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Abstract
In this paper, a new Three-parameter Poisson-Lindley
distribution (NTPPLD), of which Shanker and Mishra’s [17]
Two-parameter Poisson-Lindley distribution and Sankaran’s
[10] One-parameter Poisson-Lindley distribution are particular
cases, is proposed. Distributional properties and common
descriptive measures pertaining to this mixed distribution are
derived. The behaviour of the probability mass function with
variations in the parameters is also studied. Estimation of
parameters by the method of maximum likelihood and method
of moments are discussed and a simulation study is carried out
to check the consistency of the maximum likelihood estimates.
Finally, the proposed distribution is applied to real-data sets and
it is seen that this distribution is a flexible model that may be a
useful alternative to known distributions like Poisson, Poisson
Lindley, Two-parameter Poisson Lindley and many others for
count data analysis.
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1 Introduction

Count data are used to construe occurrences in many potential
branches such as biology, clinical trials, engineering, insurance
etc. [5]. Count data analysis may use a Poisson distribution
to describe the data if its variance to mean ratio, called the
dispersion index, is unity (equi-dispersion) [14]. However, in
many practical situations, this assumption is often not valid
and the Poisson distribution is therefore an inflexible model
to give an account of these phenomena [9, 4]. An inequality
of variance and mean results in over dispersion if the variance
exceeds the mean. Contrary to it, when the variance is less than
the mean, data reflects under dispersion [23]. Many researchers
are looking at this over-dispersion impediment which can be
addressed by the use of mixed Poisson distributions [9, 7, 4]. A
mixed Poisson distribution arises when a random variable, say
X follows Poisson distribution with some parameter, and the
parameter, sayλ, itself behaves as a random variable with some
specified distribution known as the mixing distribution [1, 9].
The negative binomial (NB) distribution is such a traditional
mixed Poisson distribution where the mean of the Poisson
variable is distributed as a gamma random variable [12]. It
is an increasingly popular alternative in modelling count data.

However, the NB distribution may not be an appropriate model
for delineating some over-dispersed incidents.

Other mixed Poisson distribution arises from alternative
mixing distributions. It is found out that the general
characteristics of the mixed Poisson distribution follow
some characteristics of its mixing distribution. In this
cognition, Sankaran [10] introduced the one-parameter discrete
Poisson-Lindley distribution (PLD) by compounding Poisson
distribution with the Lindley Distribution (LD) of Lindley
[3]. This model showed better fits to over-dispersed count
data. Later, Shanker and Mishra [17] generalised this mixed
distribution by proposing a Two-parameter Poisson-Lindley
(TPPL) distribution by assuming the Poisson rate to follow
a Two-parameter LD [16]. Theoretical study and empirical
observation have justified the selection of Lindley and its
generalised distributions as mixing densities to expound over
dispersed data.

In this paper, an alternative distribution for over-dispersed
count data, namely a New Three-parameter Poisson-Lindley
Distribution (NTPPLD) is presented which is obtained by
mixing the Poisson distribution with a Three-parameter Lindley
distribution [18]. The probability density function of a
Three-parameter LD is a generalisation of the Lindley and
a Two-parameter Lindley distribution and thus, reflects more
flexibility as a mixing model. Contents of the paper are as
follows: Section 1 gist’s out a review of literature on the
current subject together with a discussion on the need for Mixed
Poisson distributions. In section 2, the NTPPLD distribution,
is introduced. Some special cases of the distribution are also
considered in this section. Its basic distributional properties
including distribution function, generating functions, moments
are derived in Section 3. Section 4 discusses the methods
of parameter estimation and in section 5, a simulation study
is carried out. Finally, applications of the NTPPLD to real
datasets are illustrated in Section 6.

2 A New Three-Parameter Poisson-Lindley
Distribution

In this section, a new mixed Poisson distribution is proposed,
which is obtained by mixing the Poisson distribution with a
Three-parameter Lindley distribution (ATPLD) [18]. A general
definition of this distribution is provided which subsequently
introduces its pmf.
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Definition:2.1 A random variable X is said to follow a
NTPPLD if it follows the stochastic representation X|λ ∼
P(λ) where λ|θ, α, β ∼ ATPLD(θ, α, β).[18]

Proposition:2.1 Let X be a random variable according to
the New Three-parameter Poisson-Lindley probability function,
denoted by X∼NTPPLD(θ, α, β), then the pmf of X is

p(x; θ, α, β) =
θ2

(θ + 1)x+2

(
1 +

α+ βx

θα+ β

)
, (2.1)

