# Some Applications of Multivalent Functions Defined by Extended Fractional Differintegral Operator

### Vinod Kumar<sup>1</sup>, Prachi Srivastava<sup>2</sup>

<sup>1, 2</sup> Faculty of Mathematical & Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki, 225003, U.P., India.

## Abstract

In the present paper an extended fractional differintegral operator  $\Omega_z^{(\lambda,p)}$  ( $-\infty < \lambda < p+1$ :  $p \in \mathbb{N}$ ), suitable for the study of multivalent functions is introduced. The various results obtained here for each of these function classes include coefficient bound, inclusion relation for  $(k,\theta)$  – neighborhood of subclass of analytic and multivalent functions with negative coefficient, Hadamard products, Integral means. Further, results based on partial sums of functions belonging to the class are derived.

### 2000 Mathematics Subject Classification: 30A10, 30C45

**Keywords and Phrases:** Analytic Functions, Extended Fractional Differintegral operator, Neighborhood, partial sums Hadamard Product.

### 1. INTRODUCTION

Let  $S_p$  denotes a class of functions of the form:

$$f(z) = z^{p} + \sum_{n=k}^{\infty} a_{n} z^{n} (p < k; p, k \in \mathbb{N} = \{1, 2, \dots, \}),$$
 (1)

which are analytic and p - valent in the open unit disk  $U = \{z : |z| < 1\}$ . A function f belong to the class  $S_p$  is said to be p-valent starlike of order  $\alpha$  in U if and only if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, (0 \le \alpha < p; z \in U). \tag{2}$$

Also a function f belonging to the class  $S_p$  is said to be p-valent convex of order  $\alpha$  in U if and only if

$$\Re\left\{1 + \frac{zf^{"}(z)}{f'(z)}\right\} > \alpha, (0 \le \alpha < p; z \in U). \tag{3}$$

We denote by  $S_p^*(\alpha)$  the class of all functions in  $S_p$  which are p-valent starlike of order  $\alpha$  in U and by  $K_p(\alpha)$  the class of all functions in  $S_p$  which are p-valent convex of order  $\alpha$  in U. We denote that

$$S_p^*(0) = S_p^*, S_1^*(\alpha) = S^*(\alpha), K_p(0) = K_p, K_1(\alpha) = K(\alpha), \text{ and}$$

$$f(z) \in K_p(\alpha) \Leftrightarrow \frac{zf'(z)}{p} \in S_p^*(\alpha).$$
 (4)

The classes  $S_p^*(\alpha)$  and  $K_p(\alpha)$  were studied by Patil and Thakare [24], Aouf [1] and Owa [20] for  $f \in S_p$  given by (1) and  $g \in S_p$  given by

$$g(z) = z^{p} + \sum_{n=-k}^{\infty} b_{n} z^{n}, (b_{n} \ge 0).$$
 (5)

The Hadmard product (or convolution) of f and g is given by

$$(f * g)(z) = z^p + \sum_{n=k}^{\infty} a_n b_n z^n = (g * f)(z).$$
 (6)

If f(z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z), written symbolically as

$$f \prec g$$
 in  $U$  or  $f(z) \prec g(z)$   $(z \in U)$ ,

If there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 in U such that  $f(z) = g(w(z)), z \in U$ . it is known that

$$f(z) \prec g(z)$$
  $(z \in U) \Rightarrow f(0) = g(0)$  and  $f(U) \subset g(U)$ .

In particular, if the function g(z) is univalent in U, then we have the following equivalence (see [17], [18])

$$f(z) \prec g(z)$$
  $(z \in U)$   $\Leftrightarrow$   $f(0) = g(0)$  and  $f(U) \subset g(U)$ .

Furthermore, f(z) is said to be subordinate to g(z) in the disk if the Schwaz lemma that if  $f(z) \prec g(z)$  in U, then  $f \prec g$  in  $U_r$  for every r(0 < r < 1).

