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Abstract 

In this paper, we introduce and  study some inequalities 

involving symmetric norms and positive semidefinite 

matrices. Then we will use the properties of symmetric norms 

to generalize the inequality obtained by Bhatia and 

Kittaneh[3]. 
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INTRODUCTION 

The class of Hermitian matrices is a generalization of real 

numbers and the class of positive semidefinite matrices is a 

generalization of nonnegative real numbers. This observation 

often provides insight into the properties and applications of 

positive semidefinite matrices. In this paper we will use the 

inequality that said if a, b are positive real number then for 

any complex number z, 

|a -|z|b| ≤  |a+zb|≤ |a+|z|b|          (1) 

we discuss several matrix norm inequalities for positive 

semidefinite matrices. All through this paper Mm, n and Mn will 

stand, respectively, for spaces of all m x n and n x n complex 

matrices. Let ‖. ‖denote any symmetric norm (or unitarily 

invariant norm) on Mn . Therefore, ‖𝑼𝑨𝑽‖‖𝐴‖ for all A∈ 

Mn and for all unitary matrices U, V∈ Mn..  

 

PRELIMINARIES 

Definition 3.1: 

Let A Mn . Then: 

1. A is called Hermitian (or, self adjoint) if A* = A. 

2. A is called normal if A*A = AA*. 

3. A is called unitary if A*A = AA* = In, where In is the 

identity matrix of order n. 

4. A is called positive semidefinite or nonnegative 

definite(written as A ≥ 0)  if A is Hermitan  and ‹Ax, 

x› ≥ 0, for all x ∈ ℂ𝑛. 

 

Definition 3.2: 

For any matrix A Mn, we define the absolute value │A│of A 

to be the positive 

semidefinite matrix square root of A*A. Then the singular 

values of A, s1( A), …, sn(A ) are defined to be the eigenvalues 

of │A│which ordered from largest to smallest 

 s1(A) ≥ s2(A) ≥… ≥ sn(A). 

In this paper, we will apply Ky Fan’s maximum principle to 

the absolute value, 

│A│, of A Mn , we get for each k = 1, 2, …,n that 

 ∑ 𝑠𝑗(𝐴)𝑘
𝑗=1  = max ∑ |‹ 𝐴𝑥𝑗 , 𝑦𝑗›|𝑘

𝑗=1  

where the maximum is taken over all choices of orthonormal 

k-tuples x1, …, xk and y1, …,yk. 

Also Fan Dominance Theorem saying that  if A, B Mn ,then: 

‖𝐴‖ ≤ ‖𝐵‖ for all symmetric norms on Mn if and only if  

∑ 𝑠𝑗(𝐴)𝑘
𝑗=1  ≤  ∑ 𝑠𝑗(𝐵)𝑘

𝑗=1 for all k = 1,2,…, n. 

 

SEVERAL NORM INEQUALITIES FOR MATRICES 

Proposition 4.1  

If A, B Mn are normal matrices, then , for all symmetric 

norms, 

‖𝐴 + 𝐵‖ ≤ ‖|𝐴| + |𝐵|‖. 

 This satisfies a triangle inequality for normal matrices. 

A stronger triangle inequality holds if we use Hermitian 

matrices: 

 

Proposition 4.2  

If X, Y are Hermitian matrices, then for some unitaries U, V 

|𝑋 +  𝑌 | ≤ 
1

2
(𝑈(|𝑋| + |𝑌|𝑈∗) + (𝑉(|𝑋| + |𝑌|𝑉∗) )  

Proposition 4.2 implies Proposition 4.1.  by substituting 

X = (
0 𝐴∗

𝐴 0
)      and    Y = (

0 𝐵∗

𝐵 0
)   

Now Proposition 4.1. shows that if A, B ≥0, and any complex 

number z, 

 ‖𝐴 + 𝑧𝐵‖ ≤ ‖𝐴 + |𝑧|𝐵‖ 

    

Also Bhatia and Kittaneh [3]generalized inequality( 1) by 

using positive semidefinite matrices A, B ≥0, and any 

complex number z, 

∑ 𝑠𝑗(𝐴 − |𝑧|𝐵)

𝑘

𝑗=1

 ≤  ∑  

𝑘

𝑗=1

𝑠𝑗(𝐴 + 𝑧𝐵) 

                             ≤ ∑ 𝑠𝑗(𝐴 + |𝑧|𝐵)𝑘
𝑗=1      for all k = 1,2,…, n. 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 7 (2018) pp. 4751-4752 

© Research India Publications.  http://www.ripublication.com 

4752 

Which equivalent to  

‖𝐴 − |𝑧|𝐵‖ ≤ ‖𝐴 + 𝑧𝐵‖ ≤ ‖𝐴 + |𝑧|𝐵‖                           (2) 

By using Fan Dominance Theorem. 

Now we will  give the generalization of inequality  (2) 

Theorem 4.1: 

If A, BMn are positive semidefinite matrices , and z1, z2  any 

two complex numbers, then 

‖|𝑧1 |𝐴 − |𝑧2|𝐵‖ ≤ ‖𝑧1𝐴 + 𝑧2𝐵‖ ≤ ‖|𝑧1 |𝐴 + |𝑧2|𝐵‖      (3) 

Proof: 

If z1 = 0, its obvious holds. 

