
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5809

Higher Initial Value for Time Demand Analysis

Saleh Alrashed

Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Abstract

Time demand analysis of real-time has been an active research

area and a plethora of results have been derived for the

classing time demand analysis by relaxing the assumption

such as making task periods harmonic, restricting the

scheduling points to a subset, obtain guess values, and

avoiding testing system feasibly at unnecessary points.

However, till date, the complexity of the time demand

analysis still remains pseudo-polynomial. In this work, we

propose a higher initial value for testing the feasibility of a

lower priority task based on the feasibility analysis of

immediate higher priority task. The proposed technique shows

improvement over closely related counterparts. Experimental

results are aligned with theoretical formulations presented in

this paper.

Keywords: Operating Systems, Time Demand Analysis Real-

Time Systems, Fixed-Priority Scheduling, Feasibility

Analysis, Online Schedulability Test.

INTRODUCTION

A major challenge in the design of real-time embedded system

is to validate its correctness. Such systems are not only

expected to be logically correct but the timing constraints of

these systems must also be respected. Various scheduling

techniques have been proposed in literature to verify the

correctness of real-time system. The real-time scheduling

algorithms can be divided into two main types i.e., preemptive

and non-preemptive systems. Though non-preemptive are

simple when it comes to implementation, such policy loses its

attraction when higher system utilization is desired. Due to the

wider applicability and acceptance, preemptive systems have

been investigated actively in the currently and a number of

feasibility tests have been derived for single processor

systems that can be easily extended to multi-processor

systems [1-3, 11, 19].

The preemptive class of scheduling algorithms can be further

classified into two major domains: (i) fixed priority, and (ii)

dynamic priority [1, 2]. The main difference between both

types is the priority assignment. Under fixed-priority

algorithm, each task is assigned a unique priority that remains

fixed as long the task set is under operation. In the dynamic

priority techniques on the other hand, the priority of the task

may change at run time and hence becomes unpredictable

when the system becomes overloaded. In addition, fixed

priority systems are simple from implementation perspective

and can be easily implemented atop many available operating

systems.

The problem of scheduling fixed systems was first addressed

by Liu and Layland in 1973 [1] under simplified assumptions

and authors derived the optimal static priority scheduling

algorithm called rate monotonic (RM) algorithm for implicit-

deadline model (when deadlines coincide with respective

periods). Since then, to test the schedulablity of fixed priority

scheduling system, there exist a number of feasibility tests [1,

4-10]. These tests can be partitioned into two broad categories

i.e., Necessary and Sufficient Conditions (NSC), and

Sufficient Conditions (SC). On one hand, NSC results in

higher system utilization and can schedule real-time tasks in a

system as long as the utilization is not more than 100%,

while SC can promise system utilization up to the ln(2) only,

where “n” is the number of tasks in the system. However, the

complexity of NSC is pseudo-polynomial and restricts its use

in online systems. On the other hand, SC are simple with O(n)

complexity. Literature shows reveals that the lower

complexity of SC comes at the price of lower system

utilization while the complexity of NSC class is NP-hard in

strong sense [11]. Consequently, variants of NSC have been

proposed recently to lower the computational cost of

feasibility tests instead of time complexity [3-10].

The NSC techniques can be divided into two major types (i)

techniques based on scheduling points [3-7], and (ii) iterative

solutions [7-8]. Under scheduling point’s techniques, authors

in [4] restricted the feasibility of the system to be tested at a

subset of scheduling points for reducing the computation cost

of the system. Recently, [3] analyzed the same problem form

the perspective of avoiding scheduling points which were

unable to satisfy the requirement of higher priority tasks while

checking feasibility of a task. Under iterative solutions [7-8],

feasibility tests determine the response time of tasks in

descending priority order. In such approaches, the duration

from the released time of a task to finishing time is analyzed

and as an outcome the task is declared schedulable, if

response time is within the deadline, otherwise the task is

decaled infeasible by RM scheduling policy. An improvement

over [17] was made in [18] by obtaining a higher initial guess

value that depends on the higher priority task. However, to the

best of our knowledge, no work has been done for studying

the impact of higher initial values for scheduling points based

techniques. Extending the work done in [3-4], we propose a

solution that allows the system to obtain higher values as the

initial guess value while checking feasibility of a task. Our

solution answers the schedulablity of the task set in a faster

fashion without compromising the utilization of the system.

