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Abstract 

The paper describes kinematic control for hexapod robot with 
three segment articulated body. Forward and inverse 
kinematics for articulated body described. Static stability 
studied in case of climbing so called cliff obstacle. Conditions 
for static stability during climbing sequence provided. 
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INTRODUCTION 

Study of walking machines is rather old question. Starting in  
Ancient China [1] primitive mechanical designs and ending 
with state of the art reinforcement learning [2] and model 
predictive control [3] approaches. Multilleged walking robots 
are very complicated systems in terms of control and planning 
due to significant number of degrees of freedom (d.o.f.) and 
actuators, complexity of the environment and etc. Nowadays 
the most complex and robust walking machines are made by 
Boston Dynamics company[4]. Its robots are capable of 
working in human environment and outdoors. The basis of their 
solution is model predictive control and non-linear 
optimization. Their robots are based on the kinematics of 
mammals - dogs or horses. The kinematics of hexapod robots 
in turn is based on insects and spiders. 
The main idea of the article – to study robot woth articulated 
body, that differes from conventional mainstream hexapods 
have rigid body with legs attached symmetrically. 
Conventional single body arrangement has its limitations but 
still can be surprisingly agile and overcomes complex obstacles 
as it was demonstrated in [5, 6]. Introducing additional degrees 
of freedom – making multiple rigid segments to be a body 
instead of one rigid body segment increases robot’s geometric 
patency. On the other hand, there is a trade off – the complexity 
of control will increase along with number of d.o.f. and 
actuators but the robot will climb up higher obstacles or do 
maneuvers that robots with rigid body are not capable of. For 
example, go through narrow passage, sharp ditch and 
windrows, climbing up cliffs. 
 
ROBOT KINEMATICS 

Let us consider robot depicted on figure figure 1. It has six so-
called insectomorphic legs, i.e. insect-like leg kinematics. Each 
leg has three degrees of freedom. Body consists of three rigid 
segments connected with hinges to each other. Body that 
consists of several segments connected to each other with 
controllable joints and can change its geometry is called 
articulated. 
The total number of degrees of freedom (d.o.f.) for specified 

robot is 26: 
 3 d.o.f. for each leg, i.e. 18 d.o.f. for all legs 
 2 d.o.f. for body segments 
 6 d.o.f. for the whole system as one single body 

Overall it is 26 d.o.f. and 20 of them can be controlled with an 
actuators installed in corresponding rotational joints. Leg 
kinematics is well known and was already studied in all details. 
 

 
Figure 1. Hexapod robot with articulated body 

 
CLIFF OBSTACLE 

Cliff obstacle consists of three planes two of which are 
horizontal and one is vertical as depicted on figure 2. 
 

 
Figure 2. Cliff obstacle 

 
The distance between two horizontal planes is equal to H. The 
ratio between robot’s body length and cliff’s height is equal to 
1.0. Robot starts from the lower horizontal plane and his goal 
is to climb up the higher horizontal plane using only the 
Coulomb friction. 
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To overcome cliff obstacle robot moves using so-called gallop 
gait when a pair of symmetrical legs from left and right sides 
of the robot are in transition state and the others are in support 
state, i.e. in every moment of time there are four legs in contact 
with obstacle. Body kinematics will be considered in next 
section. 
 

BODY KINEMATICS 

Robot’s body consists of three equal rigid segments connected 
to each other with rotational joints with axes aligned in lateral 
direction of the body. Each segment has a pair of legs 
connected. Additional joints in the robots body allow to bend 
body and follow the surface shape and shift legs mounting 
points towards to supporting surface.  
The following procedure is defined to calculated body joint 
angles. Initial and goal poses for middle segment are connected 
with a cubic spline curve, which represents target trajectory for 
middle segment. If segments and their trajectory are known 
then the taks is solved through simple linear approximation. 
 

 
Figure 3. Articulated body kinematics 

 
To keep the contact points on the goal trajectory all joints 
should act in a coordinated way. At every moment of time all 
joint coordinates must be updated to keep the end effector at 
the goal position. Additional mobility inside the robots body 
should be taken into account because all legs are connected to 
the different segments.  Target point �̅�𝑖 for i-th leg is given in 
global reference frame. To obtain leg joint angles the inverse 
kinematic equations are used, point �̅�𝑖 must be translated into 
leg’s reference frame. To manage all relative coordinate 
transformations of shifts and rotations between body segments, 
legs and joints, homogenous coordinates are used. Calculation 
of all coordinate transformation for each leg at every moment 
of time can be easily done automatically through well-known 
kinematics of a robot. 
The main differences of articulated body from single segment 
body are: 

 Higher ability to overcome obstacles – segments 
follow the surface; 

 Articulated body is able to shift mounting points of its 
legs – service region is not constant, i.e. in some 
conditions robot can reach contact surface and put legs 
on it; 

 Center of gravity is shifted in a wider range with all 
else parameters being equal – critical parameter in 
static stability preservation in extreme conditions. 

