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Abstract  

Theory of Probability is a branch of Applied Mathematics 

dealing with the effects of chances. The word ‘chance’ gives 

birth to the mathematical term ‘Probability’. In this article 

particular emphasis is given to the works of Fibonacci (1170-

1250), Pierre de Fermat (1607 -1665), Blaise Pascal (1623 -

1662) and Abraham de Moivre (1667-1754) in the 

development of different number patterns and Probability 

Theory. 

Keywords: The Problem of division of the stakes, Extended 

Binomial Coefficients. 

 

1. INTRODUCTION 

According to P.S. Laplace “It is remarkable that a science 

(Probability) which began with consideration of games of 

chance, should have become the most important object of 

human knowledge”. He further mentioned “Probability has 

reference partly to our ignorance, partly to our knowledge… . 

The Theory of Chances consists in reducing all events of the 

same kind to a certain number of cases equally possible, i.e. 

we are equally undecided as to their existence and 

determining the number of these cases which are favourable to 

the event sought. The ratio of that number to the number of all 

the possible cases is the measure of the Probability…  ”[10]. 

James Clark Maxwell mentioned “The true logic of this world 

is to be found in theory of Probability” [10]. 

In ancient times, Plato (428-348 BC) and Aristotle (384-322 

BC) used to discuss the word ‘chance’ philosophically. 

Antimenes (530-510 BC) first developed the process of 

‘insurance’ which guaranteed a sum of money against wins or 

losses. In view of many uncertainties of everyday life such as 

health, weather, birth and death led to the concept of chance 

or random variables as output of an experiment. Almost all 

measurements in Mathematics have the fundamental property 

that the results vary in different trials. These results are 

random in nature.   

Historically, the word ‘Probability’ was associated with the 

Latin word ‘Probo’ and the English word ‘Probable’. In 

ancient times the concept of Probability arose in problems of 

gambling. In 1494, Fra Luca Pacioli, an Italian mathematician 

wrote the first printed book on Probability entitled ‘Summa de 

arithmetica, geometria, proportioni e proportionalita’. In fact, 

in Europe, the first calculation on chance was recorded in this 

book. In 1550, an Italian physician Geronimo Cardano (1501-

1575, he was also a mathematician and gambler) inspired by 

the book ‘Summa’ wrote a book about games of chance 

known as ‘Liber de Ludo Aleae’. First mathematical treatment 

of Probability dealing with problems of mathematical 

expectation, addition of probability, frequency tables for 

throwing of a die for n successes in n independents trials was 

recorded in this book. His work attracted attention from other 

researchers and the idea of Probability between 0 and 1 to an 

event whose outcome is random was introduced [1, 3]. 

Galileo Galilei (1564-1642) published an article ‘Sopra Le 

Scoperte dei Dadi’ on the basis of his observations of random 

process for a long period [1]. In this article, in the context of 

rolling of 3 die he mentioned   “…it is known that long 

observation has made dice-players consider 10 and 11 to be 

more advantageous than 9 and 12.”  Galileo explained the 

situation by taking the possible combinations of the 3 numbers 

composing sum. He was able to show that 10 will show up in 

27 ways out of all possible 216 outcomes. Since 9 can be 

found in 25 ways out of all possible 216 outcomes, this 

explains why it is at a ‘disadvantage’ in comparison to 10. [1]. 

The ‘Points Problem’ proposed by Chevalier de Méré in 1654 

is said be the starting point of famous correspondence 

between Pascal and Pierre de Fermat, the two main early 

stalwarts in the development of Probability theory.  They 

continued to exchange their thoughts on mathematical 

principles and problems through a series of letters. So, Pascal 

and Fermat are the mathematicians credited with the founding 

of probability theory. Their main ideas were popularized by 

Christian Huygens, in his ‘De ratiociniis in ludo ale’, 

published in 1657.  

