k € 5, Thagry, agy Appiichtions, 124 (2003) 595-614.

(KeW,UK,) [10]

admit bounded upper semi-regular

. * . . .
convenificators and are 0 —V —p quasi univex functions at

u, with respect to the some common kernals 77, and 191
Also, let us suppose that, if GS—ACQ of [1, 16] holds at

U, then 3T, € (ﬁl,‘fl) is an optimal solution of the dual

(CMWD), therefore, the corresponding objective values are
equal.

Proof: This theorem can be proved similar to the theorem 4.2
by making use of the assumption stated in theorem 5.4

CONCLUSION

In this paper we derived generalized duality theorems of
Wolfe type and Mond-Weir type with respective to
generalized univexity. These results are the generalizations of
[16,31].
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