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Abstract

Augmentation of heat transfer during jet impingement has
always been point of interest. For this numerous was are
employed of which one way is increasing the turbulence of
impinging jet. This can be achieved by using swirl generators.
In Author’s previous work, numerical simulations were
executed to study the effect of heat transfer during Multi-Swirl
Jet Impingement (MSJI). In the current work, experimental
investigations for evaluating heat transfer during the same are
presented. The ducts for this purpose are 3D Printed using PLA.
The ducts contain helical swirl generators for generating swirls
in impinging jets. 3 different helical swirl generators are
experimented. During experimentation, 3X3 swirl jets are
impinged on a flat plate. Smoke tests were executed to study
the flow pattern. The flow pattern is in agreement with that of
simulation results. These are discussed in the article. When
experimenting for measuring heat transfer coefficient, Constant
heat flux is given as input for which TEC is used. Constant heat
flux is a situation that occurs during electronics cooling.
Temperatures are measured using 100K Thermistors. These are
interfaced to PC using Intel Edison development board. The
schematics of the test rig are presented in the paper.
Experimentally determined heat transfer coefficient is
compared with that of numerically computed value. This is
being done so as to validate the authors work published
previously.

Keywords: Multi-Swirl Jet Impingement, Thermistor, Intel
Edison, Constant heat flux, electronics cooling

INTRODUCTION

A lot of work happened in the field of jet impingement cooling.
Some literature was summarized in our previous work [1].
Regarding conventional Jet Impingement, detailed literature
survey pertaining to jet impingement cooling and its
applications is presented in [2]-[5]. A summary of expressions
in conventional jet impingement are given in [6]-[10].
Summary of various experimental investigations are given in
[11]-[41].

SWIRL JET IMPINGEMENT COOLING

Augmentation of heat transfer during heat transfer has always
been of interest. One way is by increasing the turbulence of the
impinging jet. This can be achieved by introducing swirl in the
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impinging jet. Much work was done with single swirl jet
impingement than multi swirl jet impingement. Ortega-
Casanova [42], [43] gave expressions relating to heat transfer
from a heated plate when subjected to swirl jet impingement.
Amini Y, et al [44] practically studied the use of twisted tape
inserts in augmenting heat transfer during jet impingement
cooling. ZU Ahmed, et al [45] observed the characteristics of
incompressible, turbulent, swirling impinging air jet. Zahir U
Ahmed, et al [46] used RANS approach with RNG k— model
is used for investigating the effects of inflow conditions on the
transition from free-to-impinging and non-swirling-to-swirling
(impinging) jets. Rodriguez, et al [47] compared different
methods of modeling helicoloids for generating swirling flow
fields. Herrada, et al [48] used axisymmetric CFD simulations
to study the effect of a swirl number S and a vortex core length
d on the mechanical characteristics of the flow at moderate
Reynolds numbers. Kinsella, et al [49] found that the main
reason for augmentation of heat transfer in swirling jets is due
to increase in turbulence. Sergey, et al [50] employed stereo
PIV technique using advanced pre- and post-processing
algorithms for studying the turbulent swirling jets. Bakirci, et
al [51] & Bilen, et al [52] conducted experiments for flow
visualization and study heat transfer in both multi-channel
impinging jet (MCLJ), Swirling Impinging Jet (S1J) and
conventional impinging jet (C1J). Shuja, et al [53] investigated
the effect of swirl velocity on various factors like
irreversibility, entropy generation, and fluid friction
numerically. Erik [54] gave expressions for mathematically
modeling swirling flow and evaluating various parameters in
the flow. Koichi Ichimiya and Koji Tsukamoto [55]
investigated the heat transfer when swirling laminar jet is being
impinged on a flat plate. Lamont, et al [56] experimentally
studied the effect of a row of swirling jets in heat transfer from
a flat plate when being impinged with a row of jets. Ekkad, et
al [57] investigated the heat transfer augmentation by inducing
swirl in impinging cooling jets by introducing them at an angle
during cooling turbine blades

OTHER COOLING AUGMENTATION METHODS

Jia, et al [58] performed numerical simulations to study the
effect of upstream and downstream shaped ribs on heat transfer
during flow when cooling turbine blades. Xu, et al [59], using
numerical simulations, investigated the effect of five different
types of vortex generator on heat transfer during flow in a
rectangular channel.
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PROBLEM DEFINITION

Keeping the above points in view, it was decided to investigate
into the effect of swirl jet impingement both experimentally and
numerically. In our previous paper [1], the results of
simulations performed in this regard were discussed.
Expression derived was also presented in the same which is
given as expression (1).