 

2.1. Blaise Pascal’s personal life: 

Blaise Pascal was born on 19th June, 1623 in Clermont 

Ferrand, France. He lost his mother at the age of three years. 

He did his childhood education with his father. His father was
/

E tienne Pascal, a local judge. Blaise Pascal had two sisters - 

Gilberte and Jacqueline. At the age of 16 years Pascal 

produced a short treatise ‘Mystic Hexagram’. It is still famous 

as Pascal Theorem. It states that: “if a hexagon is inscribed in 

a circle or conic then the three intersection points of opposite 

sides lie on a line”. The line is called ‘Pascal Line’.  

At the age of 19 years, Pascal constructed a mechanical 

calculator capable of addition and subtraction which is called 

as ‘Pascal Calculator’. Pascal made significant contributions 

in the field of Fluid Dynamics also. He died on 16th August, 

1962 at the age of 39 years before his work was published. In 

1665, his work was published in ‘Traite du triangle 

arithmetique’. 
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2.2. Pierre de Fermat’s personal life: 

Pierre de Fermat was born in 1607 at Beaumont-de-Lomagne, 

France. He was a French mathematician who is given credit 

for early developments that led to infinitesimal calculus. He 

made great contributions to Analytic Geometry, Probability 

Theory and Optics. He was famous for the Fermat’s principle 

for light propagation and ‘Fermat’s Last Theorem’, a 

celebrated problem in Number Theory. He died in 12th 

January, 1665 at Castres, France. 

 

3.  CORRESPONDENCE BETWEEN FERMAT AND 

 PASCAL
  

Correspondence between Fermat and Pascal was the 

beginning of the development of modern concepts of 

Probability, and it started in the context of the ‘Points 

Problem’ or ‘The Problem of Points’ or ‘The Problem of 

division of the stakes’ proposed by Chevalier de Méré in 

1654. This is a classical problem in Probability Theory, one of 

the famous problems that motivated the beginnings of the 

modern Probability Theory in the 17th century. It led Blaise 

Pascal to the first explicit reasoning about what today is 

known as an ‘Expected Value’. The problem concerns a game 

of chance with two players who have equal chances of 

winning each round. The players contribute equally to a prize 

pot, and agree in advance that the first player to have won a 

certain number of rounds will collect the entire prize. Now 

suppose that the game is interrupted by external circumstances 

before either player has achieved victory. How does one then 

divide the pot fairly ?  

It is tacitly understood that the division should depend 

somehow on the number of rounds won by each player, such 

that a player who is close to winning will get a larger part of 

the pot but the problem is not merely one of calculation; it 

also involves deciding what a ‘fair’ division actually is. 

Through discussions Pascal and Fermat not only provided a 

convincing, self-consistent solution to this problem, but also 

developed concepts that are still fundamental to Probability 

Theory. The starting insight for Pascal and Fermat was that 

the division should not depend so much on the history of the 

part of the interrupted game that actually took place, as on the 

possible ways the game might have continued, were it not 

interrupted. It is intuitively clear that a player with a 7-5 lead 

in a game to 10 has the same chance eventually winning as a 

player with a 17-15 lead in a game to 20 and Pascal and 

Fermat therefore thought that interruption in either of the two 

situations ought to lead to the same division of stakes. In other 

words, what is important is not the number of rounds each 

player has won yet, but the number of rounds each player still 

needs to win in order to achieve overall victory.  

On 29th of July 1654, a letter from Pascal to Fermat contains, 

among many other mathematical problems, the following 

passage: 

“M. de Méré told me that he had found a fallacy in the theory 

of numbers, for this reason: If one undertakes to get a six with 

one die, the advantage in getting it in 4 throws is as 671 is to 

625. If one undertakes to throw 2 sixes with two dice, there is 

a disadvantage in undertaking it in 24 throws and nevertheless 

24 is to 36 as 4 is to 6. This is what made him so indignant and 

made him say to one and all that the propositions were not 

consistent and arithmetic was self- contradictory: but you will 

very easily see that what I say is correct, understanding the 

principles as you do.” 

