Abstract

In this paper we discussed the unsteady flow of an incompressible electrically conducting viscous fluid in a rotating porous media, with a variable pressure gradient and in the presence of hall current. We have considered three different cases, like impulsive change, cosine and sine oscillations of pressure gradient. It is found that, the rotational and Lorentz forces are having significant effect on velocity profile in the presence of pressure gradient and hall current. The physical significance of various dimensionless parameter’s are discussed analytically and numerically on velocity distribution.

Keywords: MHD flow, unsteady flows, rotating channels, Hall current effects, pressure gradient, impulsive change, cosine oscillations and sine oscillations.

INTRODUCTION

MHD flow can be used to study, assess and calculate the positions and velocities with respect to a fixed frame of reference, applying its magnetic field. The dynamics of geophysics as a field of study has become a vital branch of fluid dynamics owing to the enormous work being carried to explore the atmosphere. MHD has extended its influence on the studies launched in the area of astrophysics, where it is used to study the celestial occurrences like solar storms or even the dynamics working on the stellar, solar structures and the matter present between one planets and the other. Hide and Roberts [1], gave an explanation for the observed continuation and secular variation of the geomagnetic field. Also Dieke [2] discussed an important in the solar physics mixed up in the sunspot development.

A phenomenon (It was discovered by Edwin Hall in 1879) that occurs when an electric current moving through a conductor is exposed to an external magnetic field applied at a right angle, in which an electric potential develops in the conductor at a right angle to both the direction of current and the magnetic field. The Hall effect was a direct result of Lorentz forces acting on the charges in the current, and was named after American physicist Edwin Herbert Hall (1855-1938). Hall current effect is also indispensable when the fluid is an ionized gas with low density or we are applying the high range of magnetic field. Because the electrical conductivity of the fluid will then be a tensor and a Hall current is provoked. Which is likely to be central in many engineering situations has been discussed by Sutton and Sherman [3]. The Hall effects on the flow of ionized gas between parallel plates under uniform transverse magnetic field have been premeditated by Sato [4]. Nanda and Mohanty [5] considered the hydromagnetic rotating channel flows. Datta and Jana [6] presented the Hall effects on unsteady Couette flow.

Hall effects on hydromagnetic convective flow through a channel with conducting walls is given by Datta and Jana [7], they discussed the flow nature with non-dimensional parameters. Mandal et al. [8] have studied the combined effects of rotation and Hall current on steady of MHD Couette flow. Mandal et al. [9] discussed the effects of Hall current on MHD Couette flow between thick arbitrarily conducting plates. Ghosh [10] has analysed the unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient. Nagy et al. [11] discussed the effects of Hall currents and rotational force on Hartmann flow under general wall conditions. Kanch et al. [12] discussed the Hall Effect on unsteady Couette flow under boundary layer approximations. Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field have been examined by Ghosh [13]. Hall effects on MHD plasma Couette flow in a rotating atmosphere have been discussed by Ghosh and Pop [14], they concluded that the hall current is significant effect on the velocity field. Ghosh [15] has been investigated the Hall effects on an MHD Couette flow in a rotating system with uniform magnetic field. Hall effects on the hydromagnetic convective flow through a rotating channel under general wall conditions have been discussed by Guria and Jana [16]. Attia [17] studied the ion-slip effects on unsteady Couette flow with heat transfer under exponential decaying pressure gradient. Seth et al. [18] have discussed the Hall effects on oscillatory hydromagnetic Couette flow in a rotating system. Hall effects on an MHD flow in a rotating channel partially filled with a porous medium have been examined by Chauhan and Rastogi [19] and Chauhan and Agrawal [20]. Jha and Apere [21] discussed the combined effects of Hall current and ion-slip current on unsteady MHD Couette flow in a rotating system. Guchhait et al. [22] have studied the combined effects of Hall current and rotation on unsteady Couette flow with heat transfer. Das et al. [23] studied Hall effects on MHD Couette flow in rotating system. Ghara et al. [24] have studied the effects of Hall current and ion-slip on unsteady MHD Couette flow. Also Seth et al. [25] investigated the effects of Hall current and rotation on unsteady MHD Couette flow in the presence of an inclined magnetic field.