0.4454
Nu = 3.347834 Re08764 py0.33 ¢;0.0364 7004846 ( 7 ) (1)
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In the current work, it is planned to verify the above work
experimentally. Experimental work and the results of the
experimentation are presented in this paper. During fabrication
of the test rig, ducts are 3D printed. Smoke tests were
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Figure 2: 3D Printed Ducts - 0°, 90°, 180°, 360° Figure 3: 3D Printing a Duct

SMOKE TESTING THE DUCTS

To understand the flow through the ducts, smoke tests are
executed. For this smoke is passed through the ducts. The
smoke exiting the ducts is imaged with 120fps camera just as
in [55]. The results of the smoke test are shown in figure 4.
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performed to study the flow pattern.

3D PRINTING DUCTS

The ducts are modeled using Creo/Parametric. Four different
ducts are designed. (i) containing no swirl generator, (ii)
containing 90°Helix for generating swirl, (iii) Containing 180°
Helix and (iv) Containing 360° Helix. These models are shown
in figure 1. The models are 3D Printed using PLA material on
Wanhao Duplicator i3 3D Printer. 3D printing tool paths are
generated using Cura software. 90°Swirl duct, when being 3D
Printed is shown in figure 2. Figure 3 shows the 3D Printed
ducts. 3D Printing is done at 205°C with 25mm/s speed.

L.

360° Helix

They demonstrate how the smoke is getting distributed on exit
from the nozzle indicating that higher turbulence exists with
higher swirl. Jet bending can also be clearly seen during
impingement. The flow pattern during swirling impingement
when compared with that of simulation result are shown in
figure 5 (a), (b) & (c).

Figure 4: Smoke Test Result
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Figure 5: Smoke Test Results vs Simulation Results

TESTRIG

Using the 3D Printed ducts, test rig was fabricated. 100K
Thermistors were used to measure temperature variation.
Thermistors were interfaced to PC using Intel Edison board.
The schematic of the test rig is shown in figure 6. The
temperature measurement equipment is shown in figure 7. The
block is having a constant heat input (30W) by using 12706
TEC by controlling Voltage and Current being given as input.,
in other words constant heat flux wall is experimented.

Experiments are conducted for three swirls at one data point
each. During experimentation, temperature is measured at the

Shroud with
Swirl Generator

Al Block from which
temperature is measured

Figure 6: Test Rig Schematic

CONCLUSION

Experimental investigations are executed to investigate heat
transfer from a flat plate subjected to constant wall heat flux. A
constant heat input of 30W is given using 12706 TEC. This is
achieved by controlling the voltage and current input given to
that of TEC. Initially, smoke test was conducted to understand
the flow pattern. The flow patterns are in good agreement with
that of simulation result. Air flow rate during impingement is
measured using Anemometers. The heat carried away is
measured by measuring the temperature of air before
impingement and after impingement. Heat transfer coefficient
is computed using equation (3). The heat transfer coefficients
obtained are in good agreement with that of numerically
simulated values given in author’s previous work validating the
same.
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nozzle exit (7, ), surface of the block at three points (average

Temperature 7 is then computed), air temperature at the exit of
the shroud. Mass flow rate (#2) of air is measured using
anemometer at the exit should exit. Heat transferred and the
convective heat transfer coefficient are then computed using
equations (2) & (3). The experimental results are found to be
within 5% variation from the computed values using equation

1)
2

®3)

g =mc,AT

G=h(T-T,)

Figure 7: Temperature Measurement Apparatus
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