
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2368

Scheduling Analysis and correction for Multiprocessor Real-Time Systems

Based on Multi-Agent Systems

Adel Mahfoudhi1,2, Walid Karamti3 and Atef Zaguia1

1College of Computers and Information Technology, Taif University, Taif, Saudi Arabia.
2 Computer and Embedded Systems Laboratory, ENIS, University Of Sfax, Tunisia.

a.mahfoudhi@tu.edu.sa
3Higher Institute of Computer Science and Mathematics, University of Monastir, Tunisia.

Abstract

The Partitioned multiprocessor scheduling is the most used in

practice for multiprocessor Real-Time Systems (RTS). Its

complexity is known as NP-Hard and it is very time

consuming to find a schedulable partition.

Hence, the only existing solution to correct a non-schedulable

partition is the regeneration of a new one.

The present paper presents a new approach for scheduling

analysis and correction in the aim of accelerating the process

of finding a schedulable solution. In fact, we have used the

multi-agent systems and the contract net protocol for

modeling a net of cooperating processors able to correct, if

possible, a non-schedulable solution without regeneration.

Keywords: Real-Time Systems, Multi-Agent Systems,

Contract Net, Scheduling analysis and correction

INTRODUCTION

The he Real-Time systems (RTS) are omnipresent in several

domains such as the control of nuclear power stations,

multimedia communications, robotics, avionics, system on

chip (SOC) [23, 26, 2], etc. Therefore, the RTS are

characterized by complex applications that require powerful

architectures to be satisfied. The architecture can be specified

with a powerful processor or, for equal power, a set of low

processors. In practice, a multiprocessor architecture

composed of low processors is required due to two major

facts. First, a multiprocessor architecture is much cheaper

compared to single-processor architecture. Second, it is

crucial to distribute the calculus on various specialized

processors for some domains like the SOC.

The multiprocessor scheduling presents a recent research area

whose results are still in progress. Two scheduling families

can be scheduled, the first of which is the global scheduling

which is characterized by the liberty of all the tasks to

continue their execution in any free processor. However, the

cost of migration and preemption is so important [4, 13, 19].

As for the second one, it is the partitioned family that is based

on the reduction of the preemption and the migration costs

[16]. In fact, the tasks are distributed over the processors

during the assignation phase. Each partition is considered as a

single-processor scheduling problem in which the optimal

scheduling policy exists [14]. Then, a scheduling analysis of

all partitions is made to assure that the RTS system is safe.

The partitioned multiprocessor scheduling is used in a several

RTS applications, such as the multimedia applications, the

avionic application etc. It aims to use all the existing

processors to reach a higher possible performance [3, 20].

A. Classical Partitioned Multiprocessor scheduling strategy

The classical partitioned multiprocessor scheduling strategy is

able to schedule the RTS application on the RTS architecture

(Figure 1). In fact, the RTS application is described with a

finite set of tasks and a precedence relation between all the

tasks.

The schedule is based on two major steps: the partition of

tasks corresponding to each processor and checking the

schedulabilty of each one (Figure 1).

If each partition is schedulable, then the deployment of the

application on the architecture can be carried out safely,

otherwise to correct it, a new partitioning is recommended.

The partitioning consists in distributing ’n’ set of tasks into

’m’ parts and attributing each set to a processor. In fact, each

partition tasks is not allowed to migrate from its initial

partition towards another during the scheduling.

Each processor is defined with a capacity to execute a finite

number of tasks. In fact, each task can be defined with its

necessary duration requested to be executed on the processor.

Respecting this definition, the scheduling problem is known

as a classification problem. Indeed, it is a problem of bin

packing to distribute packets (tasks) in boxes (processors) [6].

In the literature, many optimal algorithms have been used to

solve the bin packing NP-hard problem [10, 8]. In fact,

Coffman and Csirik have made a good presentation for the

one-dimensional bin- packing problem in [11]. However,

these algorithms are effective only for a limited number of

elements [5]. Indeed, for such NP-hard problems, the most

common is the use of ”heuristics” [8].