The remaining paper is organized as follows. Section 2 covers

the background work and constructs the model to formulate

our problem. The technique for obtaining higher initial value

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5810

is described in Section 3, while Section 4 discusses

experimental results. The paper is concluded in Section 5.

BACKGROUND AND PROBLEM FORMULATIONS

Before we discuss the background work, we introduce the task

model that is used for deriving our main results in Section 3.

Let 1{ }n    be a periodic task system, where each

task i is represented by its parameters execution time ic ,

task period ip , and deadline id . To formulate our model, we

assume that the tasks are independent of each other and there

is only a single processor available to schedule all the tasks in

the system using RM. Being a fixed priority system, RM

assigns static priorities on task activation rates (periods). For

constrained deadline systems, when periods are larger than

deadlines, an optimal priority technique was drawn in [13]

called Deadline-Monotonic (DM) system. The RM and DM

are identical when relative deadline of every task is

proportional to its period. For simplicity, we assume implicit

deadline model i.e., ip  id . The utilization of task i is

defined as: /i i iu c p . The cumulative utilization totu of

periodic task system  is:

1

n
i

tot
i i

cu
p

 (1)

For validating timing constrains, feasibility tests– given a task

set and system model, determining whether it is possible to

meet all the deadlines– are performed to achieve system

predictability [4-7, 14, 16]. The first feasibility test for RM

was proposed in 1973 [6], by Liu and Leyland. According to

[6], a periodic task system is schedulable if

1(2 1)n

totu n   (2)

Where n denotes the number of tasks in  .

Equation 2 can only promise the feasibility of the system as

long its utilizations less than 69% [1]. To overcome the

theoretical difference in performance proposed by LL-bound,

necessary and sufficient condition (NSC) based tests were

proposed [1-9]. The feasibility can be either straight forward

approaches [5-7] or iterative [8-9]. The straightforward

solution test task feasibility only at times when tasks arrive,

called scheduling points. The iterative techniques test task

feasibility by employing iteration. Under both

implementation, the time complexity remains pseudo-

polynomial [11-12] and hence the focus is on reducing the

computation cost of these techniques.

 The workload due to i at time t consists of its execution

demand ic as well as the interference it encounters due to

higher priority tasks from 1i  to 1 and can be expressed

mathematically as:

1

1

()
i

i i j j
j

W t c t p c




     (3)

A periodic task i is feasible if we find some [0]t t 

satisfying

0
min(())

i
i it p

L W t t
 

  (4)

In other words, task i completes its computation

requirements at time [0]t t  , if and only if the entire request

from the 1i  higher priority tasks and computation time

of i is completed at or before time t . As t is a continuous

variable, there are infinite numbers of points to be tested. The

entire task set  is feasible iff

01

()
max{min } 1

i

i

t pi n

W tL
t  

  (5)

The first attempt to limit the infinite number of points in

interval [0]t t  is made in [8]. The authors’ show that

()iW t is constant, except at finite number of points, where

tasks are released, called RM scheduling points.

Consequently, to determine whether i is schedulable, ()iW t

is computed only at multiples of 1i j j i     .

Specifically, let

 1 1i b i bS ap b i a p p          (6)

Under TDA, the fundamental theorem to determine whether

an individual task is feasible or not.

Theorem 1. –Given a set of n periodic tasks 1 n  , i

can be feasibly scheduled for all tasks phasings using RM iff

()

min 1
i

i
i t S

W tL
t

  (7)

Theorem 1 is known as TDA [7]. To reduce the computation

cost associated with TDA, authors in [4] proposed hyper-

planes test. The Hyper-planes Exact Test (HET) reduces

scheduling point for i from set iS to a reduced set ()iH t .

For any task i , their test begins with ip and expands its

search space by

 1 1() ()i i i i
i

tH t H p H t
p 

  
    

  
 (8)

where 0H (t)={t}.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5811

Furthermore, Theorem 1 was also extended in [15] by

deriving a technique called Enhanced Time demand Analysis

(ETDA).

Theorem2. Given a set of n periodic tasks { 1 n  }, i

can be feasibly scheduled for all tasks phasings using RM iff

()

min 1
i

i
i t Z

W tL
t

  (9)

where 1i i iZ S X   and X_{i-1} is the set of scheduling

points at which the schedulability of T_{i-1} is negative. By

extension 0X  .

