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Abstract 

This paper presents a novel binary images classification  

algorithm  that   uses  Moore-Penrose  inverse  matrix   to update   

a  weight  matrix   based  on  the  error obtained   for  an image  

sample  in a training set. It can be seen as a perceptron in terms 

of matrices.  Weight matrix update is made estimating a desire 

weight for a desire output using Moore-Penrose inverse. 

Evaluation was made over a 3 image classification problem 

example and using a sign traffic dataset.  Obtained results shows 

good algorithm performance and accuracy if image size is 

appropriate.  Results   suggest training images must   have rich 

features and discriminant information between classes. 

Keywords: Binary Images, Image classification, Moore- 

Penrose inverse, Modified Perceptron, Discriminant features. 

 

INTRODUCTION 

Machine learning is a subject that studies how to use computers 

to simulate human learning activities [1], being visual object 

classification or recognition one of the most important tasks. 

Nevertheless, classification between the objects is easy task for 

humans but it has proved to be a complex problem for machines 

[2]. In this sense, as a field that is in a continuous development, 

machine learning has been made many advancements in pattern 

recognition by using several methodologies and techniques 

among which it can be find: supervised and unsupervised 

methodologies; parametric and nonparametric techniques; 

contextual and spectral-contextual classifiers; and hard and soft 

classifications [3]. Framed in these methodologies useful 

algorithms have been successfully tested an implemented with 

different image classification purposes including: identifying a 

terrorist from only two finger using Artificial Neural Network 

(ANN) [4], hand segmentation based using Artificial Neural 

Network (ANN) [5], face recognition with deep neural nets 

(DNN) [6]–[10], Face Recognition by using decision trees [11] 

among others. 

In this document, it is presented a novel algorithm for binary 

images classification focused on treating images as whole 

feature by using a matrix representation of a linear 

classification function. First, classification function definition 

is made. Then, the classification function parameters update 

that is based on the definition and properties of Moore-Penrose 

inverse (see [12]) and some mathematical considerations for 

dealing with the activation function are presented. Finally, 

obtained experimental results are shown. 

 

 

CLASSIFICATION ALGORITHM 

In this section classification algorithm is described taking into 

account the mathematical assumptions made to update 

classification weight matrix by using Moore-Penrose inverse. 

 

Classification Function 

Let 𝒳 ∶= {𝐴1, 𝐴2, ⋯ , 𝐴𝑛} ⊆ 𝑀𝑝×𝑞 and 𝒴 ∶= {𝑦1 , 𝑦2, ⋯ , 𝑦𝑛} ⊆
[−1,1] × ⋯ × [−1,1] the input and output training sets, where 

𝑀𝑝×𝑞 is the set of all 𝑝 × 𝑞 matrices, and [−1,1] × ⋯ × [−1,1] 

the output space depending on the number of classes, this 

means, [−1,1] × [−1,1] for two classes classification task, 
[−1,1] × [−1,1] × [−1,1] for three classes classification task 

and so on such that 𝑦𝑖 ∈ [−1,1] × ⋯ × [−1,1]. A simple 

classification function, for a perceptron is denoted by 𝑓(𝑥) =
𝜙(w ∙ x), where 𝜙 is an activation function. In this sense, a 

simple classification function in terms of matrixes can be 

defined as: 

𝑓(𝐴) = 𝜙(𝐖 ∙ 𝐴 ∙ ϒ) 

Where 𝐖 is a weight matrix and ϒ is called output resizing 

matrix that, basically, maintain dimensions consistency. In this 

way, for a 𝑙 number of classes, and a desire 𝑙 × 1 output 𝑓(𝐴) =
𝑦, matrices dimensions must be: 𝑙 × 𝑝  for 𝐖 and 𝑞 × 1 for ϒ. 