Recently, Patel & .Mishra [23] (see also Aouf et al. [4], Liu [14], Liu and Patel [15], Sharma et al. [33], Srivastava et al. [30], Supramaniam et al. [34], Zhi-Gang Wang and Lei Shi [35]) introduced and investigated an extended fractional differintegral operator  $\Omega_z^{(\lambda,p)}f(z)$ :  $S_p \to S_p$  for a function

f(z) of the form (1) and for a real number  $\lambda(-\infty < \lambda < p+1)$  by

$$\Omega_{z}^{(\lambda,p)}f(z) = z^{p} + \sum_{n=k}^{\infty} \frac{\Gamma(n+p+1)\Gamma(p+1-\lambda)}{\Gamma(p+1)\Gamma(n+p+1-\lambda)} a_{n}z^{n}$$

$$=z^{p}+\sum_{n=k}^{\infty}C_{n,p}^{\lambda}a_{n}z^{n}\tag{7}$$

where 
$$C_{n,p}^{\lambda} = \frac{\Gamma(n+p+1)\Gamma(p+1-\lambda)}{\Gamma(p+1)\Gamma(n+p+1-\lambda)}$$
 (8)  
=  $z^{p} {}_{2}F_{1}(1,p+1;p+1-\lambda;z)*f(z)$   
 $(-\infty < \lambda < p+1;z \in U).$ 

It is easily seen from (7) that

$$z\left(\Omega_{z}^{(\lambda,p)}f(z)\right) = (p-\lambda)\Omega_{z}^{(1+\lambda,p)}f(z) + \lambda\Omega_{z}^{(\lambda,p)}f(z)$$

$$(-\infty < \lambda < p; z \in U). \tag{9}$$

We also note that

$$\Omega_z^{(0,p)} f(z) = f(z), \quad \Omega_z^{(1,p)} f(z) = \frac{zf(z)}{p},$$

and in general

$$\Omega_{z}^{(\lambda,p)} f(z) = \frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} D_{z}^{\lambda} f(z)$$

$$(-\infty < \lambda < p+1; z \in U). \tag{10}$$

Where  $D_z^{\lambda} f(z)$  is, respectively, the fractional integral of f(z) of order  $-\lambda$  when  $-\infty < \lambda < 0$  and the fractional derivative of f(z) of order  $\lambda$  when  $0 \le \lambda < p+1$ . for integral value of  $\lambda$ , (9) further simplifies to

$$\Omega_z^{(k,p)} f(z) = \frac{(p-k)! z^k f^{(k)}(z)}{p!} \quad (k \in N; k < p+1)$$

and

$$\Omega_{z}^{(-m,p)} f(z) = \frac{p+m}{z^{m}} \int_{0}^{z} t^{m-1} \Omega_{z}^{(-m+1,p)} f(t) dt, (m \in N)$$

$$= F_{1,p} o F_{2,p} o .... o F_{m,p} (f)(z)$$

$$= F_{1,p} \left(\frac{z^{p}}{1-z}\right) * F_{2,p} \left(\frac{z^{p}}{1-z}\right) * .... * F_{m,p} \left(\frac{z^{p}}{1-z}\right) * f(z).$$

Where  $F_{\mu,p}$  is generalized Bernadi-Libra-Livingston integral operator [6] and o stands for the usual composition of functions.

Now, by using the extended fractional differintegral operator  $\Omega_z^{(\lambda p)}$  ( $-\infty \le \lambda < p+1$ ), we introduce the following sub class of function in  $S_p$ .

For fixed parameters  $\beta$ ,  $\gamma$  and  $\xi$ 

$$(0 < \beta \le 1, \frac{1}{2} \le \xi \le 1, 0 \le \gamma < \frac{p}{2})$$
 and  $0 \le \lambda < 1$ , we say that a

function  $f(z) \in S_p$  is in the class  $S_p^{\lambda}(\beta, \gamma, \xi)$  if it satisfies the following condition:

$$\frac{\frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - p}{2\xi\left[\frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - \gamma\right] - \left[\frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - p\right]} < \beta \quad (11)$$

For  $\lambda=0$ , k=p+1,  $p\in\mathbb{N}$  in (11) the class  $S_p^{\lambda}(\beta,\gamma,\xi)$  reduces to the class  $S_p^0(\lambda,l,\gamma,\beta,\xi)=S_p^0(\gamma,\beta,\xi)$  see Kulkarni et al. [9]).

Let  $T_p$  denote the subclass of  $S_p$  consisting of functions of the form

$$f(z) = z^p - \sum_{n=k}^{\infty} a_n z^n, a_n \ge 0; z \in U.$$
 (12)

Further, we define the class  $TS_p^{\lambda}(\beta, \gamma, \xi)$  by

$$TS_p^{\lambda}(\beta, \gamma, \xi) = S_p^{\lambda}(\beta, \gamma, \xi) \cap T_p.$$

We note that:

For  $\lambda=0$ , in (11), the class  $TS_p^{\lambda}(\beta,\gamma,\xi)$  reduces to the class  $T_p^{o}(\lambda,l,\gamma,\beta,\xi)=T_p(\gamma,\beta,\xi)$ , which for p=1 reduces to  $T(\gamma,\beta,\xi)$  studies by Kulkarni [10].

