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Abstract:  
In this paper, a class of non-smooth generalized invexity for a 
nonlinear programming problem. Here we will derive 
optimality conditions and duality results with generalized 
invexity conditions.  
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1. INTRODUCTION  

Convexity and generalized convexity play an impotent role in 
the study of optimality and duality concepts of mathematical 
programming, game theory, network analysis and other 
related fields of O.R.  
Since last four decades many attempts have been made to 
weaken convexity hypothesis [1,2]. First, Hanson and Mond 
[11] introduced a new class of functions called type-I 
functions for a generalized scalar optimization problem, it was 
further generalized to pseudo type-I and quasi type-I by Rueda 
and Hanson [21] consequently, different generalizations on 
type-I functions have been introduced by different authors.  
Further, Anurag (2014) introduced another set of new class of 
functions known as generalized α-univex type-I for a vector – 
valued functions. Also, derived K-T type sufficient optimality 
conditions under generalized invexity and obtained various 
type of duality results for a chosen multi objective 
programming problem with inequality constraints. Further, 
Suneja et al. [24, 25] introduced generalized type-I functions 
using cones obtained sufficient optimality in this non set up 
and also established different duality results by considering 
vector optimization problem. 
More recently, Yu et al [31, 32] established optimality and 
duality results for a differentiable vector optimization problem 
with a set of inequality constraints with respect to generalized 
type-I functions by using Banaach Spaces. Consequently 
Christian Niculesen obtained a set of optimality and duality 
results for a non linear fractional multiobjective programming 
problem using - semi differentiability under type-I functions. 
Further, Lupsa et al., [15] introduced semi E-prinivex maps 
using Banach spaces and studied different properties. Very 
recently, Huhua a Jiao [12] introduced a non differentiable 
vector optimization problem may semi E- type-I maps on 
Banach spacon and obtained different optimality and duality 
results.  
Motivated by the above ideas, in this paper we introduce a 
generalized -V-E-semi differentiable invex functions. We 
obtain optimality and duality results under different types of 
generalized -V-E-semi differentiable invex functions. 

 

2. PRELIMINARY NOTATIONS AND DEFINITIONS  

Here, Let X, Y and Zj, jM = {1, 2, ............,m} be real 
Banach spaces.  
(MP) min (f(x)) = (f1(x), .............,fp(x)) 
 subject to constraints :  

- g (x) = gj (x), j – 1, 2, ........, m 
and x  K  X  (D1 X ..., Dm) 

Here, the functions fi: XY, gj(x) : XY, i=1,2,….,p; 
j=1,2,….,m 
Maps from x to Dj, there are subsets of X and Z.  
Let us define the feasible set as 

    j jF x x KCX : g x D , j M .     

Usually the, the notations have their usual meanings  
Definition 2.1 ([12]) The problem (MP) satisfies the slater 
regularity condition if 1  x F  

 j 1 1 jg x 0,x D , j m, j 1,2,...,m     

Definitions 2.2 ([12]) Let x1 F  be a weekly efficient 
solution for the problem (MP) if   no  x F  

    1 ,i C if x f x  i=1,2,…,p 

Definition 2.3. ([12]) 

A set KX is said in the E – invex with respect to   if  

      TE y E x ,E y K, x, y K, [0,1].      

Definition 2.4 ([12, 20]) 

If KX be an invex set w.r.t.   then the map F: X Y  is 
said to be semi E – prinvex on K w.r. to   if  

             T
i i if E y E x ,E y f x 1 f y ,      

 , , [0.1].  x y K   

Lemma 2.1. DYRm be a convex cone with int D Q . 
Then,  

i)    x * * *
1 y 1 1 1D 0 , x int D x 0.        

ii)    * *
1 1 y 1 1µ int D*, x D 0 µ x 0.       

Let us define the concepts required in the sequel.  
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Definition 2.5. Suppose fi : D  V is a map, where DX is an E-invex set w.r.t.  then the map f is said to be V E    

Semi – differentiable at  1x D  if  

                  T T
i 1 1 1 i 1 1 1 i 1

1

lim
1f E x , E x ,E x 0 f E x E x ,E x f E x

0





      
 

 
  

  2
1 1x , x  , 

for each x1 D.T. 

