Experimental Investigation into Heat Transfer during Swirl Jet Impingement

N V S Shankar¹ and Dr. H Ravi Shankar²

¹Department of Mechanical Engineering, GITAM University, Visakhapatnam, India.

²Department of Mechanical Engineering, GITAM University, Visakhapatnam, India.

Abstract

Augmentation of heat transfer during jet impingement has always been point of interest. For this numerous was are employed of which one way is increasing the turbulence of impinging jet. This can be achieved by using swirl generators. In Author's previous work, numerical simulations were executed to study the effect of heat transfer during Multi-Swirl Jet Impingement (MSJI). In the current work, experimental investigations for evaluating heat transfer during the same are presented. The ducts for this purpose are 3D Printed using PLA. The ducts contain helical swirl generators for generating swirls in impinging jets. 3 different helical swirl generators are experimented. During experimentation, 3X3 swirl jets are impinged on a flat plate. Smoke tests were executed to study the flow pattern. The flow pattern is in agreement with that of simulation results. These are discussed in the article. When experimenting for measuring heat transfer coefficient, Constant heat flux is given as input for which TEC is used. Constant heat flux is a situation that occurs during electronics cooling. Temperatures are measured using 100K Thermistors. These are interfaced to PC using Intel Edison development board. The schematics of the test rig are presented in the paper. Experimentally determined heat transfer coefficient is compared with that of numerically computed value. This is being done so as to validate the authors work published previously.

Keywords: Multi-Swirl Jet Impingement, Thermistor, Intel Edison, Constant heat flux, electronics cooling

INTRODUCTION

A lot of work happened in the field of jet impingement cooling. Some literature was summarized in our previous work [1]. Regarding conventional Jet Impingement, detailed literature survey pertaining to jet impingement cooling and its applications is presented in [2]–[5]. A summary of expressions in conventional jet impingement are given in [6]–[10]. Summary of various experimental investigations are given in [11]–[41].

SWIRL JET IMPINGEMENT COOLING

Augmentation of heat transfer during heat transfer has always been of interest. One way is by increasing the turbulence of the impinging jet. This can be achieved by introducing swirl in the impinging jet. Much work was done with single swirl jet impingement than multi swirl jet impingement. Ortega-Casanova [42], [43] gave expressions relating to heat transfer from a heated plate when subjected to swirl jet impingement. Amini Y, et al [44] practically studied the use of twisted tape inserts in augmenting heat transfer during jet impingement cooling. ZU Ahmed, et al [45] observed the characteristics of incompressible, turbulent, swirling impinging air jet. Zahir U Ahmed, et al [46] used RANS approach with RNG k-E model is used for investigating the effects of inflow conditions on the transition from free-to-impinging and non-swirling-to-swirling (impinging) jets. Rodriguez, et al [47] compared different methods of modeling helicoloids for generating swirling flow fields. Herrada, et al [48] used axisymmetric CFD simulations to study the effect of a swirl number S and a vortex core length d on the mechanical characteristics of the flow at moderate Reynolds numbers. Kinsella, et al [49] found that the main reason for augmentation of heat transfer in swirling jets is due to increase in turbulence. Sergey, et al [50] employed stereo PIV technique using advanced pre- and post-processing algorithms for studying the turbulent swirling jets. Bakirci, et al [51] & Bilen, et al [52] conducted experiments for flow visualization and study heat transfer in both multi-channel impinging jet (MCIJ), Swirling Impinging Jet (SIJ) and conventional impinging jet (CIJ). Shuja, et al [53] investigated the effect of swirl velocity on various factors like irreversibility, entropy generation, and fluid friction numerically. Erik [54] gave expressions for mathematically modeling swirling flow and evaluating various parameters in the flow. Koichi Ichimiya and Koji Tsukamoto [55] investigated the heat transfer when swirling laminar jet is being impinged on a flat plate. Lamont, et al [56] experimentally studied the effect of a row of swirling jets in heat transfer from a flat plate when being impinged with a row of jets. Ekkad, et al [57] investigated the heat transfer augmentation by inducing swirl in impinging cooling jets by introducing them at an angle during cooling turbine blades

OTHER COOLING AUGMENTATION METHODS

Jia, et al [58] performed numerical simulations to study the effect of upstream and downstream shaped ribs on heat transfer during flow when cooling turbine blades. Xu, et al [59], using numerical simulations, investigated the effect of five different types of vortex generator on heat transfer during flow in a rectangular channel.

