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Abstract  

Active learning is well-motivated in many modern problems of 

grammatical inference, where labeled data may be unavailable 

in context of learning. In this paper, we theoretically study the 

problem of learning of commutative deterministic finite 

automata (CDFA) in the framework of active learning. The 

theoretical results show that the class of CDFA is idenfiable in 

the limit with membership queries and equivalence queries. 
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INTRODUCTION 

In grammatical inference (GI), learning refers to a process of 

identifying a formal language in terms of its grammars or 

automata by a learner who is given information of the formal 

language. One of most attractive topics in grammatical 

inference is of theoretically studying on an important property 

of classes of defined automata. This property is called 

learnability of language family. The study in grammatical 

inference is mostly based on three learning models i.e., Gold’s 

passive learning model [1], Angluin’s active learning model 

[2], Valiant’s approximately learning model [3].  

In the first model, the Gold’s learning model is viewed as a 

framework of passive learning. In the process of learning an 

unknown language, a number of examples will be provided at 

each time to a learner who is to hypothesize a grammatical 

representation of the language on the basis of the examples 

given so far. The process continues repeatly. The success of 

learning process is considered by using a criterion called 

identification in the limit [1]. It was developed by adding some 

constraints of complexity [4]. One of those criteria that are 

widely used in a learning model called identification in the limit 

from polynomial time and data introduced by Higuera [5].  

However, there are several situations where the learning can 

actively interact with its environment. The mathematical 

setting to do this is called active learning, where queries are 

made to an oracle. In this learning framework, the learner has 

access to a truthfully oracle which is allowed to answer specific 

type of queries. Active learning is a paradigm firstly introduced 

with theoretical motivations but that for a number of reasons 

can today be considered also as a pragmatic approach [6]. Some 

of the theoretical reasons is to make use of additional 

information that can be measured. For practical view, the active 

learning is an important field of grammatical inference because 

it is becoming more widely used inp case of problems where 

labeling the examples in the training data set is unavailable.  

The problem of active learning is mainly studied on the class of 

regular languages. In Angluin’s work, a polynomial time query 

learning algorithm for the class of minimal complete 

deterministic finite automata (DFA) is given, in which the 

learner can ask membership queries (MQ) and equivalence 

queries (EQ). There are though other types of possible queries: 

subset, superset, disjointness and exhaustive queries [7], 

structured membership queries [8], etc. The learnability of 

various grammatical representation of formal languages has 

been also studied in active learning framework through 

identification of specifically defined automata [9] such as 

regular expression [10], and multiplicity tree automata [11].  

Learning algorithms from these works have been also 

experimentally investigated to real-world applications such as 

DNA sequences analysis [12], music style recognition [13], and 

speech recognition [14]. The obtained results show that some 

GI algorithms are an effective and efficient alternative to solve 

the problems.  

Research in formal language theory has been fruitful in the 

discovery of subclasses of the class of regular languages, e.g., 

k-testable languages, k-reversible languages, k-acceptable 

languages[15-17] and strictly k-acceptable languages [18-19]. 

This is because the class is almost only one class of formal 

languages that is both efficiently learnable and general enough 

to represent many nontrivial real-life phenomena. 

In this paper, we focus our attention on the problem of learning 

of commutative deterministic finite automata (CDFA) in the 

framework of active learning. Two types of queries, i.e. 

membership queries and equivalence queries, will be 

theoretically investigated on this learning framework. The 

results show that the class of CDFA is identifiable in the limit 

with membership queries and equivalence queries. 

The remains are organized as follows. Section 2 presents basic 

definitions and notations. In section 3, we introduced 

commutative finite automata and proved some properties of the 

class. In section 4 we investigate learnability of the class of 

commutative deterministic finite automata in framework of 

active learning. Finally, section 5 provides the conclusion of 

this work.  
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PRELIMINARIES 

The basic definitions and notations used throughout this paper 

are provided in this section. 

 

Formal languages and automata 

Let Σ be an alphabet that is a finite and nonempty set of letters. 