In this paper, we aim at proving coefficient inequality, neighborhood, partial sums, integral means, and modified Hadamard product involving the extended fractional differintegral operator  $\Omega_z^{(\lambda,p)}$ .

### 2. COEFFICIENT INEQUALITY

Unless otherwise mentioned, we shall assume in the reminder of this paper that

$$0 < \beta \le 1, \frac{1}{2} \le \xi \le 1, 0 \le \gamma < \frac{p}{2}, n \ge k, p < k, \text{ and } C_{n,p}^{\lambda} \text{ is}$$
 given by (8) with  $-\infty < \lambda < p+1$  and  $z \in U$ .

**Theorem 2.1** Let the function f be defined by (12). Then f is in the class  $TS_p^{\lambda}(\beta, \gamma, \xi)$  if and only if

$$\sum_{n=k}^{\infty} \left[ (n-p)(1-\beta) + 2\xi\beta(n-\gamma) \right] C_{n,p}^{\lambda} a_n \le 2\beta\xi(p-\gamma) \quad . \tag{13}$$

**Proof.** Assume that inequality (13) holds true. We find from (12) that

$$\begin{split} \left|z\left[\Omega_{z}^{(\lambda,p)}f(z)\right] - p\Omega_{z}^{(\lambda,p)}f(z)\right| - \beta \left|2\xi\left\{z\left[\Omega_{z}^{(\lambda,p)}f(z)\right] - \gamma\Omega_{z}^{(\lambda,p)}f(z)\right\} - \left\{z\left[\Omega_{z}^{(\lambda,p)}f(z)\right] - p\Omega_{z}^{(\lambda,p)}f(z)\right\}\right| \\ &= \left|\sum_{n=k}^{\infty} -(n-p)C_{n,p}^{\lambda}a_{n}z^{n}\right| - \beta \left|2\xi\left[(p-\gamma)z^{p} - \sum_{n=k}^{\infty}(n-\gamma)C_{n,p}^{\lambda}a_{n}z^{n}\right] + \sum_{n=k}^{\infty}(n-p)C_{n,p}^{\lambda}a_{n}z^{n}\right| \\ &\leq \sum_{n=k}^{\infty} \left[(n-p) + 2\xi\beta(n-\gamma) - \beta(n-p)\right]C_{n,p}^{\lambda}a_{n} - 2\beta\xi(p-\gamma) \\ &= \sum_{n=k}^{\infty} \left[(n-p)(1-\beta) + 2\xi\beta(n-\gamma)\right]C_{n,p}^{\lambda}a_{n} - 2\beta\xi(p-\gamma) \leq 0. \end{split}$$

Hence by the maximum modulus theorem, we have  $f \in TS_p^{\lambda}(\beta, \gamma, \xi)$  conversely, let  $f \in TS_p^{\lambda}(\beta, \gamma, \xi)$ . Then

$$\left| \frac{\frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - p}{2\xi \left[ \frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - \gamma \right] - \left[ \frac{z\left(\Omega_{z}^{(\lambda,p)}f(z)\right)'}{\Omega_{z}^{(\lambda,p)}f(z)} - p \right]} \right| < \beta$$

that is, that

$$\frac{\left|\sum_{n=k}^{\infty} (n-p)C_{n,p}^{\lambda} a_{n} z^{n}\right|}{\left|2\xi\left[(p-\gamma)z^{p} - \sum_{n=k}^{\infty} (n-\gamma)C_{n,p}^{\lambda} a_{n} z^{n}\right] + \sum_{n=k}^{\infty} (n-p)C_{n,p}^{\lambda} a_{n} z^{n}\right|} < \beta$$
(14)

Now  $\Re e\{f(z)\} \le |f(z)|$  for all z, we have

$$\Re e \left\{ \frac{\displaystyle\sum_{n=k}^{\infty} (n-p)C_{n,p}^{\lambda} a_n z^n}{2\xi \left[ (p-\gamma)z^p - \displaystyle\sum_{n=k}^{\infty} (n-\gamma)C_{n,p}^{\lambda} a_n z^n \right] + \displaystyle\sum_{n=k}^{\infty} (n-p)C_{n,p}^{\lambda} a_n z^n} \right\} < \beta$$
(15)

Choose value of z on the real axis so that  $\frac{z\left[\Omega_z^{(\lambda,p)}f(z)\right]'}{\Omega_z^{(\lambda,p)}f(z)}$  is real. Then upon clearing the denominator in (15) and letting