PROBLEM DEFINITION

Keeping the above points in view, it was decided to investigate into the effect of swirl jet impingement both experimentally and numerically. In our previous paper [1], the results of simulations performed in this regard were discussed. Expression derived was also presented in the same which is given as expression (1).

$$Nu = 3.347834 \operatorname{Re}^{0.8764} \operatorname{Pr}^{0.33} \operatorname{Si}^{0.0364} I^{0.04846} \left(\frac{z}{D}\right)^{0.4454}$$
 (1)

In the current work, it is planned to verify the above work experimentally. Experimental work and the results of the experimentation are presented in this paper. During fabrication of the test rig, ducts are 3D printed. Smoke tests were

performed to study the flow pattern.

3D PRINTING DUCTS

The ducts are modeled using Creo/Parametric. Four different ducts are designed. (i) containing no swirl generator, (ii) containing 90°Helix for generating swirl, (iii) Containing 180° Helix and (iv) Containing 360° Helix. These models are shown in figure 1. The models are 3D Printed using PLA material on Wanhao Duplicator i3 3D Printer. 3D printing tool paths are generated using Cura software. 90°Swirl duct, when being 3D Printed is shown in figure 2. Figure 3 shows the 3D Printed ducts. 3D Printing is done at 205°C with 25mm/s speed.

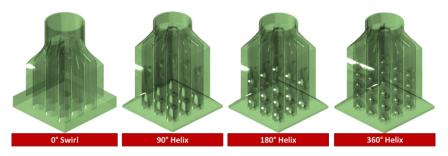


Figure 1: Duct Models 3D Printed

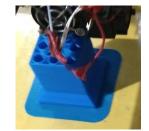


Figure 2: 3D Printed Ducts - 0°, 90°, 180°, 360° Figure 3: 3D Printing a Duct

SMOKE TESTING THE DUCTS

To understand the flow through the ducts, smoke tests are executed. For this smoke is passed through the ducts. The smoke exiting the ducts is imaged with 120fps camera just as in [55]. The results of the smoke test are shown in figure 4.

They demonstrate how the smoke is getting distributed on exit from the nozzle indicating that higher turbulence exists with higher swirl. Jet bending can also be clearly seen during impingement. The flow pattern during swirling impingement when compared with that of simulation result are shown in figure 5 (a), (b) & (c).

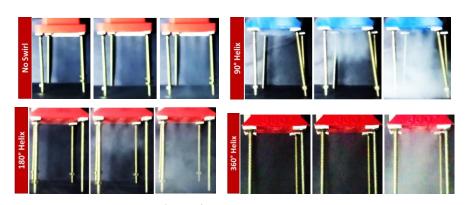
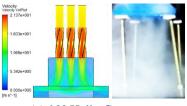
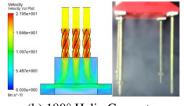
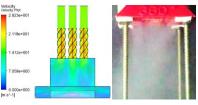





Figure 4: Smoke Test Result

(a) 90° Helix Generator

(b) 180° Helix Generator **Figure 5:** Smoke Test Results vs Simulation Results

(c) 360° Helix Generator

TEST RIG

Using the 3D Printed ducts, test rig was fabricated. 100K Thermistors were used to measure temperature variation. Thermistors were interfaced to PC using Intel Edison board. The schematic of the test rig is shown in figure 6. The temperature measurement equipment is shown in figure 7. The block is having a constant heat input (30W) by using 12706 TEC by controlling Voltage and Current being given as input., in other words constant heat flux wall is experimented.