Chauhan and Agrawal [26] studied the Hall effects on MHD Couette flow in a channel partially filled with a porous...
medium into a rotating system. Sarkar et al. [27] have examined the combined effects of Hall currents and rotation on steady hydromagnetic Couette flow. Nadeem et al.[28] discussed the numerical solutions of peristaltic flow of a Newtonian fluid under the effects of magnetic field and heat transfer in a porous concentric tubes. Nadeem and Akbar [29] discussed the influence of heat transfer and variable viscosity in vertical porous annulus with peristalsis. Nadeem et al. [30] have investigated the influence of heat and mass transfer on Newtonian bio-magnetic fluid of blood flow throughout a tapered porous artery with a stenosis. Akbar and Nadeem [31] discussed the simulation of variable viscosity and Jeffrey fluid model for blood flow through a tapered artery with a stenosis. Akbar and Nadeem [32] presented the analytical and numerical analysis of Vogel's model of viscosity on the peristaltic flow of Jeffrey fluid. Das and Jana [34] discussed Hall current effects on unsteady MHD flow of viscous incompressible electrically conducting fluid through a porous channel in a rotating system with variable pressure gradient. Krishna and Irfan [36] investigated the unsteady MHD flow of Maxwell fluid through a porous medium in Rotating parallel plate channel and then extended taking hall current into account by Krishna and Irfan [35]. Krishna and Neeraja [37] discussed Hall currents on MHD flow of a couple stress fluid bounded by a porous bed in a planar channel on the lower half in occurrence of inclined magnetic field. Syamala Sarojini et al. [38] thrash out the effect of hall current on hydromagnetic flow of a couple stress fluid all the way through a porous medium in a channel in effect of inclined magnetic field. Raju et al. [39] have been studied the hall current effects on unsteady MHD three dimensional flow of a couple stress fluid through a porous medium in parallel plate channel. Recently, Krishna and Prakash [40] discussed the hall current effects on unsteady hydromagnetic flow in a parallel plate channel rotating bounded by porous bed at the lower half. Recently, the performance of unsteady non-Darcian magnetohydrodynamic fluid flow over an impulsively started vertical porous surface was investigated by Motasa and Animasaun [41]. Animasaun [42] discussed the dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and thermophoresis of particles past a vertical porous plate moving through a binary mixture in an optically thin environment. Hooman et al. [43] discussed based on slip flow at pore level a theoretical model is presented to predict the gas permeability and thereby the overall pressure drop for flow through a porous medium. Turkylilmozgolu [44] obtained explicit analytical solutions for the flow of a viscous hydromagnetic fluid due to the rotation of an infinite disk in the presence of an axial uniform steady magnetic field with Hall effects and porosity. Malvandi et al. [45] discussed MHD mixed convection in a vertical annulus filled with AI2O3–water nanofluid considering nanoparticle migration. Tavakoli et al [46] study aimed at examining the cooling effect of a finned Capillary-Driven heat pipe with forced convective heat transfer on an electronic board with known heat flux. Also, the effects of size and number of fins on the heat transferred from the electronic board were studied for different power inputs. Mohidul Haque [47] discussed a numerical study of thermal diffusion effect on a mixed convective heat and mass transfer transient flow along a stretching sheet with constant heat and mass fluxes is completed under the action of a uniform magnetic field.

Krishna and Gangadhar Reddy [48] discussed the unsteady MHD free convection in a boundary layer flow of an electrically conducting fluid through porous medium subject to uniform transverse magnetic field over a moving infinite vertical plate in the presence of heat source and chemical reaction. Krishna and Subba Reddy [49] have investigated the simulation on the MHD forced convective flow through stumpy permeable porous medium (oil sands, sand) using Lattice Boltzmann method. Krishna and Jyothi [50] discussed the Hall effects on MHD Rotating flow of a visco-elastic fluid through a porous medium over an infinite oscillating porous plate with heat source and chemical reaction. Reddy et al.[51] investigated MHD flow of viscous incompressible nano-fluid through a saturating porous medium. Recently, Krishna et al. [52-55] discussed the MHD flows of an incompressible and electrically conducting fluid in planar channel. Veera Krishna et al. [56] discussed heat and mass transfer on unsteady MHD oscillatory flow of blood through porous arteriole. The effects of radiation and Hall current on an unsteady MHD free convective flow in a vertical channel filled with a porous medium have been studied by Veera Krishna et al. [57]. The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the Hall current into account have been studied by Veera Krishna and Chamkha [58].

Motivated from the above studies, in this paper, we have considered the unsteady flow of an incompressible electrically conducting viscous fluid in the course of porous medium in a rotating system with pressure gradient as a variable and taking hall current into account.

FORMULATION AND SOLUTION OF THE PROBLEM:

We have consider the unsteady flow of an incompressible electrically conducting viscous fluid in the course of porous medium in a rotating system between two infinitely long horizontal parallel walls separated by a distance h with pressure gradient as a variable and taking hall current into account. We choose a Cartesian frame of reference with the x-axis along the channel wall at $y = 0$. The configuration of the problem given in Fig.1. A uniform transverse magnetic field H_0 is applied perpendicular to the channel walls. Since the channel walls are infinite in extent and the flow is unsteady, the physical variables are the function of y and t only.

The unsteady boundary layer equations for the flow through a loosely porous medium along x and z-directions in a rotating frame of reference using Brinkman model are

\[
\frac{\partial u}{\partial t} - v_0 \frac{\partial u}{\partial y} + 2\Omega w = \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2} - \frac{\mu J H_0}{\rho} - \frac{v}{k} u \quad (1)
\]
The generalised Ohm's law comes essentially from the momentum equation of motion for the electron fluid. Its derivation can be found in some plasma physics books. It can be written, on taking Hall currents into account and neglecting ion-slip and thermo-electric effect, as (Cowling [33])

\[
\frac{\partial w}{\partial t} - v_y \frac{\partial w}{\partial y} - 2\Omega u = \frac{\nu}{\rho} \frac{\partial^2 w}{\partial y^2} + \frac{\mu J_s H_y}{\rho} - \frac{v}{k} w
\]

(2)