 $z \rightarrow 1^-$  through real values, we have

$$\frac{\displaystyle\sum_{n=k}^{\infty}(n-p)C_{n,p}^{\lambda}a_{n}}{2\xi\left[(p-\gamma)-\sum_{n=k}^{\infty}(n-\gamma)C_{n,p}^{\lambda}a_{n}\right]+\sum_{n=k}^{\infty}(n-p)C_{n,p}^{\lambda}a_{n}}\leq\beta$$

That is

$$\sum_{n=k}^{\infty} \left[ (n-p)(1-\beta) + 2\xi\beta(n-\gamma) \right] C_{n,p}^{\lambda} a_n \le 2\beta\xi(p-\gamma)$$

This is the required condition, which completes the proof of theorem 2.1.

**Corollary 2.2** Let the function f be defined by (12). Then f is in the class  $TS_p^{\lambda}(\beta, \gamma, \xi)$  if and only if

$$\sum_{n=0}^{\infty} \Psi_{(p,n)}^{\lambda}(\beta,\gamma,\xi) a_n \le 1, \tag{16}$$

Where, 
$$\Psi_{(p,n)}^{\lambda}(\beta,\gamma,\xi) = \frac{\left[(n-p)(1-\beta) + 2\xi\beta(n-\gamma)\right]C_{n,p}^{\lambda}}{2\beta\xi(p-\gamma)}$$
, (17)

$$0 < \beta \le 1, \frac{1}{2} \le \xi \le 1, 0 \le \gamma < \frac{p}{2}, n \ge k, p < k, -\infty < \lambda < p + 1.$$

**Corollary 2.3** Let the function f defined by (12) is in the class  $TS_p^{\lambda}(\beta, \gamma, \xi)$  then we have

$$a_n \le \frac{2\xi\beta(p-\gamma)}{\left[(n-p)(1-\beta) + 2\beta\xi(n-\gamma)\right]C_{n,p}^{\lambda}}, (n \ge k)$$
(18)

The result is sharp for the function f given by

$$f(z) = z^p - \frac{2\xi\beta(p-\gamma)}{\left[(n-p)(1-\beta) + 2\beta\xi(n-\gamma)\right]C_{n,p}^{\lambda}} z^n, n \ge k.$$

$$\tag{19}$$

# 3. NEIGHBORHOOD FOR THE CLASS $TS^{\lambda}_{p}(\beta,\gamma,\xi)$

Next, following the earlier investigations by Goodman [8], Rucheweyh [26], and others including Srivastava et al. [29], Orhan ([21] and [20]), Altinas et al. [2] (see also [11], [16], [31], [3]), we define the  $(k, \delta)$ -neighborhood of functions in the family  $TS_p^{\lambda}(\beta, \gamma, \xi)$ .

**Definition 3.1** For  $f \in T_p$  of the form (12) and  $\delta \ge 0$  we define a  $(k, \delta)$  - neighborhood of a function f(z) by

$$N_{k,\delta}(f) = \left\{ g : g \in T_p, g(z) = z^p - \sum_{n=k}^{\infty} c_n z^n \& \sum_{n=k}^{\infty} n \left| a_n - c_n \right| \le \delta \right\}.$$

In particular, for the function,  $h(z) = z^p$ 

We immediately have

$$N_{k,\delta}(h) = \left\{ g : g \in T_p, g(z) = z^p - \sum_{n=k}^{\infty} c_n z^n \& \sum_{n=k}^{\infty} n |c_n| \le \delta \right\}.$$

**Theorem 3.2** The class 
$$TS_p^{\lambda}(\beta, \gamma, \xi) \subset N_{k,\delta}(h)$$
, where  $\delta = \frac{(k+1-2p)}{\Psi_{(k,p)}^{\lambda}(\beta, \gamma, \xi)}$ .

**Proof** For the function  $f(z) \in TS_p^{\lambda}(\beta, \gamma, \xi)$  of the form (12), corollary 1 immediately yields

$$[(k-p)(1-\beta)+2\xi\beta(k-\gamma)]C_{k,p}^{\lambda}\sum_{n=1}^{\infty}a_{n}\leq 2\beta\xi(p-\gamma),$$

$$\sum_{n=k}^{\infty} a_n \le \frac{2\beta \xi(p-\gamma)}{\left[(k-p)(1-\beta) + 2\xi \beta(k-\gamma)\right] C_{k,p}^{\lambda}} = \frac{1}{\Psi_{(k,p)}^{\lambda}(\beta,\gamma,\xi)} \tag{20}$$