 

STATIC STABILITY 

The system is stable when sums of all external forces and all 
momentums are equal to zero.  
 

 

{
 
 

 
 ∑�̅�𝑖

𝑁

𝑖=1

+ �̅� = 0

∑[�̅�𝑖 × �̅�𝑖] + [�̅�𝑐 × �̅�] = 0

𝑁

𝑖=1

 (1) 

 
The following configurations of supporting legs displacement 
should be studied for static stability: 

 All legs on some horizontal plane. This case is already 
well studied in ; 

 Front legs lean against the vertical plane and rear legs 
stand on the lower horizontal plane. Let us numerate 
this configuration as Number One. 

 Front legs are placed at the upper horizontal plane, 
while the rear legs stand on the vertical plane. Let us 
numerate this configuration as Number Two. 

 All legs stand on the upper horizontal plane – this case 
is similar to the initial one. 

 
Considering the robot as a slow moving system at every 
moment of time let us find necessary conditions for static 
stability.  
Reference frame Oxyz is defined as depicted on the figure 4. 
 
Equations for first configuration 

 

 
Figure 4. First static configuration 

 

Contact points of the legs for first configuration are as follows: 
 

 �̅�1 = (𝑑, 0, ℎ),

    �̅�2 = (−𝑑, 0, ℎ),

�̅�3 = (𝑑, 𝑙, 0),

    �̅�4 = (−𝑑, 𝑙, 0).

 (2) 

 
There is a reactions �̅�𝑖 acting on the robot leg at each contact 
point: 
 

 �̅�𝑖 = 𝑁𝑖 ∙ �̅�𝑖 + 𝐹𝜏
𝑖 ∙ 𝜏�̅� + 𝐹𝜈

𝑖 ∙ �̅�𝑖 (3) 
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The 𝜏�̅� and �̅�𝑖 vectors have the following coordinates: 
 

 𝜏1̅ = (0,0,1), �̅�1 = (1,0,0), �̅�1 = (0,1,0),

𝜏2̅ = (0,0,1),

𝜏3̅ = (0,1,0),

𝜏4̅ = (0,1,0),

�̅�2 = (1,0,0),

�̅�3 = (1,0,0),

�̅�4 = (1,0,0),

�̅�2 = (0,1,0),

�̅�3 = (0,0,1),

�̅�4 = (0,0,1).

 (4) 

   
 
The center of gravity has coordinates: 
 

 �̅�𝑐 = (0, 𝑦𝑐 , 𝑧𝑐) (5) 
 
The gravity force �̅� acts on the center of gravity of the robot: 
 

 �̅� = (0,0, −𝑃) (6) 
 
The equations of static stability for first configuration are as 
follows: 
 

 

{
  
 

  
 

𝐹𝜈
1 + 𝐹𝜈

2 + 𝐹𝜈
3 + 𝐹𝜈

4 = 0

𝑁1 + 𝑁2 + 𝐹𝜏
3 + 𝐹𝜏

4 = 0

𝐹𝜏
1 + 𝐹𝜏

2 + 𝑁3 + 𝑁4 = 𝑃
(𝑁1 + 𝑁2)ℎ + 𝑃𝑦𝑐 = 𝑙(𝑁3 + 𝑁4)

𝑑(𝐹𝜏
1 − 𝐹𝜏

2 + 𝑁3 − 𝑁4) = ℎ(𝐹𝜈
1 + 𝐹𝜈

2)

𝑑(𝑁1 − 𝑁2 + 𝐹𝜏
3 − 𝐹𝜏

4) = 𝑙(𝐹𝜈
3 + 𝐹𝜈

4)

 (7) 

 
The total number of equation is six. The number of unknown 
variables is twelve. Let us assume that the friction forces are 
modelled with Coulomb mathematical model:  
 
𝐹𝑗
𝑖 = 𝑘𝑗

𝑖𝑁𝑖, where 𝑘𝑗𝑖 is coefficient of Coulomb friction for i-th 
leg in j-th direction and 0 < 𝑁𝑖. 
 