∀ x = 0, 1, ...; θ > 0; β > 0; θα+ β > 0

Proof Let X|λ denote a random variable X following Poisson
distribution with parameter λ. Accordingly, its probability mass
function is given by

p(x) =
e−λλx

Γ(x+ 1)
; x = 0, 1, 2, ..., and λ > 0. (2.2)

Again, the pdf of λ|θ, α, β ∼ ATPLD(θ, α, β) is given by

g(λ) =
θ2

θα+ β
(α+βλ)e−θλ;λ > 0, θ > 0, β > 0, θα+β > 0

(2.3)

The marginal pmf of X ∼ NTPPLD(α, β, θ), therefore, can
be obtained by

p(x; θ, α, β) =

∫ ∞

0

p(x)g(λ)dλ (2.4)

Substituting (2.2) and (2.3) into (2.4), the marginal pmf of the
New Three-Parameter Poisson-Lindley distribution is derived
as:

p(x; θ, α, β) =

∫ ∞

0

e−λλx

Γ(x+ 1)

θ2

(θα+ β)
(α+ βλ)e−λθdλ

=
θ2

(θ + 1)x+2

(
1 +

α+ βx

θα+ β

)

The pmf of X satisfies the following properties:

I. P (X = x) ≥ 0, ∀x = 0, 1, 2, ...

II.
∑

x p(x; θ, α, β) = 1, ∀x = 0, 1, 2, ...

2.1 Pmf Plots
Figure 1 illustrates the pmf plots of the NTPPLD (θ, α, β) for
some selected values of the parameters. It is found out that
the new distribution has a tendency to accommodate right tail
and for particular values of the parameter, the tail tends to zero
at a faster rate. This indicates that our proposed model fits
appropriately to those data sets where there is an extended right
tail or the tail approaches to zero at a faster rate. Such data sets
are quite prevalent in the field of biology and insurance.

Figure 1: Some pmf plots of the NTPPL distribution with specified parameter values
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Figure 1: Some pmf plots of the NTPPL distribution with specified parameter values

2.2 Special Cases:
I. For β = 1, pmf (2.1) reduces to a Two-Parameter PLD[17].

II. For α = β = 1, pmf (2.1) becomes the discrete Poisson Lindley distribution[10].

III. For α = 0 and β = 1, pmf (2.1) reduces to NBD with parameters r=2 and p = θ
θ+1 [12].

3 Distributional Properties of NTPPLD (θ, α, β)

In this section, expressions for the cumulative distribution
function, generating functions, characteristic function,

moments and other measures like coefficient of skewness,
kurtosis, coefficient of variation and index of dispersion are
derived.

3.1 Cumulative distribution function:
Proposition:3.1 Let X be a random variable which follows New Three-parameter Poisson-Lindley probability function given by
(2.1), then the cumulative distribution function of X is given by

FX(x; θ, α, β) =
[θ{α(θ + 1) + β}{(θ + 1)x+1 − 1}+ β(θ + 1){(θ + 1)x − 1} − xβθ]

(θ + 1)x+2(θα+ β)
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Proof The cdf of NTPPLD (θ, α, β) can be obtained as

FX(x; θ, α, β) =

x∑
n=0

θ2

(θ + 1)n+2

(
1 +

α+ βn

θα+ β

)

=
[θ{α(θ + 1) + β}{(θ + 1)x+1 − 1}+ β(θ + 1){(θ + 1)x − 1} − xβθ]

(θ + 1)x+2(θα+ β)

3.2 Generating functions:
Proposition 3.2 Let X be a New Three-parameter Poisson-Lindley (NTPPL) variable with parameters θ, α and β, then the Probability
Generating Function of X denoted by Px(t) is given by

PX(t) =
α(θ + 1− t)θ2 + θ2β

(αθ + β)(θ + 1− t)2

Proof The p.g.f of NTPPLD (θ, α, β) of (2.1) is obtained as

PX(t) = E(tX)

=

∞∑
x=0

tx
θ2

(θ + 1)x+2

[
1 +

α+ βx

θα+ β

]

=
θ2

(θ + 1)2

∞∑
x=0

(
t

θ + 1

)x

+
αθ2

(θ + 1)2(θα+ β)

∞∑
x=0

(
t

θ + 1

)x

+
βθ2

(θ + 1)2(θα+ β)

∞∑
x=0

x

(
t

θ + 1

)x

=
α(θ + 1− t)θ2 + θ2β

(αθ + β)(θ + 1− t)2

Proposition:3.3 Let X ∼ NTPPLD (θ, α, β).The moment generating function of X is given by

MX(t) =
α(θ + 1− et)θ2 + θ2β

(αθ + β)(θ + 1− et)2

Proof The moment generating function of the NTPPLD can be obtained by setting t = et in the expression for the p.g.f.