On other hand, we also find from (16) and (20) that

$$\begin{split} C_{k,p}^{\lambda} \sum_{n=k}^{\infty} a_n &\leq 2\beta \xi(p-\gamma) + \left[ (1-p)(1-\beta) - 2\xi \beta(k-\gamma) \right] C_{k,p}^{\lambda} \sum_{n=k}^{\infty} a_n \\ &\leq 2\beta \xi(p-\gamma) + \left[ (1-p)(1-\beta) - 2\xi \beta(k-\gamma) \right] C_{k,p}^{\lambda} \frac{2\beta \xi(p-\gamma)}{\left[ (k-p)(1-\beta) + 2\xi \beta(k-\gamma) \right] C_{k,p}^{\lambda}} \\ &\leq \frac{2\beta \xi(p-\gamma)(k+1-2p)}{\left[ (k-p)(1-\beta) + 2\xi \beta(k-\gamma) \right] C_{k,p}^{\lambda}} = \frac{(k+1-2p)}{\Psi_{(k,p)}^{\lambda}(\beta,\gamma,\xi)} = \delta \;, \end{split}$$

Which in view of definition 3.1, proves Theorem 3.

### 4. PARTIAL SUMS

Following the earlier works by Silverman [27], N.C. Cho et al. [5] and others (see also [25], [13],), in this section we investigate the ratio of real parts of functions involving (12) and their sequence of partial sums defined by

$$f_1(z) = z^p; \ f_n(z) = z^p - \sum_{n=k}^r a_n z^n, r \in N$$
 (21)

And determine sharp lower bounds for

$$\Re\left\{\frac{f(z)}{f_n(z)}\right\}, \Re\left\{\frac{f_n(z)}{f(z)}\right\}, \Re\left\{\frac{f'(z)}{f_n'(z)}\right\} \& \Re\left\{\frac{f_n'(z)}{f'(z)}\right\}.$$

**Theorem 4.1** If f of the form (12) satisfies condition (13), then

$$\Re\left\{\frac{f(z)}{f_n(z)}\right\} \ge \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \tag{22}$$

and

$$\Re\left\{\frac{f_n(z)}{f(z)}\right\} \ge \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)+1} \tag{23}$$

Where  $\Psi^{\lambda}_{(p,n)}(\beta,\gamma,\xi)$  is given by (17).

**Proof.** In order to prove (22), it is sufficient to show that

$$\left. \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \right| \frac{f(z)}{f_n(z)} - \left( \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \right) \right| \prec \frac{1+z}{1-z} \quad (z \in U)$$

We can write

$$\begin{split} & \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \Bigg| \frac{f(z)}{f_{n}(z)} - \Bigg( \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \Bigg) \Bigg] \\ & = & \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \Bigg| \frac{1 - \sum_{n=k}^{\infty} a_{n} z^{n-p}}{1 - \sum_{n=k}^{r} a_{n} z^{n-p}} - \Bigg( \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \Bigg) \Bigg] \\ & = & \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \Bigg[ \frac{1 - \sum_{n=k}^{r} a_{n} z^{n-p}}{1 - \sum_{n=k}^{r} a_{n} z^{n-p}} - \Bigg( \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \Bigg) \Bigg] = \frac{1 + w(z)}{1 - w(z)}. \end{split}$$

Then

$$w(z) = \frac{-\Psi_{(p,k+r)}^{\lambda}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n z^{n-p}}{2 - 2 \sum_{n=k}^{r} a_n z^{n-p} - \Psi_{(p,k+r)}^{\lambda}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n z^{n-p}}$$

Obviously w(0) = 0 and

$$\left|w(z)\right| \leq \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \sum_{n=k+r}^{\infty} a_n}{2 - 2\sum_{n=k}^{r} a_n - \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \sum_{n=k+r}^{\infty} a_n}$$

Now,  $|w(z)| \le 1$  if and only if

$$2\Psi_{(p,k+r)}^{\lambda}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\xi})\sum_{n=k+r}^{\infty}a_{n}\leq 2-2\sum_{n=k}^{r}a_{n},$$

which is equivalent to

$$\sum_{n=k}^{r} a_n + \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \sum_{n=k+r}^{\infty} a_n \leq 1.$$

In view of (13), this is equivalent to showing that

$$\sum_{n=k}^{r} \left[ \Psi_{(p,n)}^{\lambda}(\beta,\gamma,\xi) - 1 \right] a_n + \sum_{n=k+r}^{\infty} \left[ \Psi_{(p,n)}^{\lambda}(\beta,\gamma,\xi) - \Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) \right] a_n \ge 0.$$

Thus we have completed the proof of (22), the proof of (23) is similar to (22) and will be omitted.

