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Abstract 

This paper addresses the issue of adaptive sliding mode 

controller design for uncertain delayed systems. Wavelet 

networks, which have been proved an effective and efficient 

approximators as compare to classical neural network, are 

used for approximation of uncertain systems dynamics and the 

inherent robustness property of the sliding mode control is 

utilized to make the system performance insensitive to the 

approximation errors inserted  by wavelet networks. 

Adaptation laws for wavelet networks are derived in the sense 

of Lyapunov function assuring the systems stability.  

Keywords: Sliding mode control, wavelet network, nonlinear 

systems, delayed systems. 

 

I. INTRODUCTION  

Sliding mode control (SMC) has been proved to be very 

effective controlling strategy for nonlinear systems with 

uncertain dynamics and subjected to disturbances. The sliding 

mode control utilizes a variable structure scheme that drives 

state trajectories toward a specific hyper plane and  thereafter 

maintains the trajectories sliding on hyper plane until the 

origin of the state space is reached [1]. Robustness, can be 

considered as one of the distinguished property of sliding 

mode control, this property arises due to sliding hyper plane 

and switched control settings by the consideration of 

modeling uncertainties and disturbances. Chattering 

phenomenon is a major issue of concern associated with 

sliding mode control. Chattering often results in excitation of 

high frequency unmodelled dynamics which may result in 

system instability. One commonly used technique to attenuate 

the chattering is the insertion of a boundary layer in the 

vicinity of sliding surface. This technique results tradeoff 

between tracking precision and the input quality of 

chattering[1-5]. 

Wavelet networks plays an important role in the controller 

designing for nonlinear systems with uncertain dynamics due 

to their universal approximation capability, rapid learning rate 

and fast conversions, they are used to approximate a wide 

range of nonlinear function with arbitrary accuracy[6-9]. 

Architecture of feed forward wavelet network can be viewed 

as a network composed of single layer of translated and 

dilated versions of mother wavelet function. Development of 

wavelet networks, mathematical properties and approximation 

capabilities of wavelet networks are explored in [8,9]. 

Application of wavelet network in controller design has been 

cited in[10-14].  

Time delay is often encountered in practical systems, presence 

of time delay results in degradation of control performance 

and potential instability of the systems. Several control 

schemes for delayed nonlinear systems have been cited in the 

literature. Most of the schemes are based on Lypenov 

Krasovskii functional [15,16]. 

This paper presents an adaptive sliding mode control schemes 

for time delayed uncertain systems. The proposed controller 

integrates the sliding mode control strategy with wavelet 

neural networks to insure the effective tracking performance 

of state variables.  The stability of the system is insured by 

constructing an appropriate Lyapunov Krasovskii functional 

in the control design. 

The organization of the paper is as under. In section 2 

fundamentals of wavelet network are discussed. System 

discription and adaptive sliding mode control schemes along 

with stability analysis are presented in Section 3. Simulation 

results are illustrated in Section 4, whereas Section 5 

concludes the paper . 

 

II. BASICS OF WAVELET NETWORK 

Wavelet network is an efficient architecture meant for 

function approximation. The wavelet network is realized as an 

architecture composed of some translated and dileted versions 

of a wavelet function. The feed forward architecture of 

wavelet neural network can be modified by inserting the 

recurrences. These recurrent architectures are suitable for the 

approximation of nonlinearities which are the function of 

delayed states[17,18]. 

Figure 1. shows Feed-Forward WNN with self feedback 

wavelon layer as a modified version of SRWNN. Self 

feedback wavelon layer enables the wavelet network 

(SRWNN) to store past information, high degree 

approximation of dynamic nonlinearities and more convenient 

for adaptive control as compared with conventional.   
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Figure 1. Self Recurrent Wavelet Neural Network 

 

Output of an 'n' dimensional SRWNN with 'm' wavelet nodes 

can be expressed as 
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where i  is the 
thi wavelet node given by 
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where ij  is the 
thi  wavelet node with 

thj wavelon.  

  nx t R  shows input vector,  with  where   is the point 

delay encountered in state vector. 

1 2[ , , , ]i i i in   represents the feedback argument for the 
thi  wavelet node. The Network's previous information stored 

in the vector 1 2[ , , , ]i i i in  . 1 2[ , , , ]i i i in    shows 

weighted  vector , 1 2[ , , , ]i i i inw ww w  and 

1 2[ , , , ]i i i inc c c c    represents are dilate and translate vectors  

for feedback input. This input vectors applied on 
thi wavelet 

node which represents as follows- 

1 112 22[ , , , ]Ti i i i n ininx x x   .  