3.3 Characteristic function

Proposition:3.4 The Characteristic Function of X∼ NTPPLD (θ, α, β) is given by

ϕX(t) =
α(θ + 1− eit)θ2 + θ2β

(αθ + β)(θ + 1− eit)2

Proof The characteristic function of the NTPPLD can be obtained by replacing t = eit in the expression for the p.g.f.
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3.4 Raw Moments

Proposition:3.5 The first four raw moments about origin of the NTPPLD (2.1) are

µ
′

1 =
θα+ 2β

θ(θα+ β)

µ
′

2 =
θα+ 2β

θ(θα+ β)
+

2(θα+ 3β)

θ2(θα+ β)

µ
′

3 =
θα+ 2β

θ(θα+ β)
+

6(θα+ 3β)

θ2(θα+ β)
+

6(θα+ 4β)

θ3(θα+ β)

µ
′

4 =
θα+ 2β

θ(θα+ β)
+

14(θα+ 3β)

θ2(θα+ β)
+

36(θα+ 4β)

θ3(θα+ β)
+

24(θα+ 5β)

θ4(θα+ β)

Proof Let X follow pmf (2.2) and λ follow pdf (2.3).
The rth moment about origin of the NTPPLD (2.1) can then be obtained as

µ
′

r = E[E(Xr|λ)] =
∫ ∞

0

E(Xr)g(λ)dλ (3.1)

Denoting Stirling’s number of second kind by S(r,j) and pgf of (2.2) by GX(t), (3.1) may be written as

µ
′

r =

∫ ∞

0

 r∑
j=1

S(r, j)
dj

dtj
GX(t)|t=1

 g(λ)dλ

=

r∑
j=1

S(r, j)
θ2

θα+ β

[
α
Γ(j + 1)

θj+1
+ β

Γ(j + 2)

θj+2

] (3.2)

Taking r=1, in (3.2),

µ
′

1 =
θα+ 2β

θ(θα+ β)

Similarly, taking r=2,3 and 4 in (3.2), completes the proof of this theorem.

Remark:3.1

It can be seen that for β = 1 these moments reduce to the respective moments of the TPPLD [17] and for α = β = 1, we get the
corresponding moments of one-parameter PLD.[10]

3.5 Skewness and Kurtosis

The expressions for skewness and kurtosis are large and complicated; however, their values for different values of the parameters
are determined and presented in Table 1.

Table 1: Skewness and (Kurtosis)
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Remark:3.2

I. For fixed β and θ, as α increases, both skewness and kurtosis increase.
II. When α and θ is kept fixed, skewness and kurtosis decrease with an increase in β.
III. As θ increases, there is increase in skewness and kurtosis.

3.6 Coefficient of variation and index for dispersion

Proposition:3.6 The coefficient of variation of New
Three-parameter PLD is given by

C.V =

√
1 +

θ(θα+ β)

θα+ 2β
− 2β2

(θα+ 2β2)

Proof The mean of the NTPPLD (θ, α, β) is

µ
′

1 =
θα+ 2β

θ(θα+ β)

The variance is obtained using the relation

µ2 = µ
′

2−(µ
′

1)
2 =

θα+ 2β

θ(θα+ β)
+
2(θα+ 3β)

θ2(θα+ β)
−
{

θα+ 2β

θ(θα+ β)

}2

Therefore, the C.V is given by

C.V =

√
µ2

(µ
′
1)

2

=

√
µ2

µ
′
1

=

√√√√√√ θα+2β
θ(θα+β) +

2(θα+3β)
θ2(θα+β) −

{
θα+2β
θ(θα+β)

}2

{
θα+2β
θ(θα+β)

}2

=

√
1 +

θ(θα+ β)

θα+ 2β
− 2β2

(θα+ 2β)2

Proposition:3.7 The index for dispersion is given by

r = 1 +
θ2 + 4θαβ + 2β2

θ(θα+ β)(θα+ 2β)

Proof The mean of the NTPPLD (θ, α, β) is

µ
′

1 =
θα+ 2β

θ(θα+ β)

The variance is given by

µ2 =
θα+ 2β

θ(θα+ β)
+

2(θα+ 3β)

θ2(θα+ β)
−
{

θα+ 2β

θ(θα+ β)

}2

Therefore, the index of dispersion is given by

r =
µ2

µ
′
1

= 1 +
θ2α2 + 4θαβ + 2β2

θ(θα+ β)(θα+ 2β)

Remark:3.3 The variance-to-mean ratio is greater than one.
Therefore, the proposed distribution is over-dispersed.