**Theorem 4.2** If f(z) of the form (12) satisfies (13), then

$$\Re\left\{\frac{f'(z)}{f_n'(z)}\right\} \ge \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi) - k - 1}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)} \tag{24}$$

and

$$\Re\left\{\frac{f_{n}'(z)}{f'(z)}\right\} \ge \frac{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)}{\Psi_{(p,k+r)}^{\lambda}(\beta,\gamma,\xi)+k+1} \tag{25}$$

Where  $\Psi^{\lambda}_{(p,k+r)}(\beta,\gamma,\xi)$  is given by (17).

### 5. INTEGRAL MEANS

The following subordination result due to Littewood [12] will be required in our investigation. The integral means of analytic functions was studied in [25], [19].

**Lemma 5.1** if f(z) and g(z) are analytic in U with,  $f(z) \prec g(z)$ , then  $\int_0^{2\pi} \left| f(re^{i\theta}) \right|^{\mu} d\theta \leq \sum_0^{2\pi} \left| g(re^{i\theta}) \right|^{\mu} d\theta$ , where  $\mu > 0, z = re^{i\theta} \& 0 < r < 1$ .

Application of Lemma 5.1 to function f(z) in the class  $TS_p^{\lambda}(\beta, \gamma, \xi)$  gives the following result using known procedures.

**Theorem 5.2** Let  $f(z) \in TS_p^{\lambda}(\beta, \gamma, \xi)$  and  $f_2(z) = z^p - \frac{1}{\Psi_{(p,n)}^{\lambda}(\beta, \gamma, \xi)} z^n$  where  $\Psi_{(p,n)}^{\lambda}(\beta, \gamma, \xi)$  is given by (17), if f(z) satisfies

$$\sum_{n=k}^{\infty} \left| a_n \right| \le \left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)} \right| \tag{26}$$

Then for  $\mu > 0$  and  $z = re^{i\theta}$ , (0 < r < 1).

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |f_{2}(z)|^{\mu} d\theta. \tag{27}$$

**Proof.** By putting  $z = re^{i\theta}$ , (0 < r < 1), we see that

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta = r^{\mu p} \int_{0}^{2\pi} |1 - \sum_{n=k}^{\infty} a_{n} z^{n-p}|^{\mu} d\theta.$$

And

$$\int_{0}^{2\pi} |f_{2}(z)|^{\mu} d\theta = r^{\mu p} \int_{0}^{2\pi} \left| 1 - \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta, \gamma, \xi)} z^{n-p} \right|^{\mu} d\theta.$$

Applying lemma (5.1), we have to show that

$$1 - \sum_{n=k}^{\infty} a_n z^{n-p} \prec 1 - \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)} z^{n-p},$$

Let us define the function w(z) by

$$1 - \sum_{n=k}^{\infty} a_n z^{n-p} = 1 - \frac{1}{\Psi_{(n,n)}^{\lambda}(\beta, \gamma, \xi)} (w(z))^{n-p}$$
(28)

or by

$$\frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)}(w(z))^{n-p} = \sum_{n=k}^{\infty} a_n z^{n-p}$$
(29)

Since, for 
$$z = 0$$
,  $\frac{1}{\Psi_{(n,n)}^{\lambda}(\beta, \gamma, \xi)}(w(0))^{n-p} = 0$ ,

there exists an analytic function w(z) in U such that w(0) = 0.

Next, we prove the analytic function w(z) satisfies |w(z)| < 1  $(z \in U)$  for

$$\sum_{n=k}^{\infty} |a_n| \le \left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta, \gamma, \xi)} \right|$$

By the equality (27), we know that

$$\left|\frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)}(w(z))^{n-p}\right| \leq \left|\sum_{n=k}^{\infty} a_n z^{n-p}\right| < \left|\sum_{n=k}^{\infty} a_n\right|,$$

For  $z \in U$ , hence,

$$\left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)} (w(z))^{n-p} \right| - \left| \sum_{n=k}^{\infty} a_n \right| < 0.$$
 (30)

Letting t = |w(z)|  $(t \ge 0)$  in (30), we define the function G(t) by

$$G(t) = \left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)} \right| (t)^{n-p} - \sum_{n=k}^{\infty} |a_n|. \quad (t \ge 0).$$

If  $G(1) \ge 0$ , then we have t < 1 for G(t) < 0. therefore, for |w(z)| < 1  $(z \in U)$ , we need

$$G(1) = \left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta, \gamma, \xi)} \right| - \sum_{n=k}^{\infty} |a_n| \ge 0,$$

That is,

$$\sum_{n=k}^{\infty} |a_n| \leq \left| \frac{1}{\Psi_{(n,p)}^{\lambda}(\beta,\gamma,\xi)} \right|.$$

Consequently, if the inequality (26) holds true, there exists an analytic function w(z) with w(0) = 0, |w(z)| < 1  $(z \in U)$ , such that  $f(z) = f_2(w(z))$ . This completes the proof of Theorem (5).