This famous problem mentioned above, one of the first 

recorded in the history of Probability and which challenged the 

intellectual giants of that time, can now be solved as shown in 

[5].  

To throw a 6 with one die in 4 throws means to obtain the 

point ‘6’ at least once in 4 trials. Define 41,  nX n
 as 

follows: 

  6,...,2,1,
6

1
 kkXP n

 

Further, assume that 4321 ,,, XXXX are independent. Put 

 6 nn XA
 
then the event in question is 

4321 AAAA 
. 

It is easier to calculate the probability of 

its complement which is identical to 
cccc AAAA 4321  . 

The trials are assumed to be independent and the dice 

unbiased. We have  

(P )4321

cccc AAAA
4

4321
6

5
)()()()( 








 cccc APAPAPAP ,  

hence 

1296

671

1296

625
1

6

5
1)(

4

4321 







 AAAAP

 

This last number is approximately equal to 0.5177. Since 

1296- 671=625, the odds are as 671 to 625 as stated by Pascal. 

Next consider two dice, let ( ), ///

nn XX  denote the outcome 

obtained in the nth throw of the pair and let 

 6;6 ///  nnn XxB .  

Then 
36

35
)( c

nBP  and 

24

24321
36

35
)....( 








cccc BBBBP  

24

2421
36

35
1)...( 








 BBBP  

This last number is approximately equal to 0.4914, which 

confirms the disadvantage. One must give great credit to 

Chevalier de Méré for his sharp observation and long 

experience at gaming tables to discern the narrow inequality 


2

1
)( 4321 AAAAP )....( 2421 BBBP   

His arithmetic went wrong because of a fallacious ‘linear 

hypothesis’. Of course according to some historians the 

problem was not originated with de Méré. 
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In some situations the equally likely cases must be searched 

out. This point was illustrated by the aforesaid famous 

historical problem called the ‘Problems of Points’[5]. 

For example: Suppose two players ‘A’ and ‘B’ play a series of 

games in which the probability of each winning a single game 

is equal to .
2

1
 They may simply play head or tail by tossing a 

coin. Each player gains a point when he wins a game and 

nothing when he loses. Suppose, they stop playing when ‘A’ 

needs 2 more points and ‘B’ needs 3 more points to win the 

stake. How should they divide it fairly ? It is clear that the 

winner will be decided in 4 more games. For in those 4 games 

either A will have won more than equal to 2 points or B will 

have won more than equal to 3 points but not both. All the 

possible outcomes of these 4 games using the letter A or B to 

denote the winner of each game are 

AAAA 

 

AAAB               AABA                       ABAA                    BAAA 

 

AABB         ABAB         ABBA          BAAB      BABA      BBAA 

 

ABBB                 BABB                 BBAB                  BBBA 

 

BBBB 

These are equally likely cases on grounds of symmetry.  

11
2

4

3

4

4

4



























 cases in which A wins the stake and 

5
4

4

3

4

















 cases in which B wins the stake. Hence the stake 

should be divided in the ratio 11:5.  

Objections were raised by learned contemporaries that the 

enumeration above was not reasonable because the series 

would have stopped as soon as the winner was decided and not 

have gone on through all four games in some cases. Thus, the 

real possibilities are as follows: 

 

AA         ABBB 

 

ABA        BABB 

 

ABBA       BBAB 

 

BAA         BBB 

 

BABA 

 

BBAA 

 

But these are not equally likely cases. In modern terminology, 

if these ten cases are regarded as constituting the sample space 

then  

       

           
16

1

8

1
,

4

1





BBABPBABBPABBBPBBAAPBABAPABBAP

BBBPBAAPABAPAAP

As A and B are independent events with probability .
2

1
 

By adding theses probabilities, we get  

 

 
16

5

8

1

16

1

16

1

16

1

16

11

16

1

16

1

8

1

16

1

8

1

4

1





stakethewinsBP

stakethewinsAP
 

Pascal did not explain his method this way. He said merely 

that “it is absolutely equal and indifferent to each whether they 

play in the natural way of the game, which is to finish as soon 

as one has his score or whether they play the entire four 

games”.  