Definition 2.6 A function f : D  Y is called semi –E-V-invex at x , on DX w.r. to y. If fi is E--V-semi differentiable at 

1x D  and  1 1E x x ,  

          T 2
i 1 i 1 i 1 1 1 1 1f x f x f x ; E x ,E x x ,x        

We generalize the concepts of [12, 20] as follows.  
Definitions 2.7 

The function (fi, g) is said to be semi E-v--type-I at x D  w.r. to   and x, if for each x D ,   two maps E,   and   such 

that  1 1E x x ,  and for all * *
j jD ,v D , j M,     we have  

             
2* * T

1 i 1 i 1 1 i 1 1 1 1 1, f x f x of f x , E x ,E x x x          

           
m

* T 2
j j 1 j j 1 1 1

j 1
v og x v ogj g x, E x ,E x x , x .



       

Definition 2.8 

The functions (fi, g) is said to be semi – quasi – E-v- Type-I at 1x  w.r. to ,   if for each 1 ,x D    maps ,E   and   such 

that  1 1E x x  and for all * * * *
1 j jD ,v D , J M.     we have,  

     * *
1 i 1 1 i 1, f x ,f x            * T

1 i 1 1 1 1 1of f x : E x , E x x , x 0.      (2.3)
  

and 
 

  
m

j j 1
j 1

v ,g x 0



           
m 2* T

j j j 1 1 1 1
j 1

v , g g x, E x ,E x x , x 0.


      (2.4) 

Definition 2.9 

The functions (fi, g) is said to be semi pseudo-E-V-type-I-invex at 1x D  w.r. to ,   if each x1 D   maps ,E   and    

 1 1E x x  and for all D, uj Dj, jM, we have         * T
1 i 1 1 1of f x , E x ,E x 0     

               
m

* * * T 2
1 i 1 1 i 1 j j j 1 1 1 1

j 1
, f x , f x ; v og g x; E x ,E x x , x 0



       
 

  
m

j j
j 1

v og x, 0


   

Definition 2.10 

The functions (fi, g) is said to be semi quasi-E-V-type-I-invex at 1x D  w.r. to ,   if each x1 D   maps ,E   and    

 1 1E x x  and for all D, uj Dj, jM, we have  

               
m

* * * T 2
1 i 1 1 i 1 j j j 1 1 1 1

j 1
, f x , f x ; v og g x; E x ,E x x , x 0



       
 

  
m

j j
j 1

v og x, 0


  , we have         * T
1 i 1 1 1of f x , E x ,E x 0    
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Definition 2.11 

The functions (fi, g) is said to be quasi pseudo-E-V-type-I-invex at 1x D  w.r. to ,   if each x1 D   maps ,E   and    

 1 1E x x  and for all D, uj Dj, jM, we have         * T
1 i 1 1 1of f x , E x ,E x 0     

               
m

* * * T 2
1 i 1 1 i 1 j j j 1 1 1 1

j 1
, f x , f x ; v og g x; E x ,E x x , x 0



       
 

  
m

j j
j 1

v og x, 0


   

 

3. OPTIMALITY CONDITIONS  

Here, we will state and prove suffering optimality conditions for the optimization (MP). 
      In the sequel, we need generalized Gordan type alternative theorem to get the required necessary optimality conditions.  
      We will state the following Lemma, which is useful in the sequel of our work.  
Lemma 3.1 Suppose f : X Y  is a semi E-V-preinvex on E-V-invex set  
DX w.r.t. , ,   if DY is a convex cone with non empty interior. Then, either 

i)  1 i 1x D, s.t f x     int D 

(or) 

ii)      *
iq D 0 s.t gotf D R     

 where  R R, 0    
 

 
3.1 Necessary Optimality Conditions  

Theorem 3.1: Let fi and gj, jM be semi-preinvex maps on a E-V-invex set DX with respect to  ,  and all E   semi-

differentiable at 1x D,  where  1 1E x x . Suppose 1x  is a weakly efficient solution of the problem (MP), then 

1 j jD, v D ,     not all zero,          * T
1 i i 1 1 1of f x ; E x ,E x 

  

       
m

T
j j j 1 1 1

j 1
u og g x; E x ,E x 0 x F



        (3.10) 

and   
m

*
j j 1

i 1
v og x 0



       (3.11) 

Proof : By using proposition 3 in [12, 20], it follows that the corresponding feasible set F1 = {x1D : gj (x1)  Dj, jM} is E-V-
invex set w.r. to  and .  
Suppose 1x  is a weakly efficient solution of the problem (MP). 
In this context, the system being  

-       i 1 i 1 j 1f x f x g x     int  D  Dj, jM, has no solution. 