Experiments are conducted for three swirls at one data point each. During experimentation, temperature is measured at the nozzle exit (T_{∞}), surface of the block at three points (average Temperature T is then computed), air temperature at the exit of the shroud. Mass flow rate (\dot{m}) of air is measured using anemometer at the exit should exit. Heat transferred and the convective heat transfer coefficient are then computed using equations (2) & (3). The experimental results are found to be within 5% variation from the computed values using equation (1).

$$\dot{q} = mc_n \Delta T \tag{2}$$

$$\dot{q} = h(T - T_{\infty}) \tag{3}$$

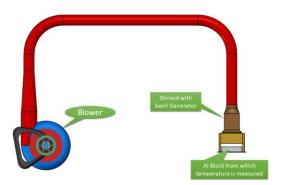


Figure 6: Test Rig Schematic

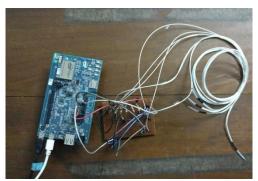


Figure 7: Temperature Measurement Apparatus

CONCLUSION

Experimental investigations are executed to investigate heat transfer from a flat plate subjected to constant wall heat flux. A constant heat input of 30W is given using 12706 TEC. This is achieved by controlling the voltage and current input given to that of TEC. Initially, smoke test was conducted to understand the flow pattern. The flow patterns are in good agreement with that of simulation result. Air flow rate during impingement is measured using Anemometers. The heat carried away is measured by measuring the temperature of air before impingement and after impingement. Heat transfer coefficient is computed using equation (3). The heat transfer coefficients obtained are in good agreement with that of numerically simulated values given in author's previous work validating the same.

REFERENCES

- [1] N. V. S. Shankar and H. R. Shankar, "Heat Transfer During Multi Swirl Jet Impingement," *Int. J. Mech. Eng. Technol.*, vol. 8, no. 9, pp. 349–356, 2017.
- [2] A. Dewan, R. Dutta, and B. Srinivasan, "Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer," *Heat Transf. Eng.*, vol. 33, no. 4–5, pp. 447–460, 2012.
- [3] H. H. Cho, K. M. Kim, and J. Song, *Applications of Impingement Jet Cooling Systems*, Cooling Sy. Nova Science Publishers Inc, 2011.
- [4] A. Sarkar, N. Nitin, M. V. Karwe, and R. P. Singh, "Fluid Flow And Heat Transfer in Air Jet Impingement in Food Processing," *J. Food Sci.*, vol. 69, no. 4, p. CRH113-CRH122, 2005.
- [5] A. Terzis, G. Wagner, J. von Wolfersdorf, P. Ott, and B. Weigand, "Hole Staggering Effect on the Cooling

- Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique," *J. Heat Transfer*, vol. 136, no. 7, p. 71701, 2014.
- [6] N. Zuckerman and N. Lior, "Jet impingement heat transfer: Physics, correlations, and numerical modeling," *Adv. Heat Transf.*, vol. 39, no. C, pp. 565–631, 2006.
- [7] S. Chirade, S. Ingole, and K. K. Sundaram, "Review of Correlations on Jet Impingement Cooling," *Int. J. Sci. Res. ISSN (Online Index Copernicus Value Impact Factor*, vol. 14, no. 4, pp. 2319–7064, 2013.
- [8] J.-J. Shu and G. Wilks, "Heat Transfer in the Flow of a Cold, Axisymmetric Jet Over a Hot Sphere," *J. Heat Transfer*, vol. 135, no. 3, p. 32201, 2013.
- [9] C. Li and S. V Garimella, "Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement," *Int. J. Heat Mass Transf.*, vol. 44, no. 18, pp. 3471–3480, 2001.
- [10] Y. Halouane, A. Mataoui, and F. Iachachene, "Heat Transfer Prediction of a Jet Impinging a Cylindrical Deadlock Area," *J. Heat Transfer*, vol. 136, no. 11, p. 112203, 2014.
- [11] R. Vinze, S. Chandel, M. D. Limaye, and S. V. Prabhu, "Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets," *Int. J. Therm. Sci.*, vol. 99, pp. 136–151, 2016.
- [12] D. Singh, B. Premachandran, and S. Kohli, "Effect of nozzle shape on jet impingement heat transfer from a circular cylinder," *Int. J. Therm. Sci.*, vol. 96, pp. 45–69, 2015.
- [13] A. Belhocine and W. Z. Wan Omar, "Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature," *Case Stud. Therm. Eng.*, vol. 6, pp. 116–127, 2015.
- [14] N. K. Chougule, G. V Parishwad, and C. M. Sewatkar, "Numerical Analysis of Pin Fin Heat Sink with a Single and Multi Air Jet Impingement Condition," *Int. J. Eng. Innov. Technol.*, vol. 1, no. 3, pp. 44–50, 2012.
- [15] N. K. Chougule, G. V Parishwad, P. R. Gore, S. Pagnis, and S. N. Sapali, "CFD Analysis of Multi-jet Air Impingement on Flat Plate," in *Proceedings of World Congress on Engineering (WCE2011)*, 2011, vol. III.
- [16] N. K. Chougule, G. V. Parishwad, S. Pagnis, and P. R. Gore, "Multijet Impingement on Pin Fin Heat Sink With Different Crossflow Schemes," in *Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition*, 2011.
- [17] Mark A. Ricklick, "Characterization of an Inline Row Impingement Channel For Turinge Blade Cooling Applications," B.S.M.E University of Central Florida, 2009.
- [18] J. Badra, A. R. Masri, and M. Behnia, "Enhanced

- Transient Heat Transfer From Arrays of Jets Impinging on a Moving Plate," in *16th Australasian Fluid Mechanics Conference*, pp. 1187–1192.
- [19] L. a Brignoni and S. V Garimella, "Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement," *Int. J. Heat Mass Transf.*, vol. 43, no. 7, pp. 1133–1139, 2000.
- [20] S. V Garimella, "Heat Transfer and Flow Fields in Confined Jet Impingement," *Annu. Rev. Heat Transf.*, vol. 11, no. 11, pp. 413–494, 2000.
- [21] L. M. Al-hadhrami, S. M. Shaahid, and A. a Almubarak, "Jet Impingement Cooling in Gas Turbines for Improving Thermal Efficiency and Power Density," *Engineering*, no. state 3, 2011.
- [22] S. Alimohammadi, D. B. Murray, and T. Persoons, "Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet," *J. Heat Transfer*, vol. 136, no. 9, p. 91703, 2014.
- [23] D. Benmouhoub and A. Mataoui, "Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate," *J. Heat Transfer*, vol. 135, no. 10, p. 102201, 2013.
- [24] R. Cardenas and V. Narayanan, "A Generalized Critical Heat Flux Correlation for Submerged and Free Surface Jet Impingement Boiling," *J. Heat Transfer*, vol. 136, no. 9, p. 91501, 2014.
- [25] D. E. Hall, F. P. Incropera, and R. Viskanta, "Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 1—Single-Phase Jet," *J. Heat Transfer*, vol. 123, no. 5, p. 911, 2001.
- [26] D. E. Hall, F. P. Incropera, and R. Viskanta, "Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 2—Two-Phase Jet," *J. Heat Transfer*, vol. 123, no. 5, p. 911, 2001.
- [27] G. J. Hwang, S. C. Tzeng, C. P. Mao, and C. Y. Soong, "Heat Transfer in a Radially Rotating Four-Pass Serpentine Channel With Staggered Half-V Rib Turbulators," *J. Heat Transfer*, vol. 123, no. February 2001, p. 39, 2001.
- [28] J.-J. Hwang and C.-S. Cheng, "Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets," *J. Heat Transfer*, vol. 121, no. 3, pp. 683–690, 1999.
- [29] J.-J. Hwang and B.-Y. Chang, "Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets," *J. Heat Transfer*, vol. 122, no. 4, pp. 669–678, 2000.
- [30] S. Torii and W.-J. Yang, "Swirling Effect on Thermal-Fluid Transport Phenomena in a Strongly Heated Concentric Annulus," *J. Heat Transfer*, vol. 125, no. 4, pp. 604–611, 2003.
- [31] A. S. Rattner, "General Characterization of Jet Impingement Array Heat Sinks With Interspersed