The right hand side is the electric field in the moving frame. The first term on the left hand side comes from the electron drag on the ions. The second term is the Hall term and has to do with the idea that electrons and ions can decouple and move separately. The magnetic Reynolds number assumed small, so that the induced magnetic field effect is negligible in comparison with applied magnetic field. The electron atom collision frequency is relatively high as compared to the ion collision frequency, due to this the electron pressure gradient is neglected but, Hall Effect remains present. The relation

\[
J_y = \frac{\Omega}{\mu} \times H
\]

for magnetic field implies

\[
\nabla \times H = 0
\]

everywhere in the fluid. Further, the equation of the conservation of the current density is \(\nabla \cdot J = 0 \), gives \(J_y = \) constant. This constant is zero since \(J_y = 0 \) at the plates which are electrically non-conducting. Thus \(J_y = 0 \) everywhere in the flow. Since the induced magnetic field is neglected, Maxwell's equation becomes \(\nabla \times E = 0 \) which implies \(\frac{\partial E_x}{\partial y} = 0 \) and \(\frac{\partial E_y}{\partial y} = 0 \). That is \(E_x = \) constant and \(E_y = \) constant everywhere in the fluid. In view of the above assumption, the equation (5) gives

\[
J_y + \mu J_x = -\sigma \mu H_y \frac{w}{1 + m^2}
\]

(6)

\[
J_y + m J_x = -\sigma \mu H_y u
\]

(7)

We solve the equations (6) and (7), and get

\[
J_y = \frac{\sigma \mu H_y}{1 + m^2} (mu - w)
\]

(8)

\[
J_y = \frac{\sigma \mu H_y}{1 + m^2} (u + mw)
\]

(9)

On Making use of (8) and (9), the momentum equations (1) and (2) along x- and z-directions become

\[
\frac{\partial u}{\partial t} - v_y \frac{\partial u}{\partial y} + 2\Omega w
\]

\[
= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\nu}{\rho} \frac{\partial^2 u}{\partial y^2} + \frac{\sigma^2 \mu^2 H_0^2}{\rho(1 + m^2)} (u + mw) - \frac{v}{k} w
\]

(10)

\[
\frac{\partial w}{\partial t} - v_y \frac{\partial w}{\partial y} - 2\Omega u = \frac{\nu}{\rho} \frac{\partial^2 w}{\partial y^2} + \frac{\sigma^2 \mu^2 H_0^2}{\rho(1 + m^2)} (w - mu) - \frac{v}{k} w
\]

(11)

We introduce the non-dimensional variables

\[
\begin{align*}
x &= x, \\
y &= h, \\
u &= \frac{u h}{v}, \\
w &= \frac{w h}{v}, \\
q &= \frac{q h}{v}, \\
t &= \frac{tv}{h^2}, \\
\Omega &= \frac{\omega h^2}{v}, \\
p &= \frac{ph^2}{\rho v^2}
\end{align*}
\]

Making use of non-dimensional variables, the equations (10) and (11) becomes to (dropping asterisks)

\[
\frac{\partial u}{\partial t} - Re \frac{\partial u}{\partial y} + 2K^2 w
\]

\[
= \ell (t) + \frac{\nu}{\rho} \frac{\partial^2 u}{\partial y^2} - \frac{M^2}{1 + m^2} (u + mw) - Du
\]

(12)

\[
\frac{\partial w}{\partial t} - Re \frac{\partial w}{\partial y} - 2K^2 u = \frac{\nu}{\rho} \frac{\partial^2 w}{\partial y^2} - \frac{M^2}{1 + m^2} (w - mu) - Dw
\]

(13)

Where, \(M^2 = \frac{\sigma \mu^2 H_0^2 h^2}{\rho v} \) is the Hartmann number, \(m = \tau \omega_x \) is the hall parameter, \(D = \frac{k}{h^2} \) is the Darcy parameter (Permeability parameter), \(K^2 = \frac{\Omega^2 h^2}{v} \) the
rotation parameter, \(\text{Re} = \frac{v_n h}{v} \) the Reynolds number and \(f(t) = -\frac{1}{\rho} \frac{\partial p}{\partial x} \) is the non-dimensional pressure gradient.

Corresponding non-dimensional initial and boundary conditions are

\[u = 0, w = 0, \quad t \leq 0, \quad 0 \leq y \leq 1 \]

\[u = 0, w = 0, \quad t > 0, \quad y = 0 \quad \text{and} \quad y = 1 \] \((14) \)

Combining equations (12) and (13), Let \(q = u + iv \) and \(i = \sqrt{-1} \), we get the momentum equation in terms of complex velocity \(q \) where, \(u \) is the velocity along the x-direction and \(w \) is the velocity along the z-direction, is given as

\[
\frac{\partial q}{\partial t} - \text{Re} \frac{\partial q}{\partial y} = f(t) + \frac{\partial^2 q}{\partial y^2} - \left(\frac{M^2}{1 + im} - 2iK^2 + D \right) q \]

(16)

The initial and boundary conditions are

\[q = 0, \quad t \leq 0, \quad 0 \leq y \leq 1 \]

\[q = 0, \quad t > 0, \quad y = 0 \quad \text{and} \quad y = 1 \] \((17) \)

\[q = 0, \quad t > 0, \quad y = 0 \quad \text{and} \quad y = 1 \] \((18) \)