But if z1≠0, let z = 
𝑧2

𝑧1
 in inequality (2),then 

‖𝐴 − |
𝑧2

𝑧1
| 𝐵‖ ≤ ‖𝐴 +

𝑧2

𝑧1
𝐵‖ ≤ ‖𝐴 + |

𝑧2

𝑧1
| 𝐵‖, so 

‖|𝑧1 |𝐴 − |𝑧2|𝐵‖ ≤ ‖𝑧1𝐴 + 𝑧2𝐵‖ ≤ ‖|𝑧1 |𝐴 + |𝑧2|𝐵‖.    ∎ 

 

Theorem 4.2: 

If A, 𝐵1, …,𝐵𝑛 Mn are positive semidefinite matrices , and 

z1, z2 , …, zn be complex numbers, then 

‖𝐴 + 𝒛𝟏𝐵1 + ⋯ + 𝒛𝒏𝐵𝑛‖ ≤ ‖𝐴 + |𝒛𝟏|𝐵1 + ⋯ + |𝒛𝒏|𝐵𝑛‖ 

Proof: 

‖𝐴 + 𝒛𝟏𝐵1 + ⋯ + 𝒛𝒏𝐵𝑛‖ =∑ 𝑠𝑗(𝐴 + 𝒛𝟏𝐵1 + ⋯ + 𝒛𝒏𝐵𝑛)𝑘
𝑗=1   

                                         = max ∑ |‹(𝐴 + 𝒛𝟏𝐵1 + ⋯ +𝑘
𝑗=1

𝒛𝒏𝐵𝑛) 𝑥𝑗 , 𝑦𝑗›|(using Ky Fan´s maximum principle over all 

choices of orthonormal k-tuples x1, …, xk and y1, …, yk). 

=max ∑ |‹𝐴𝑥𝑗 , 𝑦𝑗› + 𝒛𝟏‹𝐵1 𝑥𝑗 , 𝑦𝑗› + ⋯ + 𝒛𝒏‹𝐵𝑛 𝑥𝑗 , 𝑦𝑗›|𝑘
𝑗=1  

≤ max ∑ (|‹𝐴𝑥𝑗 , 𝑦𝑗›| + |𝒛𝟏||‹𝐵1 𝑥𝑗 , 𝑦𝑗›| + ⋯ +𝑘
𝑗=1

|𝒛𝒏||‹𝐵𝑛 𝑥𝑗 , 𝑦𝑗›|) 

≤ max ∑ (√‹𝐴𝑥𝑗 , 𝑥𝑗› ∙ ‹𝐴𝑦𝑗 , 𝑦𝑗› 𝒌
𝒋=𝟏  +|𝒛𝟏|  

√‹𝐵1𝑥𝑗 , 𝑥𝑗› ∙ ‹𝐵1𝑦𝑗 , 𝑦𝑗› +… +  |𝒛𝒏| √‹𝐵𝑛𝑥𝑗 , 𝑥𝑗› ∙ ‹𝐵𝑛𝑦𝑗 , 𝑦𝑗› )   

(using Cauchy-Schwars inequality) 

≤  
𝟏

𝟐
 ∑ ‹(𝐴 + |𝒛𝟏|𝐵1 + ⋯ + |𝒛𝒏|𝐵𝑛)𝑥𝑗 , 𝑥𝑗›𝒌

𝒋=𝟏  + 

‹(𝐴 + |𝒛𝟏|𝐵1 + ⋯ + |𝒛𝒏|𝐵𝑛)𝑦𝑗 , 𝑦𝑗›  ( using arithmetic- 

geometric mean inequality). 

Now using Ky Fan´s maximum principle ,we get 

∑ 𝑠𝑗(𝐴 + 𝑧1𝐵1 + ⋯ + 𝑧𝑛𝐵𝑛)𝑘
𝑗=1   ≤ ∑ 𝑠𝑗(𝐴 + |𝒛𝟏|𝐵1 + ⋯ +𝑘

𝑗=1

|𝒛𝒏|𝐵𝑛)  

Finally, by Fan Dominance Theorem                                         

‖𝐴 + 𝒛𝟏𝐵1 + ⋯ + 𝒛𝒏𝐵𝑛‖ ≤ ‖𝐴 + |𝒛𝟏|𝐵1 + ⋯ + |𝒛𝒏|𝐵𝑛‖.   ∎ 

But the inequality  

‖𝐴 − |𝒛𝟏|𝐵1 − ⋯ − |𝒛𝒏|𝐵𝑛‖  ≤ ‖𝐴 + 𝒛𝟏𝐵1 + ⋯ + 𝒛𝒏𝐵𝑛‖ 

turns out to be false. 

If n=2 and A =𝐵1= 𝐵2= (
1 1
1 1

), 𝒛𝟏 = 𝒊 and 𝒛𝟐 =  −𝟏 − 𝒊. 
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