The size of Σ is a number of letters, denoted by |Σ|. A finite 

sequence of letters from Σ is called a string. Given a string w, 

the length of strings is the total number of letters appearing in 

w and it is denoted by |w|. The string with length zero is called 

the null string denoted by λ. The infinite set of all possible 

strings over Σ, denoted by Σ*, is the set of all finite-length 

strings generated by concatenating zero or more letters of Σ. 

Here the Parikh-map, denoted by , maps any string over a k-

letter alphabet to the k-dimensional integral vector 

corresponding to the letter counts of each of the k letters in the 

string. A language over Σ denoted by L is any subset of Σ*. The 

family of languages over Σ, denoted by , is called a class of 
languages. A finite automaton is a grammatical representation 

that is typically defined as a 5-tuple M = (, Q, q0, F, ) ,where 

 is a finite alphabet, Q is a finite non-empty set of states, q0  

Q is an initial state, F  Q is a set of final states, and  : Q  

 Q is a state transition function. The state transition function 

 can be extended to a mapping  *: Q  * Q in the following 

inductive way: (i)  *(q, ) = q, for each state q Q, where  is 

the null string, and (ii)   *(q, wa) =  ( *(q, w), a), for each 

state q  Q, each letter a  Σ, and each string w  Σ*. The finite 

automaton M  is deterministic if |δ(q, a)| ≤ 1 for each q  Q and 

for each a  . Then M is called deterministic finite automata 

(shortly denoted by DFA).  

Theoretically, an automaton plays an important role as a 

language recognizer. A string w is recognized by an automaton 

M = (, Q, q0, F, ) if *(q, w)  F. The language recognized 

by M, denoted by (M), is the set of all strings which are 

recognized by the automaton M and this set is called a regular 
language. A language L is recognizable if there exists an 

automaton M such that L = (M).  

 

Active learning and convergence criterions 

In grammatical inference, a learning algorithm L is a mapping 

function defined as L :   , where  is a set of all 

presentation and this set is used for learning any language L in 

a language class  by identifying a grammatical representation 

G in a class  of corresponding grammatical representations. 

For learning in GI, an unknown language L, we say that the 

algorithm L converges to G   from S   if and only if ( 

L(S)) = L.  

The active learning is based on the existence of an oracle which 

can be seen in principle as a device that knows the language 

and has to answer correctly and can only answer queries from 

a given set of queries. In this paper, we study on learnability of 

the class of deterministic commutative finite automata by using 

two different types of queries. Firstly, only membership queries 

are available in learning context. Secondly, equivalence queries 

are additionally given. The two different type of queries are 

defined as below. 

 

Definition 2.1 

A membership query (MQ) is made by proposing a string to the 

oracle, who answers Yes if the string belong to the language and 

NO if not. We will denote this formally by  

MQ : *{Yes, No}. 

 

Definition 2.2 

An equivalence query (EQ) is made by proposing a 

grammatical representation G to the oracle. The oracle answers 
Yes if the grammatical representation G is equivalent to the 

target and NO if not. We will denote this formally by  

EQ : {Yes, No}. 

In the active learning process, we define a class of grammatical 

representation G and the sort of queries that we are allowed to 

make and the oracle will have to answer. We call this class of 

queries QUER. Typically if the learner is only allowed to make 

membership queries, we will have QUER = {MQ}. However, 

if the learner is allowed to make membership queries and 

equivalence queries, we will have QUER = {MQ, EQ}. 

The learning criterion that will be used in this paper can be 

found in [1] and if is well known as identification in the limit 
with queries. A formal definition of this criterion is restated as 

follows. 

 

Definition 2.3 

A class  is identifiable in the limit with queries from QUER if 

there exists an algorithm  such that given any grammatical 

representation G in ,  identifies  in the limit, i.e. returns a 

grammatical representation G equivalent to G and halts. 

 

COMMUTATIVE DETERMINISTIC FINITE 

AUTOMATA AND THEIR PROPERTIES 

Given two words u and v we say that commutatively equivalent 

if u = a1 a2 an with ai  Σ for 1 ≤ i ≤ n, and there exist a 

permutation  on {1, 2, …, n} such that a(1) a(2)… a(n) = v. 