 

4.1. Combinations and Binomials:  

If we start with a set of m objects and ask how many ways can 

we select a subset of n objects, we are basically asking how 

many ‘combinations’ are possible. In this regards the order is 

not matter.  

Let us consider an example: Suppose we are preparing a mixed 

vegetable in which there are 5 vegetables to choose from that 

include: brinjal, cabbage, carrot, cauliflower and potato.  

Let consider : A = brinjal , B = cabbage,  C = carrot, D = 

cauliflower , E = potato  

 

1. When choosing zero vegetable for the preparation, there is 

only one combination. 

No combination → 1 selection 

2. When choosing only one vegetable, the list of combinations 

will look like:  

A, B, C, D, E → 5 selections 

3. When choosing two different kinds of vegetables the list of 

combinations will look like: 

        AB, AC, AD, AE, BC, BD, BE, CD, CE, DE  → 10 

selections. 

4. In choosing three different vegetables the list of 

combinations will look like:  

ABC, ABD, ABE, BCD, BCE, CDE, BDE, ACD, ACE, ADE,  

→ 10 selections 

5. In choosing four different kinds of vegetables the list of 

combinations will look like:  

ABCD, ABCE, ABDE, ACDE, BCDE    → 5 selections 
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6. And finally, when choosing all five vegetables there is only 

one combination.  

ABCDE → 1 selection 

 

WAY TO CHOOSE  

FROM 5  

TOTAL VEGETABLES 









n

m
C  

COMBINATIONS 

No vegetable 










0

5
C  

1 

One vegetable 










1

5
C  

5 

Two vegetables 










2

5
C  

10 

Three vegetables 










3

5
C  

10 

Four vegetables 










4

5
C  

5 

Five vegetables 










5

5
C  

1 

Fig. 1 

 

If we consider total number of vegetables m and are going to 

take n vegetables (n ≤ m) at a time then we can claim that 










n

m
C is the number of n-element subsets of a set of S that 

contains m elements for any n,  0 ≤ n ≤ m . 

 

4.2 Pascal’s Triangle: 

4.2.1. History of Pascal’s Triangle: 

Pascal’s Triangle is one of the most famous and interesting 

patterns in Mathematics. The work on Pascal’s triangle began 

at least 500 years before the birth of Blaise Pascal. Between 

the 10th and 11th centuries, Indian and Persian 

Mathematicians started to work on this pattern of numbers. 

During the 10th century, Arab Mathematicians developed a 

mathematical series for calculating the coefficients for

 n
x1 , where Nn . In 1070, a Persian Mathematician 

Omar Khayyam worked on the Binomial Expansion and the 

Numerical Coefficients, which are the values of a row in 

Pascal’s Triangle [3]. 

 

4.2.2. Symbolical Definition of Pascal’s Triangle: 

In the first part Blaise Pascal’s publication entitled ‘Traite du 

triangle arithmetique’ (translated into English means, ‘A 

Treatise on the Arithmetical Triangle’), Pascal defined the 

triangle as an unbounded rectangular array. Fig.4, given below 

is an example of Pascal’s rectangular array [3].    

 

Fig. 2 

Using the rectangular matrix Pascal defined the triangle 

symbolically using {F(i , j), entry that occurs in the ith  row and 

the jth  column}  

 

where     F(i, j) = F (i, j-1)+ F(i-1, j)   ,           i, j = 2, 3, 4 . . .  

    

                F(i, 1) = F( 1,  j ) = 1  ,                   i, j = 1, 2, 3 . . .  