But from Lemma 3.1,  

  q= (*,            * * * * * *
j j 0 i 1 i 1 j j j 1, v D ,D 0,0 f r f r v r 0, j M,x F.              

Implies that  *
j j 1v og x 0, j M  . 

Further, if 1x F, which implies that  *
j j 1v og x 0, j M  . 

From the above, that is  *
j j 1v og x 0, j M  .     (3.13) 
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Since F1 is E-v-invex set and fi, gj, jM and -E-v-semi-differentiable at  1x , where E  1x = 1x , from the above equations 
(3.12) and (3.13), it follows that 

         * T 2
1 i 1 1 1 1 1of x E x ,E x E x ,x     

            * * T 2 *
i 1 j j 1 1 1 1 1 j j 1of x v og x E x ,E x E x , x v og x     


 

             
1* T 2 * T

i i 1 1 1 1 1 j 1 1 1of f x ; E x , x . E x , x v o j x ; E x , x          

  
2

1 1 1E x , x 0 j m, x f           (3.14) 

From the above equation (3.13) and (3.14), we obtain   *
1

1
, 0




m

j j
j

v g x  

and consequently          
2* T

i i i 1 1 1 i 1m of f x ; E x , x E x , x     

        
m 2* T

j j j 1 1 1 1
j 1

v og g x; E x , x E x , x 0.


       (3.15) 

By setting m = m* = *
1µ in the equation (3.15), we obtain the required result. Hence proved.  

We will give sufficient optimality conditions by using the concept of semi-E-V- type-I invex functions. 

Theorem 3.2: Suppose there exists 1x F1 and  * * * *
1 1D 0y* or int D     * *

j jv D , j M,  the equations (3.10) and 
(3.11) holds. Further, if any of the following conditions hold : 

i) (fi, gj) is semi-E-V--invex- type-I w.r.t. the same  and ; 
ii) (fi, gj) is pseudo quasi semi-E-V--type-I invex at 1x F, w.r. to the same  and ; and 

iii) (fi, gj) is quasi strictly pseudo semi-E-V--type-I-invex at 1x F w.r. to the same  and . Thus 1x  is a weakly efficient 
solution for the problem (MP). 

Proof : We prove this by contradiction.  
Let us assume that 1x  is not a weakly efficient solution for the problem (MP). Then,  a feasible solution 1̂x  of the problem (MP) 

 i.e., fi( 1̂x ) <c fi  1x , i=1,2,….,p. 

But  * *
1 y*D 0   and by Lamma 2.1, 

we obtain     *
1 i 1 i 1ˆµ f x f x 0        (3.16) 

       2* T
1 i i 1 1 1 1 1ˆ ˆof f x ; E x , x x , x 0        (3.17) 

Based on the relation (3.11) and condition (i) in Th. 3.2, we set 

        
m 2* T

j j j 1 1 1 1 1
j 1

ˆ ˆo v x ; E x , x x , x 0


         (3.18) 

Now, adding (3.17) and (3.18), we obtain 

              

 

m2* T * T
1 i i 1 1 1 1 1 j j j 1 1 1

i 1
2

1 1

ˆ ˆ ˆof f x ; E x , x E x , x og g x ; E x , x

x̂ , x 0.


       

  


 

Which is a contradiction to equation (3.10) into by applying condition (ii) in Th. 3.2, one can obtain the relations as  

         
m 2* T

j j j 1 1 1 1 1
j 1

ˆ ˆog g x ; E x , x E x , x 0.


      
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Now, consider equation (3.10), we obtain 

         
2* T

1 i i 1 1 1 1 1ˆ ˆof f x ; E x , x E x , x 0.      

But, by condition (ii) of Th. 3.2, we obtain again, as     *
1 i 1 i 1ˆof x f x 0   , which is contradiction to eqn. (3.16). 

Finally, let us apply condition (iii) of The 3.2 and relation (3.16), we set 

         
2* T

1 i i 1 1 1 1 1ˆ ˆof f x ; E x , x E x , x 0.      

Let us combine the above inequality with equation (3.10), we obtain 

        
m 2* T

j j j 1 1 1 1 1
j 1

ˆ ˆog g x ; E x , x x , x 0.


      

By applying condition (iii) of Th. 3.2, it leads to the following as  

  
m

*
j j 1

j 1
og x 0,



     

which is a contradiction to eqn. (3.11). Hence, the result proved.  
 