It is evident from Inequality 9 that the TDA has been

improved from computational perspective by restricting the

scheduling points. Similarly, we extend the TDA by obtaining

a higher initial value for any low priority task that help is

avoiding many unnecessary steps.

HIGHER INITIAL VALUES FOR TASKS

In our approach, the system feasibility is tested in the highest

priority first fashion where the test proceeds to the lower

priority task only if the current periodic task is RM

schedulable; otherwise the system is infeasible as per RM

scheduling. With Theorem 1, the starting guess for a task i

is ic and hence feasibility analysis starts with first scheduling

point in the set of scheduling points iS i.e., 1 ip S :

min(() / t 1)
i

it S
W t


 . With this formulation, it is evident for a

lower priority task 1i  that its workload 1()iw t is again

tested at 1p while the demand at point 1p is now higher than

what was presented by i at same point 1p . However, it

cannot be concluded that the same 1p that accommodates the

workload of i can also handle the workload due to 1i  as

1ic  is additional term contributing to the workload at 1p by

1i  . This pattern suggests that 1i  has to be tested at 1p and

so on, unless the workload becomes less than or equal to the

available time on a single processor system.

Let ,1()iw t is the first value for i and 1, ()i jw t is the

workload due to cumulative workload of lower priority tasks

1 2 1{ , ,..., }i    which is feasibly at t . For 1, ()i jw t , t is the

first point it S at which the schedulability of 1i  is

answered. Since i is unschedulable at t and hence

() tiw t  . Therefore, schedulability test now skips the

remaining point in set as condition i.e., min it S is true.

We now explain the working of our solution in Table 1 which

highlights the feasibility analysis of a task where the task

computation and period may have random values such that

computation demand of a task is not more than its respective

deadline. Consider, Table 1 is being populated while

analyzing the workload at multiple of higher tasks time

periods, starting with highest priority first analysis approach,

for a task set consisting of four tasks. As shown, the last value

for any task i becomes the first candidate value for the task

1i  at which its feasibility has to be tested. For task
2 in

step#4,
2 ()w t is satisfied over point

3t and hence
2 ()w t is

declared
'

2 ()w t . Consequently the starting value for

i becomes
'

3 2() ()w t w t .

Table 1: Feasibility analysis table of a four tasks set

Task# Step#
iS Testing Point Workload 1iL 

1 1
1t 1 1t S 1 1(t)w 

2 2
1 2 3, ,t t t 1 2t S 2 1(t)w 

3
1 2 3, ,t t t 2 2t S 2 2(t)w 

4
1 2 3, ,t t t 3 2t S 2 3(t)w 

3 5
1 2 3 4, , ,t t t t 1 3t S 3 1(t)w 

6
1 2 3 4, , ,t t t t 2 3t S 3 2(t)w 

7
1 2 3 4, , ,t t t t 3 3t S 3 3(t)w 

8
1 2 3 4, , ,t t t t 4 3t S 3 4(t)w 

4 9
1 2 3 4 5, , , ,t t t t t 1 4t S 4 1(t)w 

10
1 2 3 4 5, , , ,t t t t t 2 4t S 4 2(t)w 

11
1 2 3 4 5, , , ,t t t t t 3 4t S 4 3(t)w 

12
1 2 3 4 5, , , ,t t t t t 4 4t S 4 4(t)w 

13
1 2 3 4 5, , , ,t t t t t 5 4t S 4 5(t)w 

With every point t in set iS , the workload is non-decreasing

function of cumulative workload as higher priority tasks

instances may arrive in interval [0,]t . This observation

suggests that any task i that is non-schedulable at point t

reveals that 1i  is also not schedulable at t due to additional

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5812

computation associated with 1i  . The workload that is

satisfied at t for i is ()iw t , so for 1i  , it becomes the

initial value. With same argument the workload at any point t

is:

1() () ... ()i i nw t w t w t  

and hence:

' ' '

1() () ... ()i i nw t w t w t   (10)

We now apply Inequality 10 to the task set provided in Table

1. Our formulation provides the initial values for task 2 in

step#4 and hence feasibility test skips step#5-7. For the fourth

task
4 , it skips 4 points moreand so on. The advantage of

our test becomes more visible when applied to larger tasks

sets as higher initial values are obtained for the lower priority

tasks and hence the test feasibility is determined much faster.