 

 

Fig. 3 

 

Fig. 4 
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‘Pascal’s Triangle’ relates to combinatorics [2, 3]. As an 

example: if we notice at the last column in the table in Fig. 1 

and compare that to Row 5 in Pascal’s Triangle in Fig. 3, we 

notice at the last two columns in the table together, the third 

entry is 








2

5
C corresponds to the fifth row second position. 

Thus, if one wants to find the number of two element subsets 

in a five element set, one can simply notice at Pascal’s 

Triangle. In the combination format   








n

m
C , the row 

number in Pascal’s Triangle corresponds to the m or the total 

number of objects to choose from and the position within the 

row in Pascal’s Triangle corresponds to the n or the number of 

objects to be chosen at a time. 

POWER BINOMIAL EXPANSION PASCAL’S 

TRIANGLE 

0 ( x+ 1)0 =1 1 (Row 0) 

1 ( x+ 1)1 = x+1 1,1 ( Row 1 ) 

2 ( x+ 1)2 = x2 + 2x + 1 1,2,1 ( Row 2) 

3 ( x+ 1)3 = x3 + 3x2 + 3x + 1 1,3,3,1 ( Row 3 ) 

4 ( x+ 1)4 = x4 + 4x3 + 6x2 + 

4x + 1 

1,4,6,4,1 ( Row 4 ) 

5 ( x+ 1)5 = x5 + 5x4 + 10x3 + 

10x2 + 5x + 1 

1,5,10,10,5,1 ( Row 

5 ) 

Fig. 5 

 

In Fig. 5, which contains a table showing the binomial 

expression (x + 1) raised to the powers of zero to 5.  We notice 

that for each expansion, the coefficients correspond to a row in 

Pascal’s Triangle [2,3]. 

We notice at the coefficients and their relationship to the 

‘Binomial Theorem’ which states that for any m ≥ 1.  

  m

m

mnnm

n

mmmmmmmm
ycyxcyxcyxcxcyx   ...22

2

1

10

 

4.2.3. Relation of Probability with Pascal’s Triangle, 

Combination and Binomials: 
 

Let us consider the following example which relates Pascal’s 

Triangle, Combinations and Binomials with Probability: 

Suppose the game is to roll a single die m times, and we 

consider it a win if a 6 occurs, but a loss if 1,2, 3, . . . ,5 occurs. 

Thus, we win with a probability of 
6

1
. If we repeat the rolling 

m times, what is the probability of getting exactly n wins? 

We consider the probability of success as p and the probability 

of failure as q such that            

p + q = 1.  So, p = 
6

1
 and q = 

6

5
. 

When we list the possible outcomes by using “W” for Win and 

“L” for Lose, the results of three repeats are shown below: 

WWW, WWL, WLW, WLL, LWW, LWL, LLW, LLL. 

For the three-repeat experiment, the chances of 0, 1, 2 and 3 

wins are given by: 

 P(0) = qqq = q3 which is equal to 030

0

3










qpC

 

 P(1) = pqq + qpq + qqp = 3pq2 which is equal to 131

1

3










qpC

 

 P(2) = ppq + pqp + qpp = 3p2 q which is equal to 232

2

3










qpC

 

 P(3) = ppp = p3 which is equal to 333

3

3










qpC

 

We notice that there is nothing special about repeating the 

experiment three times. So, looking at the above results we 

can conclude that if the experiment is repeated m times, the 

probability of obtaining exactly n wins is given by the 

formula:     

nmnqp
n

m
CnP 









)(

 

4.3. Abraham de Moivre’s Personal life: 

Abraham de Moivre was born on 26th May 1667 at Vitry-le-

Francois, a Kingdom in France. He was a great French 

mathematician known for ‘de Moivre’s formula’. This formula 

links complex numbers and trigonometry. He had a great 

contribution towards the development of Normal Distribution 

and Probability Theory. De Moivre wrote a book on 

Probability Theory entitled ‘The Doctrine of Chances’. It is 

considered as a gift for the gamblers. He first discovered 

Binet’s formula, the close- form expression for Fibonacci 

numbers linking the nth power of the golden ratio to the nth 

Fibonacci number. He was the first to postulate the Central 

Limit Theorem. He died on 27th November, 1754 in London, 

England. 