We denote it by ucomv. For instance, abca com cbaa. Given 

an alphabet Σ, a language L is commutative if and only if it is 

the union of some com class. 
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Definition 3.1 

A commutative deterministic finite automaton (CDFA) is a 5-

tuple M = (Σ, Q, q0, F, δ) where  

 Σ = {a1, a2, …, an} is a finite alphabet,  

 Q = Qa1× Qa2× … × Qan is a finite set of states,  

 q0  Q is the initial state,  

 F ⊆ Q is a set of accepting states, and  

 δ((q1, …qi, …, qn), ai) = (q1, … δ(qi, ai), …, qn) where 
δi is a function from Qai onto Qai for 1 ≤ i ≤ n. 

We let CDFA(k) denote the class of k-letter CDFAs  and let 

CDFA = k CDFA(k). We let CDFA(k)s denote the subclass 
of CDFA(k) of size at most s. 

 

Definition 3.2 

A minimal commutative finite automaton (MCFA) is a 5-tuple 

M = (Σ, Q, q0, F, δ) where  

 Σ = {a1, a2, …, an} is a finite alphabet,  

 Q = Qa1× Qa2× … × Qan such that Qai = m0[ai
m]L 

for 1 ≤ i ≤ n, 

 q0 = ([]L, []L,…, []L),  

 F = {a1(x), a2(x), …, an(x), | x  L }, and  

 δ ai ([ai
m]L,  ai) = [ai

m+1]L for 1 ≤ i ≤ n. 

Example 3.1 Let L = {w  * : |w|a = 0 or |w|b > 0} be a formal 

language defined over 2-letter alphabet Σ = {a, b }. The 

minimal DFA of L is depicted in Fig. 1(a) and the minimal 

CDFA of the language L is depicted in Fig. 1(b). 

 

(a) A minimal DFA of L 

 

(b) A minimal CDFA of L 

Figure 1. The minimal automata recognizing 

L = {w  * : |w|a = 0 or |w|b > 0} 

Definition 3.3 

A language recognized by CDFA M = (Σ, Q, q0, F, δ)  is called 

a commutative regular language (CRL) defined as L = {w : 

δ(q0, w)  F}. A set of all commutative regular languages is 

called that a class of commutative regular languages denoted 

by CRL. 

To study learnability of CRL, some theoretical properties are 

needed. Then, we have proved some propositions and lemmas 

that will be referred in next section. 

 

Definition 3.4 

A CDFA is called a single final state CDFA if it contains 

exactly one final state. We let sfs-CDFA(k) denote the class of 
k-letter CDFA with a single final state, and sfs-CDFA(k)s 

denote denote the subclass of sfs-CDFA(k) of size at most s. 

 

We note the following simple fact about the single final state 1-

letter commutative deterministic finite automata. 

 

Lemma 3.1 s, card(sfs-CDFA(1)s) = s2. 

Proof: Every 1-letter CDFA is in a very restrict form. It starts 

out with a start state, and then follows a sequence of final and 

non-final states until it finally comes to one of the previous 

states. Since there are s states, we know that the sequence of 

states comes to a previous state at the sth step. Thus the number 

of sfs-CDFA(1) is s2.  

 

Definition 3.5 

Tuples of 1-letter single finite state CDFA, denoted by TCDFA, 

is the class of finite tuples of sfs-CDFA such that 

(i)  TCDFA(k) = {M1, M2,…, Mk} : ik, Mi  sfs-

CDFA(k)}, 

(ii)  TCDFA = k TCDFA(k). 

(iii)  The language represented by a TCDFA  

 T = (M1, M2,…, Mk) 

 is defined as follows: 

 L(T) = -1((L(M1)) (L(M2)) …(L(M1))). 

 

Definition 3.6 

Sets of tuples of CDFA, denoted by STCDFA is the class of 

finite sets of TCDFA(k) for some k such that 

(i)  STCDFA(k) = {{T1, T2,…,Tj}} : ij, Ti  TCDFA(k)}, 

(ii)  STCDFA = k  STCDFA(k). 

