International Journal of Applied Engineering Research ISSN-@%62 Volume 13, Numbelr0 (2018) pp.75517563
© Research India Publications. http://www.ripublication.com

Influence of Time Duration between Successive Earthquakes on the
Nonlinear Response of SDOF Structure

Hussam K. Risart and Mustafa A. Kadim?

IAssistant Professor, Alahrian University, Baghdad, Irag.
E-mail: dr.hussamrisan@gmail.com

°Resercher ANahrian University, Baghdad, Iraqg.
E-mail: mostafaabdalkram93@gmail.com

" Civil Engineering Department, College of EngineeringNahrain University, Baghdattag.

Abstract the successive ground motions are sourced from different

The repetition of earthquake ground motion of medium andruptured fault [2].

strong intensities at brief time intervals has been oftenAlways in successive rgund motions, the damaged
observed and interested recently. In this work, the influenceainrepaired structure after the first ground motions may
of successive earthquakes on the response of purely elastiecome at the end of the repeated earthquakes completely
and elasteplastic SDOF structure are analyzed. An extensive inadequate [5]. In spite of the evidence that multiple
parametric study for SDOF structure under repeatedearthquakes hazard is clearly threatening, the influence of
earthquakes has been conducted, in terms of the time duratisuccessive ground motions on the structures has not attracted
between multiple earthquakes, the maximum amplitude ofmuch attention [3]. Author is tried to review the previous
mainshock with respect to foreshock and atieck attempts on the repeated earthquakes effect on buildings
amplitudes, inelastic displacement ratio, ductility demand,throughout this introduction. A little research has investigated
input and hysteretic energieand structural resistance the successivearthquakes effects on buildings. Many works
function. It is observed that the successive ground motiorinvestigated on the SDOF response under single event [3,4,6].
concept has a large influence on the inelastic maximumOnly some of the studies concentrated on the SDOF response
displacement of SDOBtructure. Further it is concluded that with multiple earthquakes ground motions with purely elastic
this inelastic displacement relative to elastic one and the yieldystem [#17].

value is greatlyaffected by the value of the structural In 2003 Amadio C. et al [1]studied the influence of

resistance function and on the time duration bE’tweensuccessive seismic ground motions on the nonlinear SDOF
successive earthquakes. Y

response. It was concluded in has work that the motlel

Keyword: SDOF; successive earthquakes; nonlinear elasteperfectly plastic is the weakest model under multiple
responseinelastic displacement; input and hysteretic earthquakes. While in 2009 kaeorgiou G. D. and Beskos
energies. D. E. [3] investigated the SDOF response under successive

seismic events in term of inelastic displacement ratio. The
purpose of this research is to use a new procedure for the
INTRODUCTION inelastic displacement ratio. Hatzigeorgiou G.dhd Liolios

A tion in the buildi ismic desi hich A. A. [4] in 2010 studied the nonlinear response of eight
n assumption in the burlding SeiSmic design, Which assume&qcqceq  concrete planar building frames under strong

that the earthquake is often happen as a one event. Thsqjccessive ground motions (forty five sequential ground

Eracuce S|_tuaon Eextpkl]alnel? th‘fﬁ] thetgroun(tj mottrl]oE never motion). This work conducts a details parametric study on
appen unique. arthquake with a strong stréngth have mor&ight reinfored concrete planar building frames under forty

and large both aftershocks which happen before the. : : ;
mainshock and earthquake that happen after the mainsho:fjﬁve ground motions. From this research, it can be shown that

) ultiple earthquakes have a large influence on both the
Wh't(.:h namet_d forefshocks. The sequelnces O!Eitmﬁe gr(()jt_lrldbl displacement response and on the reinforcement concrete
motion continue for years or even jonger [1]. NPredictablé oo mes design. Finally in 201Baisal A. et al[2] conducted a
aftershocks ground motion could collapse some buildings tha

: S tudy for the ductility demand at story level of concrete
cracked from the mainshock earthquake. '_I'he repetition Ok . mes behave inelastic manner under multggethquakes.
mediumstrength earthquake ground motions after any

. . . L ; From this study,it can be observed that the successive
interval of time is the definition of successive earthquake y

. L ) earthquakes largely increase the ductility demandtaty s
ground motions. This time can be taken minutes, hours, dayFevel gf inelastic?:or):cretbuilding y @ty

or years. Adding of foreshock, mainshock and aftershock data
tables in multiple earthquakes around the world are availabld he significantly focus of this paper is to find the influence of
in many references {8]. Form these tables; it can observe time duration between successive earthquakes on the purely
that the successive ground motions are not necessarily takelastic and elastpalstic response of SDOStructure. The
place within a day only. The second observation proved thapresent study also aims to investigate the influence of the
structure resistance function on the total response of SDOF
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structure. Different scales of the maximum amplitude ofa SDOF structure in the elastic region and plastic region. The

mainshock with
amplitudes ha# been investigated also.