# 6. MODIFIED HADAMARD PRODUCT

For the functions 
$$f_j(z) = z^p - \sum_{n=0}^{\infty} a_{n,j} z^n (a_{n,j} \ge 0; j = 1, 2; p, k \in \mathbb{N}),$$
 (31)

We denote by  $(f_1 * f_2)$  the modified Hadamard product of functions  $f_1$  and  $f_2$  , that is,

$$(f_1 * f_2)(z) = z^p - \sum_{n=0}^{\infty} a_{n,1} a_{n,2} z^n.$$
(32)

**Theorem 6.1** Let the functions  $f_j(j=1,2)$ , defined by (31) be in the class  $TS_p^{\lambda}(\beta,\gamma,\xi)$  then  $(f_1*f_2) \in TS_p^{\lambda}(\beta,\mu,\xi)$  where

$$\mu = p - \frac{2\beta \xi (p - \gamma)^2 (k - p) [(1 - \beta) + 2\beta \xi]}{[(k - p)(1 - \beta) + 2\beta \xi (k - \gamma)]^2 C_{n,p}^{\lambda} - 4\beta^2 \xi^2 (p - \gamma)^2}$$
(33)

The result is sharp.

**Theorem 6.2** Let the function  $f_j(j=1,2)$  defined by (31),  $f_1 \in TS_{n,p}^{\lambda}(\beta,\mu_1,\xi)$  and  $f_2 \in TS_{n,p}^{\lambda}(\beta,\mu_2,\xi)$ .

Then  $(f_1 * f_2) \in TS_p^{\lambda}(\beta, \mu, \xi)$ , where

$$\mu = p - \frac{2\xi\beta(p - \mu_1)(p - \mu_2)(k - p)[(1 - \beta) + 2\beta\xi]}{A_1(\mu_1, p, \beta, \xi, k).A_2(\mu_2, p, \beta, \xi, k)C_{n,p}^{\lambda} - 4\xi^2\beta^2(p - \mu_1)(p - \mu_2)}$$
(34)

And

$$A_{1}(\mu_{1}, p, \beta, \xi, k) = \left[ (k - p)(1 - \beta) + 2\beta \xi(k - \mu_{1}) \right]$$
(35)

$$A_{2}(\mu_{2}, p, \beta, \xi, k) = \left[ (k - p)(1 - \beta) + 2\beta \xi (k - \mu_{2}) \right]$$
(36)

**Theorem 6.3** Let the functions  $f_j(j=1,2)$  defined by (31) are in the class  $TS_p^{\lambda}(\beta,\gamma,\xi)$ . Then the function

$$h(z) = z^p - \sum_{n=k}^{\infty} \left( a_{n,1}^2 + a_{n,2}^2 \right) z^n \tag{37}$$

Belongs to the class  $TS_p^{\lambda}(\beta, \tau, \xi)$ , where

$$\tau = p - \frac{4\beta\xi(p-\gamma)^{2}(n-p)[(1-\beta) + 2\beta\xi]}{[(n-p)(1-\beta) + 2\beta\xi(n-\gamma)]^{2}C_{n,p}^{\lambda} - 8\beta^{2}\xi^{2}(p-\gamma)^{2}}$$
(38)

The result is sharp for the functions  $f_i(j=1,2)$  defined by (31).

# **Conflict of Interest**

The authors confirm that there is no conflict of interest to declare for this publication.

### REFERENCES

- [1] M.K.Aouf, H.M.Hossen, H.M.Srivastava, Some families of multivalent functions, Comput.Math.Appl. 39(2000) 39-48.
- [2] O.Altintas, S.Owa, Neighborhoods of certain analytic functions with negative coefficients. Int. J.Math.Sci. 19(1996), 797-800.

- [3] M.K.Aouf, Neighborhoods of certain classess of analytic functions with negative coefficients. Int. J.:Math. Math. Sci. 2006(2006), 1-6.
- [4] M.K.Aouf, A.O.Mostafa, H.M.Zayed, Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 39, 545-560 (2016).
- [5] N. C. Cho, S. Owa, Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004, Art. 30). Electronic only.
- [6] J.H.Choi, M.Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operator. . Am. Math. Soc. 276(2002), 432-445.