Among the main heuristics used, the simple algorithms used

are first fit decreasing (FFD) and best fit decreasing (BFD).

Several of the latter have been designed for different

application domains to find approximate solutions when there

is no exact method or when the solution is unknown

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2369

[18].However, these algorithms are non-optimal. In fact, they

generally allow obtaining results close to the optimal solution

[7].

Figure 1: Classical Partitioned scheduling approach

Each partition is considered as a single-processor scheduling

problem in which the optimal scheduling policy exists [14].

Then, a scheduling analysis of all the partition is made to

assure that the RTS system is safe.

In literature, the scheduling analysis is tackled with various

techniques in order to protect the RTS from failures.

Particularly, the formal method presents the most secure

technique proposed for the scheduling analysis.

Generally, the choice of the suitable formal method depends

on the characteristics of the system and the properties to be

checked. We distinguish two main classes from prove

methods for scheduling analysis which analytical methods and

model checking methods [17].

Contrary to the model checking methods, the analytical

verification provides algorithms characterized by polynomial

complexity for schedulability checking of a set of tasks [15].

In fact, the results of the analysis are provided very quickly

compared to other methods. This can explain why this method

is very used in practice.

Unfortunately, despite the amount of research in this field,

there are still common problems that always occur in the

proposed scheduling partitioning solutions. The most common

is the inability to give a reliable partitioning solution from the

beginning, which increases the risk of non-schedulability. In

fact, in order to correct the schedulability, the partitioner is

called for a new regeneration from an exponential number of

partitioning possible solutions (Figure 1). Indeed, the

correction of non-schedulable partitions is a costly task.

Hence, it is very interesting to try the correction of the

considered solution to reduce the increasing cost of

regeneration.

B. Contribution and outline of the paper

The main contribution of this paper is the proposition of a new

approach of scheduling analysis and correction into the

multiprocessor partitioned scheduling in order to decrease the

time cost to find schedulable partitions. The solution is based

on Multi-Agent systems and the Contract Net protocol in the

aim to create a net of processors. Indeed, the proposed

solution allows a processor with non-schedulable tasks to

cooperate with others to find a new allocation to each one.

The rest of the paper is as follows: we present in section II the

proposed scheduling analysis and correction. In section III, we

present the proposed Multi-Agent model for the correction.

Next, section IV details a case study and provides the ability

of the proposed approach to correct all the described non-

schedulable tasks. Finally, we summarize and provide future

research directions, in section V.

PROPOSED SCHEDULING ANALYSIS AND

CORRECTION APPROACH

In order to explain our approach, we start with the description

of the used RTS, and then we define the method to analyze

and correct a given partitioning solution.

C. RTS Model

The used RTS is specified with system . It is defined by the

4-tuplet:

with:

• Task : {T1, T2,..., Tn}, with (n ≥ 0) is the number of tasks;

each Ti ∈ Task is determined by Ti = <Ri , Pi , Ci> where,

 Ri , is the date of the first activation,

 Pi , the period associated with the task,

 Ci , the execution period of the task for the Pi period.

• Proc : {P1, P2,..., Pm}, with m ≥ 0 is the number of

processors.

• Alloc : Task → Proc, a function which allocates a task to a

processor. Alloc is a surjective function. In fact, a processor is

allocated to at least one task, but a task must be assigned to

only one processor.

• Prec : Task × Task →{0, 1}, a function which initializes

precedence relations between tasks.

We consider in this paper only the case of independent tasks

 with simultaneously start

.

The utilization factor of task Ti is denoted by ui where ui =

Ci/Pi, and the capacity of a processor Procj by:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2370

With k is the number of tasks composing the partition of the

processor Procj. A partitioned multiprocessor RTS is

schedulable if all the processors do not exceed their

corresponding capacities. The scheduling analysis techniques

are able to identify all the non-schedulable partitions without

proposing a solution for correction.