Taking the Laplace transform of the equation (16), we have

\[
q(y,t) = \frac{P_0}{\lambda_1} \left[1 - e^{\frac{1}{2} \text{Re} \gamma} \frac{\sinh(a - ib)(1 - y)}{\sinh(a - ib)} - e^{\frac{1}{2} \text{Re}(1 - \gamma)} \frac{\sinh(a - ib)(y)}{\sinh(a - ib)} \right] +
\frac{P_1}{\lambda_1 + i\omega} \left[1 - e^{\frac{1}{2} \text{Re} \gamma} \frac{\sinh(a_1 \pm ib_1)(1 - y)}{\sinh(a_1 \pm ib_1)} - e^{\frac{1}{2} \text{Re}(1 - \gamma)} \frac{\sinh(a_1 \pm ib_1)(y)}{\sinh(a_1 \pm ib_1)} \right] \ e^{i\omega t} +
\frac{P_2}{\lambda_1 - i\omega} \left[1 - e^{\frac{1}{2} \text{Re} \gamma} \frac{\sinh(a_2 - ib_1)(1 - y)}{\sinh(a_2 - ib_1)} - e^{\frac{1}{2} \text{Re}(1 - \gamma)} \frac{\sinh(a_2 - ib_1)(y)}{\sinh(a_2 - ib_1)} \right] \ e^{-i\omega t} -
\left(\frac{P_0}{\lambda_1} + \frac{P_1}{\lambda_1 + i\omega} + \frac{P_2}{\lambda_1 - i\omega} \right) \left[1 - e^{\frac{1}{2} \text{Re} \gamma} \frac{\sinh(1/2) \text{Re}(1 - y)}{\sinh(1/2) \text{Re}} - e^{\frac{1}{2} \text{Re}(1 - \gamma)} \frac{\sinh(1/2) \text{Re}(y)}{\sinh(1/2) \text{Re}} \right] e^{-\lambda_1 t} +
2 \sum_{n=1}^{\infty} n \pi \left[\left(-1 \right)^n e^{\frac{1}{2} \text{Re}(1 - \gamma)} - e^{\frac{1}{2} \text{Re}(\gamma)} \right] \left(\frac{P_0}{s_1} + \frac{P_1}{s_1 + i\omega} + \frac{P_2}{s_1 - i\omega} \right) \frac{\sin n\pi y}{\lambda_1 + s_1} e^{\omega t} \] \((23) \)

In the equation (23), the lower sign is valid for \(2K^2 + \frac{mM^2}{1 + m^2} + mD > \omega \) and the upper sign is valid for \(2K^2 + \frac{mM^2}{1 + m^2} + mD < \omega \). The equation (23) represents the velocity of the fluid in the general case. Now we shall consider the following special cases.
Case. 1. Velocity distribution for impulsive pressure gradient:
In this case \(P_1 = P_2 = 0 \), then the equation (23) reduces to

\[
q(y,t) = \frac{P_0}{\lambda_1} \left[1 - e^{-\frac{1}{2}Re} \sinh(a - ib)(1 - y) - e^{\frac{1}{2}Re(a - y)} \sinh(a - ib)(y) \right] + \\
- \frac{P_0}{\lambda_1} \left[1 - e^{-\frac{1}{2}Re} \sinh(1/2)Re(1 - y) - e^{\frac{1}{2}Re(1 - y)} \sinh(1/2)Re(y) \right] e^{-\lambda_1 t} + \\
+ 2 \sum_{n=1}^{\infty} n\pi \left[(-1)^n e^{\frac{1}{2}Re(1 - y)} - e^{\frac{1}{2}Re(y)} \right] \left(\frac{P_0}{s_1} \right) \sin n\pi y e^{i\nu}
\]

\[(24)\]

Case. 2. Velocity distribution for cosine oscillations of pressure gradient:
In this case \(P_3 = 0 \) and \(P_1 = P_2 = \frac{P}{2} \), then the equation (23) reduces to

\[
q(y,t) = \frac{P}{2} \left[1 - e^{-\frac{1}{2}Re} \sinh(a \pm ib)(1 - y) - e^{\frac{1}{2}Re(a \pm y)} \sinh(a \pm ib)(y) \right] \frac{e^{i\omega t}}{\lambda_1 + i\omega} + \\
- \frac{P}{2} \left(\frac{1}{\lambda_1 + i\omega} + \frac{1}{\lambda_1 - i\omega} \right) \left[1 - e^{-\frac{1}{2}Re} \sinh(1/2)Re(1 - y) - e^{\frac{1}{2}Re(1 - y)} \sinh(1/2)Re(y) \right] e^{-\lambda_1 t} + \\
\sum_{n=1}^{\infty} n\pi P \left[(-1)^n e^{\frac{1}{2}Re(1 - y)} - e^{\frac{1}{2}Re(y)} \right] \left(\frac{1}{s_1 + i\omega} + \frac{1}{s_1 - i\omega} \right) \sin n\pi y e^{i\nu}
\]

\[(25)\]