4 Estimation of Parameters

This section discusses two widely used methods of estimation
of the parameters viz. Method of Moments and Maximum
Likelihood Method for the NTPPLD.

4.1 Moments Estimates:

The NTPPLD (θ, α, β) has three parameters to be estimated
and so, the first three moments are required to get their
estimates.
From section 3.4, we have,

µ
′

1 =
θα+ 2β

θ(θα+ β)
= K1(say) (4.1)

µ
′

2 − µ
′

1

µ
′
1

=
2(θα+ 3β)

θ(θα+ 2β)
= K2(say) (4.2)

µ
′

3 − 3µ2
′ + 2µ

′

1

µ
′
2 − µ

′
1

=
3(θα+ 4β)

θ(θα+ 3β)
= K3(say) (4.3)

Replacing the population moments by their respective sample
moments in (4.1), (4.2) and (4.3), an estimate of K1,K2 and
K3 can be obtained. Using them, we can solve the system of
equations for θ, α, β to obtain its moments estimates.

4.2 Maximum Likelihood Estimates:

Let x1, x2, ..., xn be a random sample of size n from our
proposed NTPPLD (θ, α, β) . The likelihood function for the
vector of parameters ϑ= (θ, α, β)T of this sample is given by:

L =

(
θ2

θα+ β

)n
1

(θ + 1)
∑n

i=1(xi+2)

n∏
i=1

(θα+ β + α+ βxi)

Accordingly, the log-likelihood function can be written as:

logL = n log

(
θ2

θα+ β

)
−

n∑
i=1

(xi + 2) log(θ + 1)

+

n∑
i=1

log(θα+ β + α+ βxi)
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The maximum likelihood estimates (MLE) of the parameters
are computed by solving the maximum likelihood equations

∂

∂θ
logL = 0,

∂

∂α
logL = 0,

∂

∂β
logL = 0

Since the maximum likelihood equations are non-linear in
nature and difficult to solve analytically, they are to be solved
using some suitable numerical technique.

A detailed simulation algorithm for generating data from (2.1)
and obtaining the MLE for ϑ is enclosed in Section 5.

5 Simulation study

In this section, simulation is carried out to generate random
variables from NTPPLD (θ, α, β). Thereafter, the MLE of the
parameters are obtained from the generated sample. Finally,
the Bias and mean squared error (MSE) of the MLE of the
parameters are calculated to assess the consistency of the
estimates.

Enumerated below, is the algorithm for the desired simulation
study:

Step I: Generating a random sample from NTPPLD (θ, α, β).

Step 1: A random variable is generated from the U(0,1)
distribution, say u.

Step 2: If the xi, i ≥ 0, are ordered so that x0<x1<x2<..
and if we let F, as defined in section 3.1, denote the distribution
function of X.

Then, X = xi if F (xi − 1)≤u<F (xi) ,i = 0, 1, 2, ...

Steps 1 and 2 are repeated as many times as the desirable
sample size is.

The above method is called the discrete inverse
transform method for generating X.

Step II: Obtaining MLE of the parameters.

The MLE of θ, α and β is obtained by solving the maximum
likelihood equations for the generated sample procured in the
previous step.

Step III: Calculating Bias and MSE of the MLE’s.

Suppose that the true value of the parameter θ is θ0 and the
MLE is θ∗. Then the Bias of θ∗ in estimating θ0 is given by

Bias(θ∗) = E(θ∗ − θ0)

The expectation being with respect to the mass function
of NTPPLD (θ, α, β).

Similarly, the MSE of θ0 is obtained as

MSE(θ∗) = E[(θ∗ − θ0)
2]

The Bias and MSE of the MLE of θ is approximated by
the Monte Carlo approximation technique, by taking M=1000
replicates. In a similar manner, the Bias and MSE of the MLE
of α and β are calculated. The MLE is said to be consistent if
the Bias decreases (approaches to zero) with an increase in the
sample size and so does the MSE. Table 2 shows the values of
the Bias and MSE of the MLE of θ, α and β for the different
sample sizes. From Table 2, it is seen that the Bias and MSE
of θ, α and β approaches towards zero with an increase in the
sample size. Thus, it can be concluded that they are consistent
and precise in estimating the true value of the parameters.
Calculations pertaining to the study are carried out using the
R software, version 3.4.3, with the help of self-programmed
codes. The maxLik package(Henningsen, Arne and Toomet,
Ott, 2011) in R software is used to obtain the maximum
likelihood estimates of the parameters from NTPPLD (θ, α, β).