After substitution of the Coulomb friction model, the equations 
(7) will transform into the following system: 
 

 

{
  
 

  
 

𝑁1𝑘𝜈
1 + 𝑁2𝑘𝜈

2 + 𝑁3𝑘𝜈
3 + 𝑁4𝑘𝜈

4 = 0

𝑁1 + 𝑁2 + 𝑁3𝑘𝜏
3 + 𝑁4𝑘𝜏

4 = 0

𝑁1𝑘𝜏
1 + 𝑁2𝑘𝜏

2+𝑁3 + 𝑁4 = 𝑃
(𝑁1 + 𝑁2)ℎ + 𝑃𝑦𝑐 = 𝑙(𝑁3 + 𝑁4)

𝑑(𝑁1𝑘𝜏
1 − 𝑁2𝑘𝜏

2 + 𝑁3 − 𝑁4) = ℎ(𝑁1𝑘𝜈
1 + 𝑁2𝑘𝜈

2)

𝑑(𝑁1 − 𝑁2 + 𝑁3𝑘𝜏
3 − 𝑁4𝑘𝜏

4) = 𝑙(𝑁3𝑘𝜈
3 + 𝑁4𝑘𝜈

4)

 (8) 

 
The number of unknowns variables remains the same, and 
besides 𝑁𝑖 > 0. Let us introduce additional assumptions that 
the left and the right side of the robot are loaded equally and 
coefficients of friction are the same between left and right legs: 
 

 

{
  
 

  
 
𝑘𝜈
1 = −𝑘𝜈

2 = 𝑘𝜈
𝑘𝜈
3 = −𝑘𝜈

4 = 𝑘𝜈
𝑘𝜏
1 = 𝑘𝜏

2 = 𝑘𝜏
𝑢

𝑘𝜏
3 = 𝑘𝜏

4 = 𝑘𝜏
𝑑

𝑁1 = 𝑁2 = 𝑁𝑢
𝑁3 = 𝑁4 = 𝑁𝑑

 (9) 

 
Finally, the system of three equations and four variables 
obtained: 

 
 

{
𝑁𝑢 +𝑁𝑑𝑘𝜏

𝑑 = 0

2𝑁𝑑 + 2𝑁𝑢𝑘𝜏
𝑢 = 𝑃

2ℎ𝑁𝑢 + 𝑃𝑦𝑐 = 2𝑙𝑁𝑑

 (10) 

 
Number of unknowns is still greater than number of equations. 
One more assumption must be introduced: 
 

 𝑘𝜏
𝑢 = −𝑘𝜏

𝑑 = 𝑘 > 0 (11) 
 
Finally, the system of three equations and three unknowns 
obtained: 
 

 
{

𝑁𝑢 − 𝑁𝑑𝑘 = 0
2𝑁𝑑 + 2𝑁𝑢𝑘 = 𝑃
2ℎ𝑁𝑢 + 𝑃𝑦𝑐 = 2𝑙𝑁𝑑

 (12) 

 
Let us find unknown reactions 𝑁𝑢, 𝑁𝑑 and 𝑘. From first and 
second equations of (12) follows: 
 

 
𝑁𝑑 =

𝑃

2(1 + 𝑘2)

𝑁𝑢 = 
𝑘𝑃

2(1 + 𝑘2)

 (13) 

 
After substituting (13) to the third equation of (12) we have 
quadratic equation relative to 𝑘: 
 

 𝑦𝑐𝑘
2 + ℎ𝑘 + (𝑦𝑐 − 𝑙) = 0 (14) 

 
There are two solutions for quadratic equation (14). To make 
robot able to climb up the cliff without any hooks and adhesive 
forces the friction coefficient 𝑘 must satisfy the condition: 
 

 0 <  𝑘 <  1 (15) 
 
It is easy to show that only the following solution fulfills the 
requirements of the accounted configuration: 
  

 
𝑘 =  −

ℎ − √ℎ2 − 4𝑦𝑐
2 + 4𝑙𝑦𝑐

2𝑦𝑐
> 0 (16) 

 
The solution (16) is always greater than zero. Let us study when 
the 𝑘 < 1 condition is fulfilled for 𝑘. To study this three 
dimensional parametric space the following dimensionless 
parameters will be introduced. 
 
Dimensionless parameters 

It is easy to see that the expression (16) for 𝑘 depends on 𝑙, ℎ 
and 𝑦𝑐 parameters that are measured in meters – they all have 
the same physical dimension. Let us use this circumstance and 
define the following dimensionless parameters: 
 

 
𝑝1 ≔

ℎ

𝑦𝑐
,

𝑝2 ≔
𝑙

𝑦𝑐
.

, 𝑤ℎ𝑒𝑟𝑒 𝑦𝑐 > 0 (17) 
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After substitution of (17) into the expanded and simplified 
expression (16) we get the following solution depicted on 
figure 5. 

 
Figure 5. Solution for first configuration with labeled levels 

for value of k coefficient 
 

From figure 5 it becomes clear that if there is lack of friction in 
contact points the robot should: 

 move its center of gravity closer to the rear legs; 
 choose contact points higher on the vertical plane for 

front legs; 
 choose contact points closer to vertical plane for rear 

legs. 
 