Case. 3. Velocity distribution for sine oscillations of pressure gradient:
In this case \(P_3 = 0 \) and \(P_1 = P_2 = \frac{P}{2i} \), then the equation (23) reduces to

\[
q(y,t) = \frac{P}{2i} \left[1 - e^{-\frac{1}{2}Re} \sinh(a \pm ib)(1 - y) - e^{\frac{1}{2}Re(a \pm y)} \sinh(a \pm ib)(y) \right] \frac{e^{i\omega t}}{\lambda_1 + i\omega} + \\
- \frac{P}{2i} \left(\frac{1}{\lambda_1 + i\omega} + \frac{1}{\lambda_1 - i\omega} \right) \left[1 - e^{-\frac{1}{2}Re} \sinh(1/2)Re(1 - y) - e^{\frac{1}{2}Re(1 - y)} \sinh(1/2)Re(y) \right] e^{-\lambda_1 t} + \\
\sum_{n=1}^{\infty} n\pi Pi \left[(-1)^n e^{\frac{1}{2}Re(1 - y)} - e^{\frac{1}{2}Re(y)} \right] \left(\frac{1}{s_1 + i\omega} + \frac{1}{s_1 - i\omega} \right) \sin n\pi y e^{i\nu}
\]

\[(26)\]

For the impulsive change of pressure gradient, the non-dimensional shear stresses at the wall \(y = 0 \) are given by
\[\tau_y + i \tau_z = \left(\frac{\partial q}{\partial y} \right)_{y=0} = P \left[\frac{(1/2) \text{Re} \, (a \pm ib)}{\text{coth}(a \pm ib)} + \frac{(1/2) \text{Re} \, -(a \pm ib)}{\sinh(a \pm ib)} \right] \left(e^{i \lambda t} \right) \]

\[P \text{Re} \coth \frac{\text{Re}}{2} e^{-\lambda t} + 2\pi^2 P \sum_{n=1}^{\infty} \left[(-1)^n e^{\frac{1}{2} \text{Re}} - 1 \right] \left(\frac{1}{s_i + i\omega} + \frac{1}{s_i - i\omega} \right) \frac{1}{\lambda_i + s_i} e^{i\omega} \]

For the cosine oscillations of pressure gradient, the non-dimensional shear stresses at the wall \(y = 0 \) are given by

\[\tau_y + i \tau_z = \left(\frac{\partial q}{\partial y} \right)_{y=0} = P \left[\frac{(1/2) \text{Re} \, (a_1 \pm ib_1)}{\text{coth}(a_1 \pm ib_1)} + \frac{(1/2) \text{Re} \, -(a_1 \pm ib_1)}{\sinh(a_1 \pm ib_1)} \right] \left(e^{i \lambda t} \right) \]

\[- P \text{Re} \left(\frac{1}{\lambda_i + i\omega} + \frac{1}{\lambda_i - i\omega} \right) \coth \left[\frac{1}{2} \text{Re} \right] e^{-\lambda t} + \]

\[\pi^2 P \sum_{n=1}^{\infty} (-1)^n e^{\frac{1}{2} \text{Re}} - 1 \left(\frac{1}{s_i + i\omega} + \frac{1}{s_i - i\omega} \right) \frac{1}{\lambda_i + s_i} e^{i\omega} \]

For the sine oscillations of pressure gradient, the non-dimensional shear stresses at the wall \(y = 0 \) are given by

\[\tau_y + i \tau_z = \left(\frac{\partial q}{\partial y} \right)_{y=0} = P \left[\frac{(1/2) \text{Re} \, (a_1 \pm ib_1)}{\text{coth}(a_1 \pm ib_1)} + \frac{(1/2) \text{Re} \, -(a_1 \pm ib_1)}{\sinh(a_1 \pm ib_1)} \right] \left(e^{i \lambda t} \right) \]

\[- P \text{Re} \left(\frac{1}{\lambda_i + i\omega} + \frac{1}{\lambda_i - i\omega} \right) \coth \left[\frac{1}{2} \text{Re} \right] e^{-\lambda t} + \]

\[\pi^2 P \sum_{n=1}^{\infty} (-1)^n e^{\frac{1}{2} \text{Re}} - 1 \left(\frac{1}{s_i + i\omega} + \frac{1}{s_i - i\omega} \right) \frac{1}{\lambda_i + s_i} e^{i\omega} \]

RESULTS AND DISCUSSION

We have considered the unsteady flow of an incompressible electrically conducting viscous fluid in the course of porous medium in a rotating system with pressure gradient as a variable and taking hall current into account. We have computed three different cases based on our study of impulsive change, cosine and sine oscillations of pressure gradient. In this aspect, we have analytically and computationally solved the decisive equations by applying Laplace transform technique. It has been successfully established that the flow behavior is determined owing to the mutual influence of coriolis force and hydromagnetic force on each other under the purview or monitoring of pressure gradient and hall current. The flow governed by the non-dimensional parameters for the velocity components \(u \) and \(w \) with different values of magnetic parameter \(M \), Hall parameter \(m \), rotation parameter \(K \), Reynolds number \(\text{Re} \), \(D \) the permeability parameter, \(\text{frequency parameter} \ \ \omega \) and phage angle \(\alpha \) in Figures (2-39). Figures (2-11) represent the velocity profiles for impulsive pressure gradient; (12-25) represent the velocity profiles for cosine oscillations of pressure gradient, where as the Figures (26-39) represent the velocity profiles for sine oscillations of pressure gradient. Here we observe that, all the profiles are on negative sides for \(w \). Negative velocity just means velocity in the opposite direction than what would be positive. This will attained only
with effect pressure gradient in pertinent directions of the flow field.