Table 2: Average values of bias and MSE for θ∗,α∗and β∗

Sample Size θ=3 α = 4 β = 2
Bias (θ) MSE (θ) Bias (α) MSE (α) Bias (β) MSE (β)

50 0.28956 0.12384 -0.38567 0.27484 0.42117 0.27738
100 0.18507 0.06342 0.21145 0.07441 -0.30211 0.16976
250 -0.12590 0.02158 -0.11633 0.02135 0.09434 0.02017
500 0.08243 0.02126 0.10102 0.02004 0.06411 0.01316

6 Application to Real Data Sets

Some real data sets are considered in this section to fit with
the proposed distribution (NTPPLD) along with One and

Two-parameter Poisson Lindley distributions. The first data
set is due to Beall [6] regarding the distribution of Pyrausta
nublilalis in 1937. It is reproduced in Table 4. The second is
due to Kemp and Kemp [2] which records the distribution of
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mistakes in copying of random digits and is displayed in table 5.
Finally, the third data set, as illustrated in table 6, is the number
of claims in automobile insurance observed by Klugman et al
[22]. Descriptive summaries of these data are shown in Table 3

and it is seen that the index of dispersion for these data sets are
greater than unity thereby indicating over-dispersion.

Table 3: Summary data

Mean Variance Dispersion Index
Number of Pyrausta nublilalis 0.7500 1.3182 1.7576

Number of mistakes in copying groups 0.7833 1.2573 1.6051
Number of claims in automobile insurance 0.1941 0.2259 1.1638

The expected frequencies according to the One-parameter
PLD and Two-parameter PLD are given in the following
tables for ready comparison with those obtained by the New
Three-parameter PLD. Parameters for the NTPPLD have been

estimated by maximum likelihood method and for those of the
other competing models by method of moments because of
their existing availability.

Table 4: Distribution of Pyrausta nublilalis in 1937

No. of Insects Observed Frequency Expected Frequency
One-parameter PLD Two-parameter PLD New Three-parameter PLD

0 33 31.5 31.9 32.0
1 12 14.2 13.8 13.7
2 6 6.1 5.9 5.9
3 3 2.5 2.5 2.5
4 1 1.0 1.1 1.1
5 1 0.4 0.5 0.5

θ̂ = 1.8081

θ̂ = 1.5255 θ̂ = 1.3970
Parameter Estimates

α̂ = 3.8919
α̂ = 8.1694

β̂ = 0.5744
RMSE 1.13 0.91 0.86

Table 5: Distribution of mistakes in copying groups of random digits

No. of errors per group Observed Frequency Expected Frequency
One-parameter PLD Two-parameter PLD New Three-parameter PLD

0 35 33.0 32.4 33.2
1 11 15.3 15.9 15.1
2 8 6.7 7.0 6.7
3 4 2.9 2.9 2.9
4 2 1.2 1.1 1.2

θ̂ = 1.7421

θ̂ = 2.0000 θ̂ = 1.6322
Parameter Estimates

α̂ = 0.3824
α̂ = 4.5289

β̂ = 2.8890
RMSE 2.28 2.60 2.17

Table 6: Number of claims of policy holders in automobile insurance

Claim Count Observed Frequency Expected Frequency
One-parameter PLD Two-parameter PLD New Three-parameter PLD

0 1563 1569.5 1566.5 1564.7
1 271 256.3 261.1 264.2
2 32 41.3 40.4 39.7
3 7 6.6 6.0 5.6
4 2 1.0 0.9 0.8

α̂ =5.8979
θ̂ =7.1855 θ̂ =7.8580

Parameter Estimates
α̂ =0.2132 α̂ =1.1019

β̂ = 9.5877
RMSE 8.32 6.05 4.73
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It is seen from these data sets that the Root Mean Square
error (RMSE) statistic is least when modelled using the New
Three-parameter PLD. This substantiates our claim that the
proposed distribution gives much closer fit than the One and
Two-parameter Poisson-Lindley distributions while describing
count data.

7 Conclusions

In this paper, a New Three-parameter Poisson-Lindley discrete
distribution (NTPPLD) with an infinite and non-negative
integer support is proposed. The behaviour of the probability
mass function for varying values of the parameter is studied.
Distributional properties and common descriptive measures
pertaining to this mixed distribution are derived. Estimation of
parameters by the method of maximum likelihood and method
of moments are discussed and a simulation study is carried out
to check the consistency of the maximum likelihood estimates.
From the results obtained, they are found to be consistent and
precise in estimating the true value of the parameters. Finally,
the proposed distribution is applied to real-data sets and it is
shown that this distribution is a flexible model that may be a
useful alternative to known distributions like Poisson Lindley,
Two-parameter Poisson Lindley etc. for over-dispersed count
data analysis.
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