Equations for second configuration 

 

 
Figure 6. Second static configuration 

 
Leg contact points for the second configuration are: 
 

 �̅�1 = (𝑑, 𝑙, 𝐻),

    �̅�2 = (−𝑑, 𝑙, 𝐻),

�̅�3 = (𝑑, 0, ℎ),

    �̅�4 = (−𝑑, 0, ℎ).

, 𝑤ℎ𝑒𝑟𝑒 𝑙 < 0, 𝐻 < ℎ, 𝑦𝑐 > 𝑙 (18) 

 
Similarly, for the second configuration we get the following 
system of three equations: 
 

 
{

𝑁𝑢 − 𝑁𝑑𝑘 = 0
2𝑁𝑢 + 2𝑁𝑑𝑘 = 𝑃

  2𝑁𝑑ℎ + 𝑃𝑦𝑐 = 2𝑁𝑢(𝑙 + 𝐻𝑘)
 (19) 

 
There are two possible solutions for 𝑘 from (19). It is easy to 
see that this time 𝑦𝑐 can change its sign because of center of 
gravity transition above the upper edge of the cliff. Only the 
following solution for k stays greater than zero for every sign 
of 𝑦𝑐: 
 

 
𝑘 =  

(𝐻 − ℎ) − √(𝐻 − ℎ)2 − 4𝑦𝑐
2 + 4𝑙𝑦𝑐

2𝑦𝑐
 (20) 

 
Let us find solution of inequality 𝑘 < 1 using the following 
dimensionless parameters: 
 

 
𝑝1 ≔ 

(𝐻 − ℎ)

𝑦𝑐

𝑝2 ≔ 
𝑙

𝑦𝑐

, 𝑤ℎ𝑒𝑟𝑒 𝑦𝑐 ≠ 0 (21) 

 
Parts of the solution for inequality (15) in dimensionless space 
for second configuration are depicted on figure 7 and figure 8. 
 

 
Figure 7. Solution for second configuration when 𝒚𝒄 > 𝟎, 

with labeled levels for k coefficient 
 
From figure (7) it can be shown that for case when 𝑦𝑐 > 0 to 
reduce the value of 𝑘 the robot should: 

 keep its center of gravity far from front legs; 
 keep rear legs as low as possible; 
 keep front legs closer to cliff edge. 

 
From figure (8) it can be shown that for case when 𝑦𝑐 < 0 to 
reduce the value of 𝑘 the robot should: 

 keep its center of gravity closer to front legs; 
 keep rear legs as low as possible; 
 keep front legs closer to cliff edge. 

 
We have considered the second configuration in assumption 
that 𝑦𝑐 ≠ 0. Let us see what happens when center of gravity is 
right above the cliffs edge in second configuration. 
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Figure 8. Solution for second configuration when 𝒚𝒄 < 𝟎, 

with labeled levels for k coefficient 
 
Second configuration. 𝒚𝒄 equals to zero 

If the 𝑦𝑐 = 0 the equations of static stability equations (19) will 
transform into the following system: 
 

 
{

𝑁𝑑 −𝑁𝑢𝑘 = 0
2𝑁𝑢 + 2𝑁𝑑𝑘 = 𝑃
𝑁𝑑ℎ = 𝑁𝑢(𝑙 + 𝐻𝑘)

 (22) 

 
There is only one solution for 𝑘 for system (22): 
 

 
𝑘 =  −

𝑙

(𝐻 − ℎ)
 (23) 

 
Due to condition 𝑙 < 0, the expression for 𝑘 is always greater 
than zero. From the other side, the requirement 𝑘 < 1 is 
equivalent to the following inequality: 
 

 0 < −𝑙 < (𝐻 − ℎ), 𝑤ℎ𝑒𝑟𝑒 𝑙 < 0 (24) 
 
Inequality (27) means that to provide stable configuration in 
case when 𝑦𝑐 = 0 the contact points should be chosen in a way, 
that the front legs should be closer to cliff edge than the rear 
legs. 
Reactions 𝑁𝑢 and 𝑁𝑑 will have the following expressions: 
 

 
𝑁𝑢 = 

𝑃(𝐻 − ℎ)2

2((𝐻 − ℎ)2 + 𝑙2)

𝑁𝑑 = − 
𝑃𝑙(𝐻 − ℎ)

2((𝐻 − ℎ)2 + 𝑙2)

 (25) 

 
CONCLUSION 

The analysis of the robot configurations in different poses on 
the cliff proved that stable quasi static motion is possible for all 
steps, i.e. the robot is capable of climbing the cliff with static 
stability preservation using only Coulomb friction forces.  
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