D. Proposed approach

The objective of the proposed approach (Figure 2) is to

decrease the time to define a feasible partitioning. To do so,

starting with a given partitioning solution, we are based on

two facts: using a fast scheduling analysis and correcting the

non-schedulable partitions without the regeneration of a new

configuration.

In order to accelerate the scheduling analysis, we used an

analytical method presented in [21]. The results of this step

are principally two kinds of partitions: schedulable and non-

schedulable. If the processor’s partitions cooperate then the

correction can be established. In fact, in a feasible RTS, the

existing of non-schedulable partitions indicates that some

schedulable partitions are relaxed and able to receive more

tasks for execution.

Figure 2: Proposed Scheduling analysis and correction

Regarding the processors capacities, we can define

schedulable and non-schedulable partitions as follows:

- Schedulable partition: when the capacity is inferior to 1. All

the tasks of this partition are schedulable and there is a free

space to schedule other ones.

- Non-schedulable partition: when the capacity is superior to

1. Some tasks have no places on the processor to be executed.

So, if they migrate to the schedulable partitions, then the RTS

can be corrected without the regeneration of a new

partitioning solution.

In practice, we may have a case with the capacity equal to 1,

that is when all the tasks of this partition are schedulable and

no free space to receive others. We called this kind of

partition a Blocked partition.

II. MULTI-AGENT SYSTEMS FOR THE SCHEDULING ANALYSIS

AND CORRECTION

In order to correct the non-schedulable partitions, it is so

interesting to find a way to let all the partitions communicate,

cooperate and exchange tasks. In fact, the non-schedulable

partition asks the schedulable ones for places to receive tasks.

This can be done if we model each of processor with an

autonomous agent [9] and if we consider an appropriate

communication mechanism.

A. Overview

To fit the needs of different domains, various interaction

protocols have been developed for task allocation in multi-

agent systems. Some of them are built for specific domains,

like the monotonic concession protocol and the corresponding

Zeuthen strategy [12] for task oriented domains where agents

have to reallocate a set of tasks. Such protocols cannot be

used in more general situations. Other mechanisms are

designed for more general situations where an agent needs to

allocate some task to the most suitable agent. Examples of

such protocols are different kinds of auctions (English

auction, Dutch auction and first-price sealed bid auction). One

of the most popular used protocols [25, 24] is the Contract

NET interaction protocol specified as an interaction protocol

by the Foundation of Intelligent Physical Agents (FIPA) [1]

and used in practical applications.

The Contract NET protocol has several advantages over other

protocols. Firstly, it allows finding an agent that is the most

suitable for the task. Secondly, it is the only protocol that has

been accepted by FIPA as a standard, and no longer has

experimental status [1]. Thus, it is standardized, widely used

and well known to the developers of multi-agent systems.

Additionally, it is reliable in the sense that if an individual

agent becomes unavailable, the task can be easily reassigned

to another agent [22]. We consider the autonomous agent with

Contract NET to model the scheduling analysis and correction

approach.

B. Proposed Model

The Contract Net appeared for the first time in [22]. It is

characterized with two types of agents: Initiator and

Participant. Indeed, at any time, any one agent can be an At an

initiator, participant or both. Besides, it allows contracting as

well as subcontracting.

This protocol aims to execute a sequence composed by 3

steps. First, the initiator agent sends out a call for proposals.

Second, each Participant reviews the proposal and bids on

feasible ones. Finally, the initiator chooses the best bid,

awards a contract to that participant and rejects other bids.

Based on this description, we propose our model for the

scheduling analysis and correction (Figure 3).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2371

The proposed model is composed of two types of agents:

allocator agent and processor agent. In fact, the processor

agent presents one processor and it is responsible to analyze

the schedulability of its partition. The allocator agent presents

a manager able to manage the communication between the

processors agents and search a new location of the non-

schedulable tasks. Both of agents are an initiator and

participant agent.