We represent this scheme by Higher Time Demand Analysis

(HTDA).

Figure 1: Initial starting value for a low priority task

Figure 1 provides the graphical presentation of HTDA. We

plot the time demand of tasks and identify the scheduling

point that accommodates the workload presented by a task Ti.

The x-axis represents the time while y-axis shows the demand

of tasks at a given point in time. The region below the line

having slope 1 is feasible for any task according to RM our

approach. The dotted lines represent the workload of

individual tasks that are non-decreasing and monotonically

increase at task periods of all higher priority tasks. It can be

seen in Figure 1 that the jump between ()iw t and 1()iw t at

any point in time t is least 1ic  units. The think dots on x-axis

represent the time where the workload changes and cross

highlights the first feasible scheduling point for a task where

workload is satisfied at the given point. The feasibility of task

i becomes true at point reflected with cross. The shaded

region identifies the values that are unnecessary for lower

priority task 1i  and hence should ignore as they are

obviously not going to address the demand. This shaded

region constitutes the initial value for the next lower priority

task and larger is this region, the better it would be for the

lower priority task. For testing the feasibility of lower

priority task 1i  , a higher value is assigned to 1i  as initial

cumulative demand. This is presented by
'

iw and
'

1iw for

task i and 1i  , respectively.

EXPERIMENTAL RESULTS AND ANALYSIS

To align with previous techniques presented in literature, we

evaluate the performance of HTDA and compare the results

with ETDA and HET from run time perspective.. We generate

random task periods from 10-100 tasks with step size of 5

tasks. In our task set generation module, no tasks have the

same task period and periods are in the range of [10 1000]

with uniform distribution. Random values are taken for

corresponding task execution demands within  1 ip . For

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5813

task computation values, we use uniform distribution. The

priority of individual task has been assigned as per RM

assignment criteria. Experimentation is done in MATLAB and

running on a PC with 3.40GHz Intel (i7-3770) and 8GB RAM

under Linux. We only analyze the run time performance as a

rule of thumb, as the time taken to solve feasibility problem is

the simple criteria for evaluating the performance of a given

algorithm

The performance of all techniques is better for the task sets

when the number of task is low and increases as the size

increases. When system utilization is 80% then its very likely

that the cumulative demand is fulfilled with testing a few

scheduling points and that shown in Figure 2(a). Even under

80% utilization, the increased number of task present more

load for the test. Since ETDA needs to maintain a list of

previously tested scheduling points and hence slower as

compared to HET or HDTA. Similarly, the HET perform

union operation while testing feasibility using recursive

approach and hence the commutation cost is more than HTDA

but lower than ETDA. Due to this recursive nature, HET is

behaving similar to the ETDA when system utilization is 85%

or 90%, as this is the utilization at which the feasibility has to

be test maximum tasks and its very likely that the lowest

priority task is also schedulable per RM algorithm.

Irrespective of utilization, HET has to confine the search

space to a set number of scheduling points while HTDA just

proceed with higher initial value. This trend is shown in

Figure 2(a) to (d). Even when system utilization is 95%,

HTDA outclass existing techniques due to its straight forward

approach and under such utilization; it is very likely some

tasks can miss the deadline. For lower utilization and less

number of task, HTDA is very efficient as only points are

analyzed while testing feasibility of a task. The worst case

scenario is Figure 2(d) when system utilization is 95% and

even for less number of task, nor scheduling point have to be

analyzed which is aligned to our formulation.

(a) System utilization = 80%

(b) System utilization = 85%

(c) System utilization = 90%

(d) System utilization = 95%

Figure 2: Performance analysis under varying system utilization

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 8 (2018) pp. 5809-5814

© Research India Publications. http://www.ripublication.com

5814

CONCLUSION

The problem of analyzing the feasibility of periodic task under

RM scheduling algorithm is discussed and a pattern between

the two consecutive tasks schedulability is identified. The

relationship between two neighboring tasks showed that any

scheduling point which satisfies the CPU demand of a task

becomes the initial value for the lower priority task at which

the feasibility can be tested. The aforementioned relationship

was exploited for faster feasibility analysis of time demand

analysis for RM schedulability. Experimental results

confirmed that the proposed method is quite competitive as

compared to existing counterparts.