- [7] A.W. Goodman, On the Schwarz-christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68(1950) 204-223.
- [8] W.A. Goodman, Univalent functions and nonanalytic curves. Proc. Am.Math. Soc. 8(1957), 598-601.
- [9] S.R. Kulkani, S.B. Joshi and M.K. Aouf, On p-valent starlike functions, J.Ramanujan Math. Soc. 9(1994).
- [10] S.R. Kulkarni, Some problems connected with univalent functions. Ph.D. Thesis (1981,Shivaji University, Kplhapur) (unpublished).
- [11] B.S.Keerthi, A.Gangadharn, H.M.Srivastrava, Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Modelling 47(2008), 271-277.
- [12] J.E. Littlewood, On inequalities in the theory of functions. Proc. Lond. Math. Soc. 23(1925), 481-519.
- [13] S. Latha, L.Shivarudrappa, Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 7 (2006, Art.140). Electronic only.
- [14] J.-L. Liu, On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator. Bull. Iran. Math. Soc. 39, 107-124 (2013)
- [15] J.-L. Liu, J.Patel, Certain properties of multivalent functions associated with an extended fractional differintegral operator. Appl. Math. Comput. 203, 703-713 (2008)
- [16] G. Murugunsundaramoorthy, H.M. Srivastava, Neighbourhoods of certain classes of analytic functions of complex order. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004, Art. 24).
- [17] S.S. Miller, P.T.Mocanu, Differential subordination and univalent functions, Michigan Math. J.28 (1981) 157-171.
- [18] S. S. Miller, P.T. Mocanu, Differential Subordinations, Theory and Applications. Monographs and Text-books in Pure and Applied Mathematics, vol. 225. Marcel Dekker Inc., New York (2000).
- [19] S. Owa, T. Sekine, Integral means of analytic functions. J. Math. Anal. Appl. 304(2005), 772-782.
- [20] S. Owa, on certain classes of p-valent functions with negative coefficients, Simon Stevin 59(4) (1985), 385-402.
- [21] H. Orhan, On neighborhoods of analytic functions defined by using Hadamard product. Novi Sad J. Math. 37(2007), 17-25.
- [22] H. Orhan, Neighborhoods of a certain class of p-valent functions with negative coefficients defined by using a differential operator. Math. Ineq. Appl. 12 (2009), 335-349.
- [23] J. Patel, A.K. Mishra, On certain subclasses of multivalent functions associated with an etended

- fractional differintegral operator. J. Math. Anal. Appl. 332(2007), 109-122.
- [24] D.A.Patil, N.K.Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R.S.Roumanie (N.S) 27(75)(1983), 145-160.
- [25] R.K. Raina, D. Banasal, Some properties of a new class of analytic functions defined in terms of a Hadamard product. JIPAM, J. Ineq. Pure Appl. Math. 9(2008,Art. 22). Electronic Only.
- [26] S.Ruscheweyh, Neighborhoods of univa; ent functions. Proc. Am. Math. Soc. 81(1981),521-527.
- [27] H.Silverman, Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209(1997), 221-227.
- [28] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore-New Jersey-Londan-Hong Kong, 1992.
- [29] H.M. Srivastava, H.Orhan, Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions. Appl. Math. Lett. 20(2007), 686-691.
- [30] H.M. Srivastava, P.Sharmma, R.K.Raina, Inclusion results for certain classes of analytic functions associated with a new fractional differintegral operator. Rev. R. Acad. Cienc. Exactas Fis. Nat. A. (2017). Doi: 10.1007/s13398-017-0377-8
- [31] H. Silverman, Neighborhoods of classes of analytic functions. Far East J. Math .Sci. 3(1995), 165-169.
- [32] A.Schild, H.Silverman, Convolution of univalent functions with negative coefficients, Ann, Math. Curie-Sklodowska Sect. A 29(1975), 99-107.
- [33] P.Sharma, R.K.Raina, G.S.Salagean, Some geometric properties of analytic functions involving a new fractional operator. Mediterr. J. Math. 13, 4591-4605 (2016).
- [34] S. Supramaniam, R.Chandrashekar, S.K.Lee, K.G. Subramanian, Convexity of functions defined by differential inequalities and integral operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. A 111,147-157 (2017).
- [35] Zhi-Gang Wang, Lei Shi, Some properties of certain extended fractional differintegral operator. RACSAM, DOI 10.1007/s13398-017-0404-9.