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Abstract

In this paper we have proved sufficient condition for the
existence and uniqueness of fixed point theorem for three self
independent maps in 2-mertic space. Our result generalizes
and extends many previous results such as Singh and Lal[7],
Khan, sastry and Rao[11] etc,
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INTRODUCTION

There have been a number of generalization of a metric space.
One such generalization is 2-metric space was initiated by
Gahler[4],[5]. Geometrically in plane 2-metric function
abstracts the properties of the area function for Euclidean
triangle just as a metric function abstracts the length function
for Euclidean segment. After the introduction of concept of 2-
metric space, Many authors establishes an analogue of
Banach’s Contraction principle in 2-metric space. Iseki for
the first time developed fixed point theorem in 2-metric space.
Since then a quite number of authors establishes fixed point
theorem in 2- metric space.

Lal and Singh [7] proved the following

Theorem (1.1) Let S and T are two self maps of a complete 2-
metric space (X, d) such that:

d(Sx, Ty, a) < aid(x, y, a) + a2d(Sx, X, a) + asd(Ty,
y, a) + a4d(Sx, y,a)+asd(Ty, X, a)

forall x, y, a e X, where a; (i=1, 2, 3, 4,5) are
positive integers such that

(1-as-as) > 0 and (1-az-as) >0.

Then S and T have a unique common fixed point .

PRELIMINARIES:

Now we give some basic definitions and well known results
that are needed in the sequel.

Definition (2.1)[4][5]: Let X be a non-empty set and d: X x X
x X — R .. Ifforall x,y,z, and uin X.

We have

(d1) d(x, y, ) =0 if at least two of X, y, z are equal.
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(d2) for all x #y, there exists a point z in x such that d(x, y, z)
#0.

(ds3) d(x, Y, z) =d(x, z, y) = d(y, z, X) =..and so on
(ds) d(x,y, 2) <d(x,y,u) +d(x,u,2)+d(u,Y,2).

Then d is called a 2-metric on X and the pair (X, d) is called
2-metric space.

Definition (2.2) : A sequence {x, } ey in @ 2-metric space
(X,d) is said to be a cauchy sequence if lim d(x,,, x,, a) =
m,n— oo

0 forallae X

Definition (2.3) : A sequence {Xn}n < n in a 2-metric space (X,

d) is said to be a convergent at x ¢ X

if lim d(x,,x,a) =0 for all a € X. The point x is called the
n— oo

limit of the sequence.

Definition (2.4) : A 2-metric space (X, d) is said to be
complete if every Cauchy sequence in X is convergent.

Lemma (2.5):][10] Let {Xn}n e~ be a sequence in a complete 2-
metric space (X,d) then there exists r €(0,1) such that
d(Xnxp 41, @) < r(x,_1, Xy, a) for all non negative integer n
and every a in X then {x,} converges to a point in X.

MAIN RESULT:

Theorem (3.1):-If T,T; and T, are three operators mapping a
complete 2-metric space (X,d) to itself be sequentially
continuous and if for all x,y a in X.

(l) mln{d (Tlp(x)!TZQ(y)!a)v d(Tx! Tlp(Tx)' a)a
d(Ty; Tzq(TY); a) ’ d(Tlp(Tx)i TZqup(Tx)la)! d
(Ty, T,T,P(Tx), a)} + Kmin{d(Tx, T,7(Ty), a)
d(Ty, T,P(Tx), a),d (Tx, TP T, (Ty), a),
d(T,1(Ty), T,T,P(Tx), a)} <r d(x,y,a), where r € (0,1) and K
is a real number.
(i) d(Tx,Ty.a)<d(xy.a)
(iii) TTP=T,’T

TT, =TT
then there exists a unique common fixed point of T,T; and T,
if k>r.

Proof:- Using condition (ji) & (jij),condition (j) becomes
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mln { d (Tlp(x)lTZq(y)! a)v d (‘x'Tlp(y)!a)l d (y! Tzq(Y).a),
d(T,P (%), LT, P (x), @),  d(y, T, (x), a)} + K
min{d(x, T,7(y), a).d(v, T;" (x), @).d(x, T, " T, (), a),

(TZq (Y)' TZqTIp(x)' a)} SI' d(Xa}I»a)

Now for given x, in X, we Consider a sequence {Xn}n c n @S
X, %1 =T1P (%x0), %2=T1 1 (x1), Xn=
T, (X2n-1)s X2n+1=T1" (X27)