In matrix form (1) can be rewritten as  

 , , ,Tf x wc                                                         (3) 

 where  

 ,,...,  and ,...,
TTmxn mxn

m mwwwwRccccR 
       are 

dilation and translation parameters respectively ; 

 , ,..,  
T m

m R   and  1 2, ,..,  
T nxm

m R     

are the output and feedback weights respectively. 

 1 2, ..,  
T nxm

m R shows feedback, input 

vector of SRWNN. 

With ideal wavelet approximator, let 
*f  be the optimal 

function approximation  

* * *Tf f                                                     (4)                                                                                   

where  * * * *, , ,x wc   and  the optimal parameter 

vectors are 
*, ,w  

* *,c   of , ,w c   respectively, and the 

approximation error denoted by   with assumption 
   ,where 

  is a positive constant [13]. 

The optimal parameter vectors for paramount approximation 

are difficult to determine. The definition of estimation 

functions is as follows- 

ˆ ˆ ˆTf                                                                                    (5)                                                                                                   

where  ˆˆ ˆ ˆ, , , ,xwc and ˆˆ ˆ ˆ, , ,w c   are the estimates of  

* * *, , ,w c  respectively. Defining the estimation error as           
*ˆ ˆ ˆ ˆT T Tffff f      (6)      

where     ˆ ˆ                            

With the appropriate number of nodes, the estimation error f  

can be reduced to arbitrarily small value on the compact set so 

that the bound f  ≤ mf holds for all x .  

As the wavelet network representation is nonlinear in 

parameter which respect to certain adjustable parameters, to 

facilitate the derivation of tuning laws a Taylor expansion 

based following partial linearization is carried out [13,14]. 

T T TAwBcC h                                              (7)                                                                                   

where 
* * * ˆˆ ˆ, ,wwwccc and h  are the vectors 

of higher order terms and 
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Substituting (7) into (6)      

  1
ˆˆ ˆ ˆ ˆˆˆT T T T T T Tf wBcCwAcBC             (8)                                              

   the uncertain term expression are as follows- 

 * * *T TT TT TThAwBc C  

Assumption of uncertainty   satisfies the following Lipschitz 

condition 

 1 2( )q x t q x t                                             (9)                          

where. 0, 0iq   . 

 

III. SYSTEM DISCRIPTION AND CONTROLLER 

 DESIGN 

To quantify the process of controller design, consider the 

following nonlinear system of the form 

 

1 2

2 3

1

( ( ), ( )) ( ( ))n

x x
x x

x f x t x t g x t w t
y x







  



                     (10)                                                                                                                                          

where  1 2, ,..., ,
T

nx x x x y  represents the state variable and 

output respectively where as u  is the control effort applied to 

the system through an actuator with output   w t . Function 

(.)g  is always bounded away from zero .It implies that (.)g  

is strictly either positive or negative for all x(t). 
2( ( ), ( )) : nf x t x t     is a smooth unknown, nonlinear 

function of present and delayed values of state variables,  is  

the known time delay encountered in state variables. In this 

work the function ( ( ), ( ))f x t x t   is approximated by a self 

recurrent wavelet network. 

Objective is to design the control input u using sliding mode 

methodology so that the tracking error 

    dy t y t converges to small neighborhood of origin.  

Here  dy t  is   the desired trajectory, assumed to be smooth, 

continuous nC  and available for measurement. 

Defining an error system by applying the change of 

coordinates for system (10) as 

  1
, , ........,1 2 1 2, ,......,

TT n
n d d d n de e e e x y x y x y x y            

where 

1, ,...,
Tn

d d d dy y y y       

 

 

so the resulting error dynamics becomes 
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Defining a sliding hyper plane of the form  

s ke                                     (12) 

where  1 2, ,..., nk k k k are known positive terms. 

Considering  f x  to be the unknown dynamics of the system 

(10). As per the sliding mode theory the control scheme is 

supposed to drive the system variables such that the condition 

mentioned in (13) is satisfied and thereafter maintained until 

the origin is reached[1]. 

0s           (13) 

The necessary and sufficient condition to satisfy (13) is  

ss s          (14) 

where 0  . 