- Fluid Extraction Ports for Uniform High-Flux Cooling," *J. Heat Transfer*, vol. 139, no. 8, p. 82201, 2017.
- [32] G. Nasif, R. Balachandar, and R. M. Barron, "Conjugate analysis of wall conduction effects on the thermal characteristics of impinging jets," *Int. J. Heat Mass Transf.*, vol. 116, pp. 259–272, 2018.
- [33] G. Nasif, R. M. Barron, and R. Balachandar, "Numerical Simulation of Piston Cooling With Oil Jet Impingement," *J. Heat Transfer*, vol. 138, no. 12, p. 122201, 2016.
- [34] F. Iachachene, A. Mataoui, and Y. Halouane, "Numerical Investigations on Heat Transfer of Self-Sustained Oscillation of a Turbulent Jet Flow Inside a Cavity," *J. Heat Transfer*, vol. 137, no. 10, p. 101702, 2015.
- [35] M. Modak, S. S. Chougule, and S. K. Sahu, "An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO–Water Nanofluids in Circular Jet Impingement Cooling," *J. Heat Transfer*, vol. 140, no. 1, p. 12401, 2017.
- [36] K. Ichimiya and Y. Yamada, "Three-Dimensional Heat Transfer of a Confined Circular Impinging Jet With Buoyancy Effects," *J. Heat Transfer*, vol. 125, no. 2, p. 250, 2003.
- [37] F. Selimefendigil and H. F. Oztop, "Cooling of a partially elastic isothermal surface by nanofluids jet impingement," *J. Heat Transfer*, 2017.
- [38] R. Ragab and T. Wang, "An Experimental Study of Mist/Air Film Cooling On a Flat Plate with Application to Gas Turbine Airfoils- Part 2: Two-Phase Flow Measurements and Droplet Dynamics," *Proc. ASME Turbo Expo 2013 Turbine Tech. Conf. Expo.*, vol. 136, no. July, pp. 1–9, 2013.
- [39] R. Ragab and T. Wang, "An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils: Part 1 Heat Transfer," *Vol.* 3B Heat Transf., vol. 140, no. April, pp. 1–10, 2013.
- [40] Z. Y. Shen, Q. Jing, Y. H. Xie, and D. Zhang, "Thermal Performance of Miniscale Heat Sink With Jet Impingement and Dimple/ Protrusion Structure," *J. Heat Transf. Asme*, vol. 139, no. 5, pp. 1–8, 2017.
- [41] N. Mou, Y. Jiun Lee, P. Seng Lee, P. K. Singh, and S. A. Khan, "Investigations on the Influence of Flow Migration on Flow and Heat Transfer in Oblique Fin Microchannel Array," J. Heat Transfer, vol. 138, no. 10, p. 102403, 2016.
- [42] J. Ortega-Casanova, "CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet," *Int. J. Heat Mass Transf.*, vol. 55, no. 21–22, pp. 5836–5845, 2012.
- [43] J. Ortega-casanova, "Numerical Simulation of the Heat Transfer from a Heated Solid Wall to an Impinging Swirling Jet," in *Two Phase Flow, Phase Change and*