We have perceive from Figures (2, 12 & 26) that the velocity component \(u \) enhances with add to Hartmann number \(M \) with the impulsive change of pressure gradient, and The velocity component \(w \) less for the cosine oscillations of while it raises with impulsive change and sine oscillations with an augment in magnetic parameter \(M \), given in Figures (3, 13 & 27). As expected due to the fact that the application of transverse magnetic field results to a resistive type force (called Lorentz force) similar to drag force and upon increasing the values of magnetic parameter, the drag force increases which leads to the deceleration of the flow. It is seen from Figures (4, 14 & 28) that the primary velocity \(u \) increases with an increase in Hall parameter \(m \) for sine oscillations of the pressure gradient while it reduces for the impulsive change and cosine oscillations of the pressure gradient. Hence, we conclude that an increase in Hall parameter reduces the Lorentz force in \(x \)-direction and motion of the fluid particles is reinforced in that direction. Figures (5, 15 & 29) shows that the secondary velocity \(w \) increases for the cosine and sine oscillations of the pressure gradient while it decreases for impulsive change of the pressure gradient with an increase in Hall parameter \(m \). As reported in numerous MHD studies, this velocity component is a result of the Hall current effects. It is seen from Figures (6, 7, 16, 17, 28 &29) that the primary velocity \(u \) and the secondary velocity \(w \) decreases for cosine oscillations of the pressure gradient, while primary velocity \(u \) increases and \(w \) reduces throughout the fluid region with an increase in rotation parameter \(K \) for impulse change, the reversal behaviour is observed for sine oscillations of the pressure gradient. The rotation parameter defines the relative magnitude of the Coriolis force and the viscous force in the regime; therefore it is clear that high magnitude Coriolis forces are counter-productive for the primary flow. Figures (8, 18 & 32), we noticed that the primary velocity \(u \) decreases with an increase in Reynolds number \(Re \) for the impulsive change, while it increases with an increase in Reynolds number \(Re \) for cosine oscillations of the pressure gradient, the magnitude of the velocity component \(w \) enhances initially for \(y \leq 0.2 \) and then gradually reduces for \(0.4 \leq y \leq 1 \) with an increase in Reynolds number \(Re \) for sine oscillations of the pressure gradient.

From the figures (9, 19 & 33) it is observed that, the secondary velocity \(w \) increases for the impulsive change while it decreases for sine oscillations of the pressure gradient with an increase in Reynolds number \(Re \). Similarly, the magnitude of the velocity component \(w \) enhances initially for \(y \leq 0.2 \) and then gradually reduces for \(0.2 \leq y \leq 1 \) with an increase in \(Re \) with cosine oscillations. It is noticed from the Figures (10, 20 & 34) that, the primary velocity \(u \) amplify with an increase in permeability parameter \(D \) for the impulsive change, cosine and sine oscillations. Likewise from Figures (11, 21 & 35) that the secondary velocity \(w \) reduces with an increase in permeability parameter \(D \) for sine oscillations while it raises for impulsive change and cosine oscillations. The primary velocity \(u \) increases with \(\omega \) for cosine oscillations, whereas the velocity \(u \) develops for \(\omega = 2, 4 \& 6 \) and then experiences retardation for \(\omega = 8 \), sine oscillations given Figures (22 & 36). It is also observed from the Figures (23 & 37), the magnitude of the secondary velocity \(w \) diminishes for the sine oscillations while \(u \) enhances for \(\omega = 2, 4 \& 6 \) and then experiences retardation for \(\omega = 8 \) with cosine oscillations with raise in frequency parameter \(\omega \). Finally we have noticed from Figures (24 & 38) that, the magnitude of the primary velocity \(u \) decreases with an increase in phase angle \(\phi \) for both cosine and sine oscillations of the pressure gradient. From Figures (25 & 39), we noticed that the magnitude of the secondary velocity \(w \) diminishes for cosine oscillations of the pressure gradient while it raises for sine oscillations of the pressure gradient with increase in phase angle \(\phi \). The magnitudes of the velocities for cosine are more effective than sine oscillations of the pressure gradient. The best results are obtained to compare with Das et al.[23, 24 & 34]. The results are coincide with Das and Jana [34] when \(D, m \to 0 \). Hall effect and variable pressure gradient shown the impact on the primary and secondary velocity of the fluid flow and verified for \(m \) tends to zero.