To satisfy (14) the sliding mode control of the form is defined 

1 ˆ( ( ) ( ))
( )

n
e du k e f x y s sgn s

g x
           (15) 

here ,  f̂ x  is  the estimates of  f x , and is defined in (5), 

 1 10, ,...,e nk k k  , 0   and sgn(.) is signum 

nonlinearity defined as 

  
sgn( ) 1,       if s 0

sgn( ) 1,    if s 0 

s
s
 


  

       (16) 

      Tuning laws for the online adjustment of wavelet 

parameters are given as  

1 2

3 4

ˆ ˆ ˆˆ ˆ ˆ( );

ˆˆ ˆˆ ;

T Ts A w B c w w sA

c c sB sC

     

     

       

     
           (17) 

1, 2,...., 4    are the learning rates with positive constants.                       

In next subsection the proposed control law is examined. 

 

IV. STABILITY ANALYSIS 

To perform the convergence analysis of the closed loop 

systems with control term (15), consider a Lyapunov-

Krasovskii functional of the form [21]  

2
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1
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tT T T T
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Differentiating (18) along the trajectories of the system 

 
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Substitution of control law u (15) in the above equation yields 
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Substituting adaptation laws (17) in above equation, 
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1 2

( ) ( ) ( ))

( ) ( ))

( ( ) ) ( ) ( ))

f

f

s s sgn s t t

s s s t t

s s q x t q x t s t t
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         (19) 

Selecting ( )t as 

1( ) ( )t q x t s           (20) 

Substituting (20) into (19) 

                   2s s s               (21) 

Selecting   such that the following inequality is satisfied 

           (22) 

with (22) , equation (21) reduces to 

 V s

V c s

   

 
        (23) 

Thus the properly selecting  sufficient condition for driving 

the state variables to sliding hyper plane 0s   can be 

achieved and this in turn indicates the asymptotic convergence 

of error variables to origin. 

Thus we have the following result 

Theorem: With the adaptive control term (10), and adaptation 

laws (17), in the presented closed loop architecture, the error 

variables of the uncertain plant (10) show asymptotic 

convergence to the origin.  

Proof: As per the facts established on the basis of  Lyapunov 

stability theory inequality (23) reflects that the signals of  the 

closed loop systems comprising of designed controller and the 

system of the form(10) show uniform boundedness and the 

tracking error converges to origin.   

  

V. SIMULATION RESULTS 

This section presents a simulation study carried out to 

illustrate the efficacy of the proposed controller.  

Consider the following nonlinear delayed system with 

actuator constraints 

         

1 2

2 3

3 4

2

4 1 2 3 1 2 2 2

1 2

1

0.5 ( ) ( ) 0.5 ( )
1

x x
x x
x x

ux x t x t x x x t
x x

y x









   
 



  (24)                                     

System belongs to the class of nonlinear systems defined by 

(10), with 4n   and 1sec  .  Proposed controller is 

applied to this system with an objective to solve the tracking 

problem of system. 

The desired trajectory is taken as 0.5sin 0.5cosdy t t  . 

Initial conditions are taken as    0 .75,0,0,0
Tx  . Controller 

parameters are taken as 1 2 3 415, 4, 5, 1, 2k k k k      . The 

wavelet network is constructed by using Mexican hat wavelet 

as the mother wavelet. The dilation, translation and gain 

parameters of the wavelet network are tuned online using 

adaptation laws (17). As reflected by the figure 2, the system 

output is effectively approaching the desired trajectory within 

a small span of time, this indicates the efficiency of the 

wavelet network to approximates the unknown system 

dynamics. For simulation of parameter tuning laws initial 

conditions are set to zero. 

Simulation results are shown in Figure 2 and 3. As observed 

from the Figure 2, system response tracks the desired 

trajectory rapidly and a steady state error converges to the 

close neighborhood of origin under the effect of control effort 

shown in Figure 3.  
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Figure 2. The system output, the reference signal, 

the tracking error 
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Figure 3. Control signal. 

 

 

VI. CONCLUSION 

In this paper the issue of controller design for a class of 

delayed nonlinear systems with uncertain dynamics is 

addressed. A closed loop system comprising of a sliding mode 

controller with wavelet approximator is realized. With the 

proposed controller the nonlinear system has shown a 

promising tracking performance which has been validated 

mathematically as well as through simulation. 
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