If for some m, x,,=x,,.+,, then T;? and T,? have a common
fixed point x, in X .Thus we suppose that x,, # X1

From the condition for x=x,,, & y=x,,.1, We have

min{d
d(x2n+1.T2 " (X2041).8),
d(y, TP (x2n), @)}
Kmin{d(xzn, T17 (X2n41), @),d(xXan 4, T1 P (x21),),
d(x20, TP T2 (Xan41), @), AT %0044, To 1 Ti P x50, @)}

(T1PX2n, T2 X041, @), 0(X20, T1 P (x2,)0),
d(TyP (x20), T2 Th P (x20), @),
+

<r d(x2n, X2n+1,2) fOr every non—negative integer n.

or, Min{d(xzp11, X2n42,8),0(X2n, X2n4+1,8)}

<r d(x3n, X2n41,2) fOr every non—negative integer n.

Since (X ,d) is a 2-metric space, d(x2,, X2n41,8)70 for some a
in X.

Hence if d(x2n, X241,8)< d(X2n, X27142,8)-

Then we have d(x,p, X2741,8)<t d(Xop, Xon41,8) VI € (0,1)

which is impossible and so we have d(x;,41, Xon42,3)<
rd(x2, X2n41,8)-Similarly we have

d(X2n, Xon41,8)<rd(X2p 41, X2n,8), Therefore

d(xm, Xma1,8)<rd  d(xp_q, xp,d8) for every non-negative
integer m and by lemma (2.5).The sequence {x,} converges
to some point x, in X.i.e lim x,, = x,

n—-oo
Now,

+ +

d(x, TP (x0),0)<  d(xg T,P (0):x2n)
d(x2n4+1.T17 (x0),8)

= d(x0,T1P (x0),X2n) + d(x0, X2,,8) + A(T1 (x25,), 1P (%0).2)

d(xo, X2p,2)

—0asn— o

Therefore, d(x,,T;? (x,),)=0 V a in X,thus x,is a fixed point
of T,”.Similarly x, is also a fixed point of T,%.i.e x, is the
common fixed point of TP and T,?. Next let k>r and to prove
the uniqueness of a common fixed point of T;” and T,?
with x,# v,

Then d(x,,y,,8)#0. For all ain X,

min{ d (T\7(x0), T2 (o), @),
(x0, 1" (¥o), @),
d(x,, T 1T, P (%), @)}
d(yo. 71 (x0).2),
d(T27 (7o), T2 1T1 " (x0), @)}

d  (x,T2%(y),a), d
d(T1p(xo)’ Tqu1p(x0)’ a),
min d(x0,T27(v0).2),
d(xo, T, T, (o), @),

+ K
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Sr d(xOI y()!a)

or, Kd(xo, ¥9,a)< 1 d(x0, y0,3)
ie d(xo, ¥o,2) < d(xo,¥o,8),which is impossible.
This proves that T,” and T,? have a unique common fixed
point. TP (T1(x0))=
Ty (TF (x0))=T4(x,), but x, is the unique fixed point of T} (x,).

So T;(xg)= xq.similiarly T,(xo)=x,, and also x is also the
unique fixed point of T, and T5.

Now, d (xo, Txg , @) = d (T," (%), T, (T %), a)
So,

min  {d (T\"(x), T2 (Txo),a), d (Txo,Ti"(Txo), @),
d(Tzq(xo)‘Tzq(quo)'a)’d(T1p(Txo),Tqu1p(Txo);a)-
d(T9%y,T,9T;PTxg,2)} + K min{ d(Tx,, T,7(T%,),a), d
(T9x0 , TP (Txo), @), d(Txo T, PT,9(T9x),a),
d(T, 1T V%, T, T, P (T x0),2)}

<rd(xg, T xg, )

of, Kd(Txy, Ty, a) <rd (xq, T xg, @)

or, d(Txo,T%xo, @) <= d (xo, T xo, @) Which gives

d (xq, T x4, @)=0 thus x,=T x,

Hence x, is the uniqgue common fixed point of T,T; &T,
Remarks:

(i) If we take T=I, theorem reduces to:

min { d (Tlp(x)!TZq(x)!a)! d (X!Tlp(x)! a)! d (leZq(y)' a),
d(T,? (%), T,T,P(x),a), d(y,T,IT,?(x),a)} + K min{ d
(y7T2q(y)' a), d (y!Tlp(x)! a), d(x' TlpTZq(x)' a)a
d(TZq(x)! TZqup(x)! a)} S r d(X,y,a)
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