The processor agent analyzes its partition based on priority

scheduling analysis ([21]). If the analysis fails and the

partition is non-schedulable, the correction process is then

started and it is based on two major steps. First, the local

correction, the agent relaxes the processor by selecting some

task(s) to be excluded from its partition. Second, the agent

allocator is called to search a new allocation to those task(s).

Figure 3: Scheduling analysis and correction model

The agent allocator receives a set of tasks for re-allocation

from the processors agents with a failed analysis. Then, for

each task, the allocator agent sends a call to the rest of

processor agents of the proposition, including more tasks in

their partition. Thus, the allocator begins with tasks with the

highest utilization factor, because finding a new allocation is

more complicating then the lowest. The processor agent can

respond with two possible requests: refuse (if it is a blocked

partition or non-sufficient space) or accept the proposal.

When all the proposals are comeback, the agent allocator

chooses the best partition based on the Best-Fit algorithm, and

then, the task will be included in the chosen partition.

This process will be iterated until the re-allocation of all the

tasks.

CASE STUDY

In the present section, we introduce a demonstration of the

proposed scheduling and correction approach through a case

study.

In fact, we present a generic experiment that consists of a non-

schedulable system. In the latter, we establish the way how

the proposed approach supplies a description of the non-

schedulable tasks and how to find a new allocation to each

one in order to correct the system.

The case study deals with 15 independent tasks running on 4

identical processors. Using definition 1, the specifications of

the task characteristics as well as the allocation of the

processors by the tasks are described as follows.

Task = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12,

T13, T14, T15}

Proc = {P1, P2, P3, P4}

Table 1: Task characteristics and allocation

Task Ri Pi Ci Allocation

T1 0 16 3 P1

T2 0 3 1 P2

T3 0 8 1 P1

T4 0 15 8 P3

T5 0 7 2 P4

T6 0 9 4 P2

T7 0 8 3 P1

T8 0 7 3 P4

T9 0 16 2 P1

T10 0 9 2 P2

T11 0 7 2 P4

T12 0 7 1 P4

T13 0 15 3 P3

T14 0 9 1 P2

T15 0 15 1 P3

Four partitions are created; with each one an agent is

associated. The scheduling analysis results indicate two

schedulable partitions (P1, P3) and two non-schedulable (P2,

P4) (step 0, table 2). Thus, the correction process is triggered.

In order to describe all the correction steps, we present in the

Table 2, the interaction between the agents and all the

established contracts and deals.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2372

Table 2: Description of the correction steps

Ste

p

Description

0 Capacity of processors:U1=0.8125

 U2=1.1111

 U3=0.8000

 U4=1.1428

1 Agent_P2: T14 is non-schedulable

Agent_P4: T12 is non-schedulable

2 Agent_P2 calls the Agent allocator to reallocate T14 (u14 = 0.1111)

Agent_P4 calls the Agent allocator to reallocate T12 (u12 = 0.1428)

3 Agent allocator selects the task (T12) and sends it as a proposal to the Agent P1 and Agent P3.

4 Agent_P1 accepts the proposal to schedule T12, the new U1=0.9553

Agent_P3 accepts the proposal to schedule T12, the new U3=0.9428.

5 Agent allocator deals with the Agent P1

Agent_allocator rejects the proposal of the Agent_P3

6 Agent_allocator deals with the Agent_P4

Capacity of processors: U1=0.9553

 U2=1.1111

 U3=0.8000

 U4=1.0000

7 Agent_allocator selects the task (T14) and sends it as a proposal to the Agent_P1, Agent_P3 and Agent_P4.

8 Agent_P1 rejects the proposal to schedule T14

Agent_P3 accepts the proposal to schedule T14, the new U3=0.9111

Agent_P4 rejects the proposal to schedule T14

9 Agent allocator deals with the Agent_P3

10 Agent allocator deals with the Agent_P2

Capacity of processors: U1=0.9553

 U2=1.0000

 U3=0.9111

 U4=1.0000

The first action into the correction process is the local

correction. In fact, each one of the Agent P2 and Agent P2

calculates the utilization factor able to relax the processor to

schedule its partition correctly. The Agent P2 aims to

reallocate a space ≤ 0.1111. Thus, it corresponds to the factor

utilization of the task T14, so, a reallocation of T14 can solve

this problem (i.e. task T12 for the Agent P4.) (step 1).