 

Weigh Update 

It is clear that for a classification problem, it is desire 

that ∀(𝐴𝑖 , 𝑦𝑖) ∈ 𝒳 × 𝒴, 𝑓(𝐴𝑖) = 𝑦𝑖 . However, for an initial 

weight matrix 𝐖(k) and a constant random ϒ matrix it is 

expected that 𝑓(𝐴𝑖) ≠ 𝑦𝑖 . Thereby, the weight update problem 

is reduced to find ∆𝐖k = 𝐖 d
k − 𝐖k matrix, where 𝐖 d

k  is the 

desire weight matrix, such that 𝑓(𝐴𝑖) = 𝜙 ((𝐖k + ∆𝐖k) ∙ 𝐴𝑖 ∙

ϒ) = 𝑦𝑖 . Then, it can be inferred that, if 𝜙 is a linear function 

defined as 𝜙(𝑠) = 𝑠: 

𝜙(𝐖 d
k ∙ 𝐴𝑖 ∙ ϒ) − 𝜙(𝐖k ∙ 𝐴𝑖 ∙ ϒ)

= 𝑦𝑖 − 𝑓(𝐴𝑖) ∶= ∆𝑦 
(1) 

𝐖 d
k ∙ 𝐴𝑖 ∙ ϒ − 𝐖k ∙ 𝐴𝑖 ∙ ϒ = ∆𝑦 (2) 

Then: 

∆𝐖k ∙ 𝐴𝑖 ∙ ϒ = ∆𝑦 
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By using the Moore-Penrose inverse denoted by 𝒳+, and its 

properties: 

∆𝐖k = ∆𝑦(𝐴𝑖 ∙ ϒ)+ (3) 

However, 𝜙 is not always a linear function. In fact, for 

classification tasks, 𝜙 is commonly a nonlinear mapping from 

ℝ𝑙 to [−1,1] × ⋯ × [−1,1], this means that ∃𝑥, 𝑦 such 

that 𝜙(𝑥) + 𝜙(𝑦) ≠ 𝜙(𝑥 + 𝑦). Nevertheless, it can be think on 

an approximation in such a way that: 

𝜙(𝑥) + 𝜙(𝑦) ≈
1

Ω(∙)
∙ (𝑥 + 𝑦) (4) 

Where Ω(∙) is a function. It may think Ω(∙) takes values on a 

ℝ𝑙 rectangle (−1,1) × ⋯ × (−1,1) for a mapping of [−1,1] ×
⋯ × [−1,1]. By using Equation 4 in Equation 1, it is obtained: 

1

Ω(∙)
∆𝐖k ∙ 𝐴𝑖 ∙ ϒ ≈ 𝜙(𝐖d

k ∙ 𝐴𝑖 ∙ ϒ)

− 𝜙(𝐖k ∙ 𝐴𝑖 ∙ ϒ) = ∆𝑦 

(5) 

It can be noted in Equation 5 that depending on ∆𝑦, Ω(∙) 

increase or decrease its value. Thereby, may be a mapping 

from [−1,1] × ⋯ × [−1,1] to (−1,1) × ⋯ × (−1,1) that 

depends on ∆𝑦. Then: 

1

Ω(∆𝑦)
∆𝐖k ∙ 𝐴𝑖 ∙ ϒ ≈ ∆𝑦  

∆𝐖k ≈ Ω(∆𝑦) ∙ ∆𝑦 ∙ (𝐴𝑖 ∙ ϒ)+ (6) 

Finally, Ω function selection must be made taking into account 

that, for an activation function that maps data into the [−1,1] ×
⋯ × [−1,1] space: 

(i) Ω(∆𝑦𝑖) ∈ (0,1), where Ω(∆𝑦)𝑖 is the 𝑖-th component 

of Ω(∆𝑦). 

(ii) If |∆𝑦𝑖| > |∆𝑦𝑗| then, in virtue of Equation 5 and taking 

into account that big ∆𝑦𝑖  values implies that: 

|∆𝐖k ∙ 𝐴𝑖 ∙ ϒ| ≪ |𝜙(𝐖 d
k ∙ 𝐴𝑖 ∙ ϒ) − 𝜙(𝐖k ∙ 𝐴𝑖 ∙ ϒ)|  

Then Ω(∆𝑦𝑖) < Ω(∆𝑦𝑗). 

(iii) Ω(∆𝑦𝑖) ≈ ∆𝑦𝑖  when ∆𝑦𝑖 ≈ 0. 

 

Ω-Function 

Taking into account the Ω function requirements described 

above, the proposed function was: 

Ω(∆𝑦) = 𝜆−|∆𝑦| (7) 

Where 𝜆 is a constant variable which value depends on the 

activation function 𝜙. In Figures 1 and 2 different 

approximations given some 𝜆 values for 𝜙(𝑥) = tanh(𝑥) and 

𝜙(𝑥) = arctan(𝑥) are shown. 