 

4.3.1. Application of Binomial Coefficients in Probability 

Theory: 

The extended Binomial Coefficients can be found in the work 

of Abraham de Moivre. A detailed theoretical discussion 

appeared in the third edition of the book ‘The Doctrine of 

Chances or A Method of Calculating the Probabilities of 

Events in Play’ (p.no.39-p.no.43) with illustrative examples. 

De Moivre’s main result appeared in the form of a lemma 

stated as: “To find how many chances there are upon any 

number of dice, each of them of the same number of faces, to 

throw any given number of points.” 

In fact De Moivre dealt with the generalized problem in which 

a fair die has an arbitrary number of faces. He introduced the 
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generating function for 








r

n
Cm

 
,
 calculated

  








r

n
Cm

  
numerically, and established the result

 

                                           
r

nm

r

m

n
m

t
r

n
C

t

t


























)1(

01

1

 

where  









r

n
Cm

 

is the coefficient of  
rt  in 

n
m

t

t













)1(

)1(  

To understand the utility of De Moivre’s result in the context 

of probability let us consider a die with ‘m’ faces marked,  

i = 0,1,2,…m-1. Assume that the turn up side probabilities are 

in geometric progression as follows [6]: 

Face (i) 0 1 2 . . . . m-1 

Probability (Pi) qm-1 pqm-2 p2 qm-3 . . . . pm-1 

 

Here necessary and sufficient restriction on ‘p’ and ‘q’ are 

10,10,1... 13221   qppqppqq mmmm

 

            (1) 

Note that the first restriction is equivalent to 

.pqpq mm    

Alternatively, parametrizations of (1) may yield other useful 

interpretations also. For instance, if qp  , then defining 

q

p
  one can easily see that (1) is equivalent to    

 
 

1,...2,1,0,
1

1





 miP

m

i

i



                      (2) 

Here rolling the die is equivalent to generating a value of a 

geometric random variable constrained to the range 

 1,...,2,1,0 m  with 1  and   being the success and 

failure probabilities respectively. 

Next, let us focus on the following event 

  m

nX  total score in ‘n’ rolls of ‘m’ sided- die with faces 

probabilities as described in (1)- (2). 

It is clear that 
 m

nX  has the familiar Binomial Distribution 

with index ‘n’ and success probability ‘p’ when m = 2. For 

this reason, the distribution of 
 m

nX  is called the Extended 

Binomial Distribution of order m, index n and parameter p. 

Note that, 
 m

nX  is simply the convolution of ‘n’ independent 

and identically distributed random variables corresponding to 

the scores of ‘n’ rolls of the die. Therefore, the probability 

generating function of  
 m

nX  can be written as    
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Expanding )(tG in powers‘t’ yields an expression for 

probability mass function of  
 m

nX  as  
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Clearly the expression (3) is the probability mass function of 

extended binomial distribution. 

Note that, 








r

n
Cm  satisfies the following recurrence relation  
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4.4. Different patterns of Pascal’s triangle: 

4.4.1. Hockey stick pattern in Pascal’s triangle : 

We can also look at sums of coefficients in Pascal’s triangle 

along a hockey stick pattern [7]. As long as one start the 

“hockey stick” with a 1, the linear string of numbers along 

any size of diagonal totals up to equal the number that is 

offset from that diagonal below the last number, as shown 

below in Fig. 6 :                                            

 

Fig. 6 
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4.4.2 Triangular numbers in Pascal’s triangle:  

Triangular numbers are those numbers which are obtained by 

continued summation of natural numbers. In mathematical 

notation the nth triangular number is given by  

nnTn  )1(.....321  

We can find these triangular numbers along certain diagonals 

in Pascal’s triangle [7]. The diagonal marked below represent 

triangular numbers as shown in Fig. 7. Of course the same is 

not seen for other diagonals.  