In the next step, step 2, the Agent P2 and Agent P2 call the

Agent allocator to find a new allocation of the tasks: T12 and

T14.

Before accepting or refusing the proposals, the Agent

allocator collects each coming non-schedulable task and starts

with the biggest one to find a new allocation for it. If the

search is successful then it deals with the origin agent,

otherwise it declines the proposal and no contract will be

done. Step 3 describes the choice of the task T12 and the call

for the other agents’ processor to find a new allocation for

T12.

The agent calculates the capacity before responding to the

calls. If the capacity is not exceeded after including the task,

then it accepts then the proposal and it indicates the new

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2373

capacity, otherwise it refuses the proposal. In the case when

more than one agent accept the proposal, the Agent allocator

deals with the agent with the best proposal, based on the Best

Fit policy, and declines the others.

When the new allocation is found, the Agent allocator deals

with the original Agent processor (deal with Agent P4, step

6). Indeed, when no new allocation is found, the Agent

allocator declines the proposal and the system is declared as

non-correctable.

After the correction of a partition, it can receive, if its capacity

is not blocked, more tasks from other non-schedulable

partitions (step 7).

The correction is terminated when all non-schedulable tasks

are reallocated.

CONCLUSION

Partitioned multiprocessor Real-Time scheduling has been

used more often than the Global scheduling, and are widely

supported by commercial real-time operating systems.

However, the partitioning of tasks over the processors is

known to be an NP-hard problem (bin-packing problem) in

the strong sense. Thus, it is very difficult to find a schedulable

solution in polynomial time.

In this paper, we are interested to correct the proposed

partitioning given by a partitioner tool without a new

regeneration of a new partitioning solution.

To this end, we have proposed a new approach of scheduling

and correction approach into the RTS partitioned scheduling.

In fact, we have proposed a Multi-agent model for the

correction. Each partition is modeled with an agent able to

analyze and correct its partition locally with excluding non-

schedulable tasks. Besides, we have proposed a supervisor

agent able to search a new allocation for the non-schedulable

tasks. The communication between the agents is based on the

Contract Net protocol.

We have considered in this work an RTS composed of

periodic independent tasks and we have used a case study to

explain how our approach can be used for the analysis and

correction. However, in real applications, tasks are dependent

(Precedence relation and shared resource). Therefore, it is

interesting to consider in future works a real-world application

and demonstrate the advantage of our approach.

The correction may occur only if a partition presents an

adequate space to receive the whole non-schedulable tasks.

However, this is one of the major limits of our approach. In

fact, we have met some cases that the Agent allocator declines

the proposal of correction because no space is able to receive

the task, but, if the task is divided on two partitions it can then

be corrected. Thus, it is very interesting to improve our

approach to be able to divide tasks to be executed on multiple

processors (even multi-cores).

REFERENCES

[1] FIPA Interaction Protocol Specifications.

http://www.fipa.org/repository/ips.php3, accessed

October 2017.

[2] H. Ahn, H. Oh, and Y. Chung. A semi-real-time

scheduler for service robot components on windows

nt systems. Information: An International

Interdisciplinary Journal, 14(5):1629–1644, 05 2011.

[3] T. P. Baker. A comparison of global and partitioned

edf schedulability tests for multiprocessors.

Technical report, In International Conf. on Real-

Time and Network Systems, 2005.

[4] M. Bertogna and S. K. Baruah. Tests for global edf

schedulability analysis. Journal of Systems

Architecture - Embedded Systems Design,

57(5):487–497, 2011.

[5] M. Chéramy, P-E. Hladik, and A.M. D´eplanche.

Real-time scheduling algorithms for multiprocessor.

Journal Européen des Syst`emes Automatisés

(JESA), 48(7-8):613–639, October 2015.