(iii)  The language represented by a STCDFA  
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 S = {T1, T2,…, Tj) 

 is defined as follows: 

 L(S) = L(T1)  L(T2)  … L(Tj). 

In this section, we prove that any language accepted by a CDFA 

is a union of at most (sk) commutative regular languages that 

are k-dimensional Cartesian products of 1-letter commutative 

regular languages, each of which can be represented by a 1-

letter CDFA with a single finite state with at most s states. 

We present our study with the case k = 2 for simplicity. The 

study extends straightforwardly to the general case. We define 

the projection Ma and Mb of M onto {a}* and onto {b}*, 

respectively, as follows. 

 

Definition 3.7 

Let M = (Σ, Q, q0, F, δ) be any 2-letter CDFA. The projection 
of M onto {a}* is defined as Ma = (Σ, Qa, q0, Qa, F, 

δ[Qa{a}*]) where Qa is the subset of Q which is reachable by 

some ax, and δ[Qa{a}*] is the restriction of δ to Qa{a}*. 

The projection of M onto {b}* denoted by Mb is similarly 

defined. 

For each state q in Qa, we pick a representative for a member 

ax of {a}* such that M(ax) = q, and similarly for Qb. 

 

Definition 3.8 

Let Qa = {qa,1, qa,2,…, qa,l}. We fix Ra = {ax1, ax2,..., axl}  {a}*, 

where for each il, axi is a representative for qa,i. Similarly, we 

let Qb = {qb,1, qb,2,…, qb,m}. We fix Rb = {by1, by2,..., bym}  

{b}*, where for each jm, byj is a representative for qb,j. 

 

Definition 3.9 

For an arbitrary string ax {a}*, we let [ax]Ma denote the right 

invariance equivalence class of Ma which contain ax. Also we 

let [x]Ma denote {y : ay  [ax]Ma }. We similarly define [by]Mb 

and [y]Mb for each y  . 

 

Lemma 3.2 Let M = (Σ, Q, q0, F, δ) be any minimal 2-letter 

CDFA, as given before. Let q be an arbitrary state in Q. Then 

the set of strings leading to q, L(q), is the following language: 

L(q) = -1(Lq) such that the inverse Parikh-image of Lq   

where: 

Lq =  {[xi]Ma  [yi]Mb : axi  Ra and byj  Rb and M(axibyj) = q}, 

Hence, the language accepted by M is nothing but (M) = -

1(Lq) such that the inverse Parikh-image of LF  2 where: 

LF = { Lq : q  F}. 

Proof: Let q be an arbitrary state of M. Let ak  {a}* and bl  

{b}* be such that M(ak bl) = q. Now, we assume that ax  [ak]Ma 

and by  [bl]Mb Then, we can show that M(ax by) = q also, using 

the commutativity of M as follows. 

M(ax by) = (q0, ax by) 

= (Ma(ax), by) by definition of Ma 

= (Ma(ak), by) by ax  [ak]Ma 

= M(ak by) by definition of Ma 

= M(by ak) by commutativity of M 

= (Mb(by), ak) by definition of Mb 

= (Mb(bl), ak) by by  [bl]Mb 

= M(bl ak) by definition of Mb 

= M(ak bl) by commutativity of M 

= q 

From this it follows immediately that if for any two 

representatives axi and byi, it is that case that M(axi byj) = q, then 

-1([xi]Ma  [yj]Mb)  L(q). It also follows that for any two 

representatives axi and byi, if it is not the case that M(axi byj) = q, 

then for no ax  [axi]Ma and by  [byj]Mb is it the case that M(axi 

byj) = q, and hence -1([xi]Ma  [yj]Mb)  L(q) = . Hence L(q) 

exactly equals the union of -1([xi]Ma  [yj]Mb) for all pairs xi, yj 

such that M(axi byj) = q.                      

 

Example 3.2 Let L = {w  * : |w|a = 6 or |w|b = 2} be a formal 

language over 2-letter alphabet  = {a, b}. The 2-letter CDFA 

M recognizing L is depicted in Fig.2. From lemma 3.2, the 

projection Ma of M onto {a}* and Mb of M onto {b}*, shown 

in Fig.3(a) and Fig.3(b). 