The non-dimensional shear stresses \(\tau_y \) and \(\tau_z \) have been calculated at the wall \(y = 0 \) due to the primary and the secondary flows are presented in Tables (1-3) and computationally discussed with reference to governing parameters. We notice that the shear stresses \(\tau_y \) and \(\tau_z \) due to the primary and secondary flow at the wall \(y = 0 \) reduce for the impulsive change, cosine and sine oscillations of the pressure gradient with raise in \(M \). The shear stress \(\tau_y \) due to the primary flow at the wall \(y = 0 \) reduces for both impulsive change and cosine oscillations while it enhances for sine oscillations of the pressure gradient with raise in hall parameter \(m \). The magnitude of the shear stress \(\tau_y \) due to the secondary flow at the wall \(y = 0 \) increases for the impulsive change, cosine and sine oscillations of the pressure gradient with an augment in \(m \). The magnitude of the shear stress \(\tau_z \) due to the primary flow diminishes for the impulsive change and cosine oscillations. Also it enhances for sine oscillations of the pressure gradient with add to in \(K \) or \(D \). It is found that the shear stress \(\tau_z \) decreases for both impulsive change and cosine oscillations of the pressure gradient while it increases for sine oscillations of the pressure gradient with an increase in \(K \) and \(D \). The magnitude of the shear stress \(\tau_z \) reduces for small values of magnetic parameter \(M \) and then it enhances for the impulsive change, cosine and sine oscillations of the pressure gradient with an increase in \(Re \). The magnitude of the shear stress \(\tau_z \) enhances for small values of \(M \) and then it decreases for cosine and sine oscillations of the
pressure gradient with a raise in frequency parameter ω. The shear stress τ_z enhances for small values of magnetic parameter M and then it decreases for cosine oscillations while opposite nature for sine oscillations of the pressure gradient with an increase in ω. The shear stress τ_x diminishes for both cosine and sine oscillations with increment in phase angle ωt. The shear stress τ_z decreases for cosine oscillations and increases for sine oscillations for enhancement in phase angle ωt.

VELOCITY PROFILES WITH IMPULSIVE PRESSURE GRADIENT:

Figure 2 & 3: The velocity Profile for u and w against M with $D = 1, K = 2, \text{Re} = 2, m = 1, t = 0.1, P_0 = 10$

Figure 4 & 5: The velocity Profile for u and w against m with $D = 1, K = 2, \text{Re} = 2, M = 2, t = 0.1, P_0 = 10$
Figure 6 & 7: The velocity Profile for u and w against K with $D = 1, m = 1, \text{Re} = 2, M = 2, t = 0.1, P_0 = 10$

Figure 8 & 9: The velocity Profile for u and w against Re with $D = 1, K = 2, M = 2, m = 1, t = 0.1, P_0 = 10$

Figure 10 & 11: The velocity Profile for u against D with $\text{Re} = 2, K = 2, M = 2, m = 1, t = 0.1, P_0 = 10$
I. **Velocity Profiles with Cosine Oscillations of Pressure Gradient:**

Figure 12 & 13: The velocity profile for u and w against M with $D = 1, K = 2, Re = 2, m = 1, \omega = 2, \alpha t = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 14 & 15: The velocity profile for u and w against m with $D = 1, K = 2, Re = 2, M = 2, \omega = 2, \alpha t = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 16 & 17: The velocity profile for u and w against K with $D = 1, m = 1, Re = 2, M = 2, \omega = 2, \alpha t = \pi / 4, t = 0.1, P_1 = P_2 = 5$
Figure 18 & 19: The velocity Profile for u and w against Re with $D = 1, K = 2, M = 2, m = 1, \omega = 2, \omega = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 20 & 21: The velocity Profile for u and w against D with $\text{Re} = 2, K = 2, M = 2, m = 1, \omega = 2, \omega = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 22 & 23: The velocity Profile for u and w against ω with $\text{Re} = 2, K = 2, D = 1, M = 2, m = 1, \omega = \pi / 4, t = 0.1, P_1 = P_2 = 5$
II. Velocity Profiles with Sine Oscillations of Pressure Gradient:

Figure 24 & 25: The velocity Profile for u and w against ωt with $Re = 2, K = 2, M = 2, m = 1, \omega = 2, t = 0.1, P_1 = P_2 = 5$

Figure 26 & 27: The velocity Profile for u and w against M with $D = 1, K = 2, Re = 2, m = 1, \omega = 2, \omega t = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 28 & 29: The velocity Profile for u and w against m with $D = 1, K = 2, Re = 2, M = 2, \omega = 2, \omega t = \pi / 4, t = 0.1, P_1 = P_2 = 5$
Figure 30 & 31: The velocity Profile for u and w against K with
$D = 1, m = 1, \text{Re} = 2, M = 2, \omega = 2, \phi = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 32 & 33: The velocity Profile for u and w against Re with
$D = 1, K = 2, M = 2, m = 1, \omega = 2, \phi = \pi / 4, t = 0.1, P_1 = P_2 = 5$

Figure 34 & 35: The velocity Profile for u and w against D with
$\text{Re} = 2, K = 2, M = 2, m = 1, \omega = 2, \phi = \pi / 4, t = 0.1, P_1 = P_2 = 5$
Figure 36 & 37: The velocity Profile for u and w against ω with $Re = 2, K = 2, D = 1, M = 2, m = 1, \omega t = \pi/4, t = 0.1, P_1 = P_2 = 5$

Figure 38 & 39: The velocity Profile for u and w against ωt with $Re = 2, K = 2, M = 2, m = 1, \omega = 2, t = 0.1, P_1 = P_2 = 5$