 
Fig. 7 

Note that if we are adding an even number of natural 

numbers, we see that by pairing up the first and last terms of 

this series we get 
2

n
sets of (n+1) which means that the result 

comes out to be 
2

n
 (n+1).  

On the other hand if we are adding an odd number of natural 

numbers it comes out to be 
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So, either way the addition comes out to be 
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Note that 

 

 
!)2)1((!2

!)1(

2

1








n

nnn
.

2

1







 


n

 

Thus, the numbers of the diagonal which is formed by 

triangular numbers must follow the above mathematical rule. 

This allows us to see why this diagonal is formed by 

triangular numbers. 

 

4.4.3. Square Numbers in Pascal’s triangle:   

A square number or a perfect square is an integer that is the 

square of an integer. In Pascal’s triangle square numbers can 

be found by adding up pairs of triangular numbers as shown in 

Fig. 8:    

 

Fig. 8 

We can see why the sum of 2 triangular numbers results in a 

square number as shown in below: 

2
22

1
22222

)1(
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)1(
n
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4.4.4 Fibonacci Numbers:  

The Fibonacci Numbers are series of numbers where each of 

the number is the sum of the two preceding numbers starting 

from 0 and 1 and the nth Fibonacci Number is denoted by Fn. 

In particular, the first few Fibonacci Numbers are 0, 1, 1, 2, 3, 

5, 8, 13, 21, 34, 55, 89, 144 and so on to infinity. These 

numbers have been observed in many real life situations like 

the bee ancestry code, spiral structure in aloes peals of flower, 

phyllo taxi and so on. The Golden Ratio is a ratio between a 

Fibonacci number with its preceding one. Those structures 

which follows Golden ratio = 1.618034 is assumed to be 

perfect, long lasting and beautiful. Mathematically, the 

Fibonacci Numbers can be defined as follows: 
 

1,1,0 2110   nFFFandFF nnn  

 

In some books F0, the 0 is removed and the Fibonacci 

Sequence starts with F1=F2=1. 

 

5.1. Fibonacci’s personal life: 

Fibonacci, an Italian Mathematician was born in 1170 in Pisa 

Republic. He was one of the most talented Western 

Mathematicians of the middle ages. He popularized the 

Hindu-Arabian numeral system in Europe. In 1202, he wrote 

the book ‘Liber Abaci’. He also introduced Europe to the 

sequence of Fibonacci numbers. He died in 1250 in Pisa 

Republic. 

5.2. Fibonacci sequence and it’s prehistory: 

Fibonacci numbers were first introduced in the western world 

by Italian Mathematician Fibonacci in his book “Liber Abaci” 

(1202). But these numbers appear to have first arisen as early 

as in 200 BC in the works of Pingala (Pingala was an ancient 

Indian Mathematician, who wrote the book “Chandahsastra” 
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also called “Pingala-sutras”) on enumerating possible patterns 

of sounds and rhythms in poetry and speech formed from 

syllables of two lengths. In Sanskrit as well as in Prakrit 

vowels are of two kinds- Long and Short. Virahanka’s and 

other Prosodicists’ analysis were to compute the number of 

matras (metre) of a given overall length that can be composed 

of these syllables. Denoting a short vowel S by 1 unit length 

and a long vowel L by 2 units length, the solution would be 

[9]: 

 

Patterns of  

length n 

Types No. of 

patterns 

1 S 1 

2 SS, L 2 

3 SSS, SL; LS 3 

4 SSSS, SSL, SLS ; LSS, LL 5 

5 SSSSS, SSSL, SSLS, SLSS, SLL;LSSS , 

LSL, LLS 

8 

6 SSSSSS, SSSSL, SSSLS, SSLSS, SSLL, 

SLSSS, SLSL, SLLS; LSSSS,  LSSL, 

LSLS, LLSS, LLL. 