[6] A-M. Déplanche. Ordonnancement temps réel

multiprocesseur: panorama sur les politiques

globales. In Ecole d’été temps réel, 2011.

[7] F. Dorin, P. M. Yomsi, J. Goossens, and P. Richard.

Semi-partitioned hard real-time scheduling with

restricted migrations upon identical multiprocessor

platforms. CoRR, abs/1006.2637, 2010.

[8] M. R. Garey and D. S. Johnson. Computers and

Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York,

NY, USA, 1990.

[9] Z. Guessoum and J-P. Briot. From active objects to

autonomous agents. IEEE Concurrency, 7(3):68–76,

1999.

[10] D.S. Johnson. Fast algorithms for bin packing. J.

Comput. Syst. Sci., 8(3):272–314, June 1974.

[11] E.G. Coffman Jr. and J. Csirik. Performance

guarantees for one dimensional bin packing. In

Handbook of Approximation Algorithms and

Metaheuristics. 2007.

[12] J.Zlotkin. Rules of Encounter - Designing

Conventions for Automated Negotiation among

Computers. MIT Press, 1994.

[13] S. Kato and N. Yamasaki. Global edf-based

scheduling with laxity-driven priority promotion.

Journal of Systems Architecture - Embedded

Systems Design, 57(5):498–517, 2011.

[14] S. H. Kwang and J.Y.-T. Leung. On-line scheduling

of real-time tasks. In IEEE Real-Time Systems

Symposium, pages 244–250, 1988.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2368-2374

© Research India Publications. http://www.ripublication.com

2374

[15] C. L. Liu and James W. Layland. Scheduling

algorithms for multiprogramming in a hard-real-time

environment. J. ACM, 20:46–61, January 1973.

[16] L.Sha, T. Abdelzaher, K.E. arz´en, A. Cervin, T.

Baker, A. Burns, G. Buttazzo, M. Caccamo, J.

Lehoczky, and K.A. Mok. Real time scheduling

theory: A historical perspective. Real-Time Systems,

28:101–155, 2004.

[17] A. Mahfoudhi, Y. Hadj Kacem, W. Karamti, and M.

Abid. Compositional specification of real time

embedded systems by priority time petri nets. The

Journal of Supercomputing, 59(3):1478–1503, 2012.

[18] M. P. Panos. Genetic algorithms & engineering

optimization by mitsuo gen; runwei cheng. 44:739–

740, 01 2002.

[19] M. Park, S. Han, H. Kim, S. Cho, and Y. Cho. Zl

scheme: Generalization of edzl scheduling algorithm

for real-time multiprocessor systems. Information:

An International Interdisciplinary Journal, 8(5):683–

691, 09 2005.

[20] J.A. Stankovic S. Cheng and K. Ramamritham.

Scheduling algorithms for hard real-time systems–a

brief survey. Technical report, Amherst, MA, USA,

1987.

[21] L. Sha, M. H. Klein, and J. B. Goodenough. Rate

Monotonic Analysis for Real-Time Systems, pages

129–155. Springer US, Boston, MA, 1991.

[22] R. G. Smith. The contract net protocol: High-level

communication and control in a distributed problem

solver. IEEE Trans. Computers, 29(12):1104–1113,

1980.

[23] F. Trivino, J.L. S´anchez, F. J. Alfaro, and J. Flich.

Network-on-chip virtualization in chip-

multiprocessor systems. Journal of Systems

Architecture - Embedded Systems Design, 58(3-

4):126–139, 2012.

[24] J. Vokrınek, J. Bıba, J. Hodık, J. Vybıhal, and M.

Pechoucek. Competitive Contract Net Protocol,

pages 656–668. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007.

[25] M. Wooldridge. An Introduction to Multi Agent

Systems. Wiley Publishing, 2nd edition, 2009.

[26] X. Ye, L. Zhu, and S. Guo. Deformation model of

soft tissues for real time surgical simulation.

Information: An International Interdisciplinary

Journal, 13(6):20112020, 11 2010.