Table 1: The shear stresses at the wall $y = 0$ with impulsive pressure gradient

<table>
<thead>
<tr>
<th>M</th>
<th>m</th>
<th>K</th>
<th>Re</th>
<th>D</th>
<th>τ_x</th>
<th>τ_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.920545</td>
<td>0.566585</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.755471</td>
<td>0.510225</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.544854</td>
<td>0.478845</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.844758</td>
<td>0.655482</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.744855</td>
<td>0.685956</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.901254</td>
<td>0.522142</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0.887459</td>
<td>0.500214</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0.785540</td>
<td>0.788548</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0.678801</td>
<td>0.966569</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.855852</td>
<td>0.704458</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0.648878</td>
<td>0.800145</td>
</tr>
</tbody>
</table>
Table 2: The shear stresses at the wall $y = 0$ with cosine oscillations of pressure gradient

<table>
<thead>
<tr>
<th>M</th>
<th>m</th>
<th>K</th>
<th>Re</th>
<th>D</th>
<th>ω</th>
<th>ωt</th>
<th>τ_x</th>
<th>τ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.814025</td>
<td>0.662152</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.755845</td>
<td>0.622154</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.681452</td>
<td>0.596655</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.755845</td>
<td>0.688542</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.700122</td>
<td>0.665225</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.722459</td>
<td>0.604252</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.622546</td>
<td>0.541125</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.788458</td>
<td>0.725546</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.688982</td>
<td>0.788544</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.699885</td>
<td>0.755066</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.588987</td>
<td>0.822103</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>$\pi/4$</td>
<td>0.998702</td>
<td>0.702254</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>$\pi/4$</td>
<td>1.225473</td>
<td>0.722546</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/6$</td>
<td>0.885442</td>
<td>0.622352</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/3$</td>
<td>0.745582</td>
<td>0.600214</td>
</tr>
</tbody>
</table>

Table 3: The shear stresses at the wall $y = 0$ with sine oscillations of pressure gradient

<table>
<thead>
<tr>
<th>M</th>
<th>m</th>
<th>K</th>
<th>Re</th>
<th>D</th>
<th>ω</th>
<th>ωt</th>
<th>τ_x</th>
<th>τ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.356636</td>
<td>0.278843</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.322546</td>
<td>0.255655</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.299555</td>
<td>0.233652</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.366526</td>
<td>0.288548</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.377458</td>
<td>0.299666</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/4$</td>
<td>0.299702</td>
<td>0.702254</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>$\pi/4$</td>
<td>1.225473</td>
<td>0.722546</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/6$</td>
<td>0.885442</td>
<td>0.622352</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$\pi/3$</td>
<td>0.745582</td>
<td>0.600214</td>
</tr>
</tbody>
</table>
CONCLUSIONS

We have considered the unsteady flow of an incompressible electrically conducting viscous fluid in the course of porous medium in a rotating system with pressure gradient as a variable and taking hall current into account. The conclusions are made as follows.

1. The velocity component for primary flow enhances with increasing \(M, K \) and \(D \), and reduces with \(m, \) \(\text{Re} \) for the impulsive change of pressure gradient.
2. The velocity component for secondary flow enhances with increasing \(M, \) \(\text{Re} \) and \(D \), and reduces with \(m \) and \(K \) for the impulsive change of pressure gradient.
3. The velocity component for primary flow increases with increasing \(\text{Re}, D \) and \(\omega t \), and reduces with \(M, m, K \) and phase angle \(\omega t \) for the cosine oscillations of pressure gradient.
4. The velocity for primary flow increases with increasing \(m \) and \(D \), and reduces with \(M, K \) and phase angle \(\omega t \) for the sine oscillations of pressure gradient.
5. The magnitude of the velocity for primary flow and for secondary flow enhances initially and then gradually reduces with an increase in Reynolds number \(\text{Re} \) for sine and cosine oscillations of the pressure gradient respectively.
6. The velocity for secondary flow enhances with increasing \(M, m, K \) and phase angle \(\omega t \), and reduces with increase in \(\text{Re}, D \) and frequency of oscillation \(\omega \) for the impulsive change of pressure gradient.
7. The magnitude of \(\tau_z \) due to the primary flow decreases for the impulsive change and cosine oscillations with increment in \(M, m, \) \(\text{Re}, K \) and \(D \). For secondary flow it reduces for \(K \) and \(M \) and increases for \(m, \) \(\text{Re} \) and \(D \).
8. Both the stresses enhance with increase in \(m, K \) and \(D \); and reduce with increase in \(M \) or \(\text{Re} \) for sine of the pressure gradient.
9. The shear stress \(\tau_z \), increases for pettie values of \(M \) and then it reduces for cosine and sine oscillations of the pressure gradient with an increase in frequency parameter \(\omega \).
10. The stress \(\tau_z \) enhances and then it reduces for cosine oscillations. Whereas it initially decreases and then boosts for sine oscillations of the pressure gradient with an increase in \(\omega \).
11. Finally, the rotational and Lorentz forces are having significant effect on velocity profile in the presence of pressure gradient and hall current.

REFERENCES

[34]. Das S. and Rabindra Nath Jana, “Hall effects on unsteady MHD flow through a porous channel in a rotating system with variable pressure gradient” (chapter), Ph.D thesis, Department of Applied Mathematics, Vidyasagar University, Midnapore, India.

Veera Krishna,M. A.J.Chamkha, Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration, Physics of Fluids 30, 053101 (2018), doi: https://doi.org/10.1063/1.5025542