13 

 And so on.  

 

The patterns of length n arising out of those of length (n-1) 

and those of length (n-2) are differentiated by the semi-colon 

(;). It can be seen that a pattern of length n can be formed by 

prefixing S to a pattern of length (n-1) and prefixing L to a 

pattern of length (n-2). 

 

5.3. Fibonacci Distribution: 

Let us consider a pattern of length 2, say HH. Let X be a 

random variable representing the number of throws of getting 

this pattern for the first time and the experiment ends when 

this happens. The random variable X takes values n with 

probabilities: 

  ...,,,n,
F

nXP
n

n 432
2

1 







 

                   (4) 

The above expression (4) is known as probability mass 

function of ‘Fibonacci Distribution’ [9]. 

This can easily be verified from the fact that the number of 

trials n required for pattern HH can be obtained by adding the 

number of trials required  1n with those of the number of 

trials required  2n ( as the case of the Sanskrit prosody 

example considered above ). 

 

5.4. Relationship between Pascal’s triangle and the 

Fibonacci sequence: 

 

Figure no : 9
 

 

If we take Pascal’s Triangle and draw the slanting lines as 

shown in Fig.9 and add the numbers that intersect each line, 

the sums turn out to be the values in the Fibonacci series [4]: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . . 

 

5.5. Application of Fibonacci number in Probability 

Distribution: 

Shane [8] provided a good application of Fibonacci Numbers 

in applied probability theory. Let nX be the number of flips 

needed to advance the marker to position ‘n’. We would like 

to investigate the distribution of the random variable nX . 

For n = 1, the random variable is simply geometric  

i.e. X1 = number of trials until the first success occurs. 

So we start with n = 2 and the probability of head
2

1
p . 

Let     ...4,3,2,22  kkpkXP  
 

Now        
3222

2

1
3,

2

1
2  THHPpHHPp ,   

     THHPheadstwoofrunnowithtrialskPkp .32   

2,k 2,k

k 3 k 3

A A1
. , k 1, 2, 3, ... (5)

2 2 2 

   
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where kA ,2
 number of arrangements of k heads and tails 

with no two consecutive heads. 

To evaluate kA ,2 , we note that we may classify the allowable 

arrangements according to whether the last tail is in the kth  or 

(k-1)th position.  

Let ika ,,2  number of arrangements of k heads and tails 

having no two consecutive heads and having a tail in the ith 

position, 1,  kki , gives  
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 1,,2,,2,2  kkkkk aaA .  

But 
1,2,,2  kkk Aa and 

2,21,,2   kkk Aa yielding  

 2,21,2,2   kkk AAA
                                      (6)

 

For k=1, the possible arrangements are H and T. Thus A2,1=2. 

For k=2, the possible arrangements are TH ,HT and TT. Thus 

A2,2=3. 

From (5) and (6) we get    ,...4,3,2,
2

2
2   k

F
kp

k

k  

where Fk = kth  Fibonacci Numbers with    F0 = F1 = 1. 

 

6. CONCLUSION 

In this paper, we have compiled some of the very early works 

of Blaise Pascal and Pieree de Fermat which we found in our 

search for the chronological development of Probability 

theory from its inception. It is really interesting to note how a 

practical problem proposed by a gambler attracted the above 

named two giant mathematicians and how they arrived at a 

mathematical solution by mutual correspondence through 

letters. We further have compiled some of the works of 

Abraham de Moivre and Fibonacci and how some of the 

subsequent researchers have linked those to probability 

theory. Some of the number patterns observed by different 

researchers in case of Pascal’s triangle and Fibonacci 

sequence have also been compiled. Though we do not claim 

any fundamental contribution through this paper, yet the 

compilations in the paper can give information to the readers 

about the early stage of development of Probability theory 

which has become such an indispensable tool in modern 

scientific research.  
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