 

Figure 2. The 2-letter CDFA of 

L = {w  * : |w|a = 6 or |w|b = 2} 
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(a) the projection Ma of M onto {a}* 

 

 

(b) the projection Mb of M onto {b}* 

Figure 3. Two 1-letter projection of CDFA 

 

Lemma 3.3 For each CDFA M of size s over a k-letter alphabet, 

there exists S  STCDFA(k) such that 

1. (S) = (M), 

2. card(S)  sk, 

3. T  S, if T =  M1, M2, …, Mk then  

 ik size(Mi)  s. 

Proof: Let M  CDFA(k) be given, with s being the number of 

states in M, i.e., s = size(M). We can assume without loss of 

generality that M is minimal, since otherwise M can be replaced 

by a language equivalent, minimal CDFA with the less state. 

Let Ma
xi denote the 1-letter single final state automaton 

obtained by modifying Ma so as to make the state to which the 

string axi leads the unique final state in Ma
xi. Define Mb

yj 

analogously. Then, the statement of Lemma 3.2 can be 

rewritten as follows. 

(M) = ({(Ma
xi , Mb

yj ) : M(axibyj)F}) 

If we let S = { Ma
xi , Mb

yj  : M(axibyj)  F}, then the S witnesses 

the claim in the statement of Lemma 3.2: For a given M, Ma, 

and Mb are constant and thus card(S) = card({Ma
xi , Mb

yj  :  xi, 

yj }) = s2, and each TCDFA in S is clearly in the required 

form, since size (Ma
xi)  s and (Mb

yj)  s.              

LEARNING COMMUTATIVE FINITE AUTOMATA IN 

FRAMEWORK OF ACTIVE LEARNING 

In this section, we theoretically show that the class of 

commutative deterministic finite automata is identifiable in the 

limit by using both membership queries and equivalence 

queries. A reduction technique will be used in this proof. 

The reduction technique for grammatical inference have been 

firstly formalized in [17] by Higuera. This algebraic technique 

allows us to refine previous theoretical results of learnability.  

 

Theorem 4.1 (from Theorem 2 in [17]) 

If the  of languages is learnable in terms of R() from 
Pres(), and there exists a computable function :R() R() 

such that  = Id, and  is a computable reduction, then the 
class  of languages is learnable in term of R() from Pres(). 

Proof: see in [17]. 

To get better understanding, a diagram representing the 

situation is shown in Fig. 2. 

 

 

Figure 2. The commutation diagram 

 

In [20]. the class of deterministic finite automata (DFA) of 

regular languages (REG) have been proved that it is 

identifiable in the limit with queries by using both membership 

queries and equivalence queries. For this work, we refine the 

theoretical results. 

 

Theorem 4.2 The class of commutative deterministic finite 
automata is identifiable in the limit with queries by using both 
membership queries and equivalence queries.   

Proof: Let REG be a learning algorithm that identifies 

languages in the class of regular languages (REG). Consider 

algorithm CDFA below, that learns a set QUERCDFA of 

membership queries (MQ) and equivalence queries (EQ) and 

then output a CDFA corresponding the learning set. The 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 3 (2018) pp. 1742-1747 

© Research India Publications.  http://www.ripublication.com 

1747 

algorithm CDFA executes as follows. 

 

Algorithm :  CDFA 

Input   : QUERCDFA = {MQ, EQ} 

Output : CDFA  

1: QUERREG (QUERCDFA);  

2: DFAREG(QUERREG) 

3: CDFA(DFA) 

Return CDFA 

 

 

Since  is identity, and  is the natural transformation as we 

have proved in lemma 3.3. Hence the commutative 

deterministic finite automata is identifiable in the limit with 

queries by using both membership and equivalence queries.  

 

CONCLUSION 

In this work we study learnability of the commutative 

deterministic finite automata on active learning model with two 

different types of queries. The reduction technique for 

grammatical inference have been used in this study. We have 

proved that the class of commutative finite automata is 

identifiable in the limit with queries by using both membership 

queries and equivalence queries. 
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