4. DUALITY 

Here, we consider the Mond – Weir type dual problem as follows : 
Let us consider the dual problems (MDP) as follows : 
  (MDP) max f(u) 
 s.t.c : 

      * T
1 i iof f u; E x , u       

m
* T
j j j

j 1
og g u; E x ,u 0,



    1x F ,   

    
m

*
j j j

j 1
og g u 0



  , 

 * * x x
j ju D, µ D , u D , j M.    . 

 Let us define the feasible solution of the above problem as follows : 

        * * * T
1 1 j 1 i iG u, , v : of f u; E x ,u         

m
* T
j j j

j 1
og g u; E x ,u 0




    


  

   
m

*
j j 1 1

j 1
og x 0, x F ,



     

 * * *
j jy D, µ , u D ; j M         (4.1) 

For the above dual problem, we will state and prove weak, strong and converse quality, theorems as follows : 
Theorem 4.1 (weak quality) 

Let  * *
1 1 j j 1x F u, µ ,u G   and  * *

1 1 y*µ D 0 or *
1µ   and D*. Further, suppose if any one of the following conditions is 

holds : 
i) (fi, gj) is semi-E-u--type-I–invex at u  F1 w.r.t. the same  and ; 
ii) (fi, gj) is pseudo quasi semi E-u--type-I-invex w.r.t. the same  and ; and 
iii) (fi, gj) is quasi strictly pseudo semi-E-u--type-2-invex at uF1 w.r.t. to the same  and u. 

Then 

    i j c if x f u  or 

    i 1 c if x f u  
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Proof : We prove this by contradiction. Let  * *
1 1 1 j 1x̂ F , u,µ , v G    

Let     i 1 iˆf x cf u  

Since  * * *
1 yµ D 0  and by Lemma 2.1, where  

    *
1 i 1 iˆµ , f x f u 0        (4.2) 

Since  * *
1 j 1u, µ , G  , we have   

m
*
j j

j 1
og u 0



       (4.3) 

Based on the inequality in (4.1) and since 1 1x̂ F , we set 

 
       

       

2* T
1 i i 1 1

m 2* T
j j j 1 1

i 1

ˆ ˆof f u; E x u x ,u

ˆ ˆog g u; E x ,u x ,u 0


   

     
   (4.4) 

 
By using the above relations (4.2) and (4.3), and applying condition (i) in Th. 4.1, we get 

        2* T
1 i i 1 1ˆ ˆof f u; E x ,u x ,u 0        

 and       
m 2* T

j j j 1 1
i 1

ˆ ˆog g u; x ,u x ,u 0


      

on summation, the above two inequalities gives 

        2* T
1 i i 1 1ˆ ˆof f u; E x ,u x ,u           

m 2* T
j j j 1 1

i 1

ˆ ˆog g u; E x ,u x ,u 0


       

which is a contradiction to the inequality (4.4) 
Suppose, if condition (ii) holds, that 

    
m

*
j j

i 1
og x 0



    

which implies that 

        
m 2* T

j j j 1 1
i 1

ˆog g u; E x , u x ,u 0


      

Now by using eqn. (4.4), we obtain 

        2* T
1 i i 1 1ˆ ˆof f u; E x ,u x ,u 0      

Now apply condition (ii) we get 

     *
1 i 1 iof x f x 0   , which is a contradiction to (4.4). 

If condition (iii) of theorem 4.2 is applied then equation (4.2) becomes to        * T 2
1 i 1 1 1ˆ ˆof f u; E x ,u x ,u 0      

Again applying equation (4.4), we obtain  

       
m 2* T

j j j 1 1
i 1

ˆog g u; E x , u x ,u 0


      

Again, apply the condition (iii) of theorem 4.2 we obtain  

  
m

*
j j

i 1
og x 0



   , which contradicts with condition (4.3). 

Hence the result proved.  
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Theorem (4.2) (Strong Duality) 

Let    * * * * *
1 1 j 1 1 yx F , u,µ ,v G µ D o    be an efficient solution and assume that x  satisfies a constrain qualification for 

(MP). Then * *
1 jµ , v  such that  * *

ju,µ , v  * * *
1 1 yG µ D o   is feasible for (MD). Moreover, if weak duality theorem 4.1 

holds between (MP) and (MDP) then  * *
ju,µ , v  is an efficient solution for (MDP). 

Proof: Proof follows from theorem 4.1. 
 

 

CONCLUSIONS  

In this paper we derived optimality conditions duality results 
with respective generalized E-V--univexity. These results are 
generalizations of Hehua Jiao [12] and Youness [27].  
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