- *Numerical Modeling*, Intech Open Publications, 2011, pp. 173–192.
- [44] Y. Amini, M. Mokhtari, M. Haghshenasfard, and M. Barzegar Gerdroodbary, "Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique," *Case Stud. Therm. Eng.*, vol. 6, pp. 104–115, 2015.
- [45] Z. U. Ahmed, Y. M. Al-Abdeli, and F. G. Guzzomi, "Impingement pressure characteristics of swirling and non-swirling turbulent jets," *Exp. Therm. Fluid Sci.*, vol. 68, no. AUGUST, pp. 722–732, 2015.
- [46] Z. U. Ahmed, Y. M. Al-Abdeli, and M. T. Matthews, "The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets," *Comput. Fluids*, vol. 118, no. SEPTEMBER 2015, pp. 255–273, 2015.
- [47] S. B. Rodriguez and M. S. El-genk, "Recent Advances in Modeling Axisymmetric Swirl and Applications for Enhanced Heat Transfer and Flow Mixing, Two Phase Flow, Phase Change and Numerical Modeling," in *Two Phase Flow, Phase Change and Numerical Modeling*, vol. ISBN: 978, Intech Open Publications, 2011, pp. 193–216.
- [48] M. A. Herrada, C. Del Pino, and J. Ortega-Casanova, "Confined swirling jet impingement on a flat plate at moderate Reynolds numbers," *Phys. Fluids*, vol. 21, no. 1, 2009.
- [49] C. Kinsella, B. Donnelly, and D. B. Murray, "Heat Transfer Enhancement From a Horizontal Surface impinged with swirl jets," in 5th European thermalsciences conference, 2008, p. 8.
- [50] S. V. Alekseenko, A. V. Bilsky, V. M. Dulin, and D. M. Markovich, "Experimental study of an impinging jet with different swirl rates," *Int. J. Heat Fluid Flow*, vol. 28, no. 6, pp. 1340–1359, 2007.
- [51] K. Bakirci and K. Bilen, "Visualization of heat transfer for impinging swirl flow," *Exp. Therm. Fluid Sci.*, vol. 32, no. 1, pp. 182–191, 2007.
- [52] K. Bilen, K. Bakirci, S. Yapici, and T. Yavuz, "Heat transfer from a plate impinging swirl jet," *Int. J. Energy Res.*, vol. 26, no. 4, pp. 305–320, 2002.
- [53] S. Z. Shuja, B. S. Yilbas, and M. Rashid, "Confined swirling jet impingement onto an adiabatic wall," *Int. J. Heat Mass Transf.*, vol. 46, no. 16, pp. 2947–2955, 2003.
- [54] E. R. Fledderus, "Mathematical Modelling in Swirling Flows: a Hamiltonian perspective," University of Twente, 1997.
- [55] K. Ichimiya and K. Tsukamoto, "Heat Transfer Characteristics of a Swirling Laminar Impinging Jet," *J. Heat Transfer*, vol. 132, no. September, p. 12201, 2010.
- [56] J. A. Lamont, S. V. Ekkad, and M. A. Alvin, "Effects

- of Rotation on Heat Transfer for a Single Row Jet Impingement Array With Crossflow," *J. Heat Transfer*, vol. 134, no. 8, p. 82202, 2012.
- [57] S. V. Ekkad, G. Pamula, and S. Acharya, "Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes," *J. Turbomach.*, vol. 123, no. 2, p. 281, 2001.
- [58] R. Jia, B. Sundén, and M. Faghri, "Computational Analysis of Heat Transfer Enhancement in Square Ducts With V-Shaped Ribs: Turbine Blade Cooling," *J. Heat Transfer*, vol. 127, no. 4, p. 425, 2005.
- [59] Z. Xu, Z. Han, J. Wang, and Z. Liu, "The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators," *Int. J. Heat Mass Transf.*, vol. 116, pp. 61–72, 2018.