 

Figure 1. Different approximations given some 𝜆 for an 

activation function 𝜙(𝑥) = tanh(𝑥) to 𝜙(𝑥) ≈ Ω(𝑥 −
tanh(𝑥)) ∙ 𝑥 

 

 

Figure 2. Different approximations given some 𝜆 for an 

activation function 𝜙(𝑥) = arctan(𝑥) to 𝜙(𝑥) ≈ Ω(𝑥 −
arctan(𝑥)) ∙ 𝑥 

 

As it can be appreciated, a good approximation is obtained with 

2 ≤ 𝜆 ≤ 8 for both activation functions, 𝜙(𝑥) = tanh(𝑥) and 

𝜙(𝑥) = arctan(𝑥) 

 

Classification Algorithm 

In Table I, the classification algorithm is described. A learning 

rate 𝛼 is used, in terms of making sure that no local minima 

where dismiss and to make sure algorithm does not diverge. In 

this way, by using Equation 6, weight update stays as: 

𝐖k+1 = 𝐖k + 𝛼 ∙ Ω(∆𝑦) ∙ ∆𝑦 ∙ (𝐴𝑖 ∙ ϒ)+ (8) 
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Table 1. Classification Algorithm 

1. Let 𝒳 ∶= {𝐴1, 𝐴2, ⋯ , 𝐴𝑛} and 𝒴 ∶= {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} 

the input and output training sets. 

2. Initialize 𝐖(0) and ϒ, and pick up a good 𝜆 value. 

3. Take a tuple (𝐴𝑖 , 𝑦𝑖) and update the weight matrix 

as follows: 

𝐖k+1 = 𝐖k + 𝛼 ∙ Ω(∆𝑦) ∙ ∆𝑦 ∙ (𝐴𝑖 ∙ ϒ)+ 

Until 𝑓(𝐴𝑖) ≈ 𝑦𝑖 , ∀(𝐴𝑖, 𝑦𝑖)  

4. end 

 

SIMULATION RESULTS 

In this section obtained simulation results for an image 

classification example and a traffic signs recognition problem 

using the BelgiumTS traffic sign dataset [13] are presented. 

Results are presented in terms of the minimum square error. It 

was used 𝜙(𝑥) = tanh(𝑥) as activation function, 𝛼 = 0.1, 𝜆 =
𝑒 and ϒ = [1,1, ⋯ ,1]𝑇. Initial Weight matrix, 𝐖(0), is 

initialized with random values in the range [−1, 1]. 

 

Image Pattern Recognition 

Consider the problem of classifying the next image patterns: 

 

Figure 3. Classification Sets for Image Pattern Recognition 

Obtained epoch error is shown below in Figure 4. 

 

 

Figure 4. Minimum Square Error per Epoch 

Traffic Sign Recognition 

In this section obtained simulation results for a traffic sign 

recognition problem using the BelgiumTS traffic sign dataset 

[13] is presented. Classification was made using different 

image sizes and no image processing steps, except for an image 

binarization (see Figure 5) and a training set length of 100 

samples. 

 

Figure 5. Binary Image Conversion (Images taken from 

BelgiumTS Traffic dataset) 

 

Below, in Figures 6 and 7, obtained epoch errors for the training 

and test sets using different image sizes, are shown. 

 

Figure 6. Minimum Square Error per Epoch for the Training 

set using different image sizes 

 

 

Figure 7. Minimum Square Error per Epoch for the Test set 

using different image sizes 
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CONCLUSIONS 

A novel classification algorithm, which updating process is 

made using Moore-Penrose inverse matrix calculation, has 

been proposed which is useful for image recognition or 

classification tasks with several classes. Experimental results 

shows that for a good algorithm performance the image size is 

critical, this suggest that training images must contain rich 

features and discriminant information between classes. On the 

other hand, presented algorithm is simple in construction unlike 

other approaches as deep neural nets (DNNs) or even 

Conventional Artificial Neural Nets (ANNs) with a 

considerable number of neurons, suggesting computational 

cost is better. 
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