REFERENCES

[1] C. L. Liu and J. W. Layland, "Scheduling algorithms

for multiprogramming in a hard real-time

environment", Journal of the ACM, Vol.20, No.1,

pp.40-61, 1973

[2] J. W. S. Liu, Real Time Systems, Prentice Hall, 2000.

[3] N. Min-Allah, S. U. Khan and Wang Yongji, “ Optimal

Task Execution Times for Periodic Tasks Using

Nonlinear Constrained Optimization'', Journal of

Supercomputing, pp. 1--19, 2010.

[4] E. Bini, G. C. Buttazzo, "The Space of Rate Monotonic

Schedulability", Proceedings of the 23th IEEE Real-

Time Systems Symposium, Austin, Texas, pp.169-177,

2002.

[5] E. Bini, G. C. Buttazzo, "Schedulability Analysis of

Periodic Fixed Priority Systems", IEEE Transactions

on Computers, Vol.53, No.11, pp.1462-1473, 2004.

[6] J. Y. T. Leung and J. Whitehead, "On the Complexity

of Fixed-Priority Scheduling of Periodic", Real-Time

Tasks Performance Evaluation. NO.2, pp.237-250,

1982.

[7] J. P. Lehoczky, L. Sha, Y. Ding, "The Rate Monotonic

Scheduling Algorithm: Exact Characterization and

Average Case Behavior", Proceedings of the IEEE

Real-Time System Symposium, pp.166-171, 1989.

[8] N. C. Audsley, A. Burns, K. Tindell, A. Wellings,"

Applyingnew scheduling theory to static priority

preemptive scheduling", Software Engineering Journal,

1993.

[9] M. Sj¨odin and H. Hansson, "Improved response-time

analysis calculations", Proceedings of the 19th IEEE

Real-Time Systems Symposium, pp.399-409, 1998.

[10] N. Min-Allah, H. Hussain, S. U. Khan, and A. Y.

Zomaya, “Power Efficient Rate Monotonic Scheduling

for Multi-core Systems'', Journal of Parallel and

Distributed Computing}, Vol. 72(1), pp. 48-57, 2012.

[11] Z. Gu, M. Yuan and X. He, "Optimal Static Task

Scheduling on Reconfigurable Hardware Devices

Using Model-Checking", In proceedings of the 13th

IEEE Real Time and Embedded Technology and

Applications Symposium, pp.32-44, 2007.

[12] K. W. Tindell, A. Bums, A. J. Wellings, "An extendible

approach for analyzing fixed priority hard real-time

tasks", Real-Time Systems Journal, No.6, pp.133-151,

1994.

[13] J. Y. T. Leung and J. Whitehead, "On the Complexity

of Fixed-Priority Scheduling of Periodic", Real-Time

Tasks Performance Evaluation. NO.2, pp.237-250,

1982

[14] M. Joseph and P. Pandya, "Finding response times in a

real-time system", The Computer Journal, Vol.29,

No.5, pp.390-395, 1986.

[15] N. Min-Allah,Yong-Ji Wang, Jian-Sheng Xing,

Enhanced Rate Monotonic Time Demand Analysis ,

IJCSES International Journal of Computer Sciences

and Engineering Systems, 2007.

[16] J. P. Lehoczky, L. Sha, Y. Ding, "The Rate Monotonic

Scheduling Algorithm: Exact Characterization and

Average Case Behavior", Proceedings of the IEEE

Real-Time System Symposium, pp.166-171, 1989.

[17] N. C. Audsley, A. Burns, K. Tindell, A. Wellings, "

Applyingnew scheduling theory to static priority

preemptive scheduling", Software Engineering Journal,

1993.

[18] M. Sj¨odin and H. Hansson, "Improved response-time

analysis calculations", Proceedings of the 19th IEEE

Real-Time Systems Symposium, pp.399-409, 1998.

[19] S. Alrashed, Reducing power consumption of non-

preemptive real-time Systems, The Journal of

Supercomputing 73 (12), 5402-5413, 2017.

[20] M.B. Qureshi, S. Alrashed, N. Min-Allah, J. Kołodziej,

P. Arabas, Maintaining the Feasibility of Hard Real–

Time Systems with a Reduced Number of Priority

Levels, International Journal of Applied Mathematics

and Computer Science, 25(4), pp. 709-722, 2015.