ONE-DEGREE OF FREEDOM ELASTIO -PERFECTLY
PLASTIC STRUCTURE

respect to foreshock and aftershocknonlinear behavior is offend used for structure that have

considerable ducttly [18].

Assume the SDOF structure shownFigurela, the columns
stiffness assumed to have the resistance function shown in
Figurelb. From thisFigure it can be seen that the resistance
increases linearly with a slope of k as the displacement

In linear elastic systems, the load displacement curve is drawincreags from zero till to the yield displacement. Then the
by straight line with constant slope k and unlimited upperresistance is assumed to remain constant ataR the
value. Usually in real practical situations the linear behaviordisplacement increases further. The, Ralue will be
become nonlinear. The nonlinear system can be solved simplgontinued until the ductility limit of the structure is reached
using nunerical analysis by defining the resistance as function[19].

of displacement onlyigure 1 shows the dynamic response of
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Figureure.1: Resistance function for elas{perfectly plastic

In this case, the spring force which is named the structural
resistance isdenoted by R because this value changes
throughout total behavior of inelastic system. Since the
equations of motion become as follows [14, 15]:

@ MY+R-F({)=0

(b) MY+ky- F(t)=0 O<y<y
©MY+R, - Ft)=0 y<y<y,
@M Y+R, - k(y, - )- F©=0

(ym - 2y) < 9< Y

Where Eq.(a) is expressed the general equation of motion,
while Eq.(b) is used for elastic part. Eq.(c) is fitted for
perfectly plastic part. Finally Eq.(d) covers the elastic
behavior after y. The structure parameters were considered
in this study are the mass of the structure is M = 0.82
kN.se@m, the stiffness of the structure is k = 240/kithe
yield force or the structural resistance is denoted as R in

which this value is illustrated in the Table 1. 0.05 viscous
damping is used in this work.

1)

SEISMIC INPUT

This paragraph is concerned with the procedure of
assembling of multiple earthquakes records. The objective is

(b)
Systenfa): SDOF (b) definition of the resistance function

to study the influence of successive earthquakes on
structural response relative to single ground motion. A
combination of the double and tripkrtificial successive
earthquakes is used in the present study. The mainshock
used in the study is based on EL CENTRO Earthquake of 40
second duration (USGS STATION 118s shown in
Figure2. The beforshocknd aftershock assembly method is
based on the study of Hatzigeorgiou and Beskos [3] as
shown inFigure3. The amplitude ratio of the assembled
earthquake is scaled based on the peak ground acceleration
(PGA) ratio. Based on above, the assembled eartleguak
will be three values of amplitude ratios. These three type are
named casel which is defined as single earthquake event
(mainshock only) with a ratio of PGA amplitude equal to (1,
0, 0). While, Case 2 is defined as double earthquake events
(either foresbck-mainshock or mainshoekftershock) with

a ratio of PGA amplitude equal to (1, 1, 0). In the Case3, the
sequence is represented by triple earthquake events
(foreshockmainshockaftershock) with a ratio equal to (1,

1, 1). The final case (case4) is siateld the sequence as
triple earthquakes with amplitude ratio equal to (0.853,
1.000, 0.853). The time duration between two consecutive
ground motions was denoted &s This parameter was
assumed to change as a percentage from the total earthquake
durationas 50%, 75% and 10086 shown in Tablel.
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Figure 2: EL CENTRO Earthquake (USGS STATION 117)
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Figure 3: Artificial Seismic Sequences féil. CENTRO (USGS STATION 117)

Analysis Name Type i (Sec) Vel Rel R y Ymax i (sec)
Casel-k -0.8R K 8.7 0.036 0.044 4,58
Casel-k -0.6R K 6.5 0.027 0.038 28
Casel-k -0.4R Casel K 0.0456 | 10.9 4.3 0.018 0.031 9.51
Casel-k -0.2R K 2.1 0.009 0.044 9.18
Case2-30-0.8R 8.8 0.036 0.051 80.9
Case2-30-0.6R 6.6 0.027 0.0407 715
Case2-30-04R | 2592 30 0.046 | 11 4T o018 | 0033 | 795
Case2-30-0.2R 2.2 0.009 0.064 79.1
Case3-20-0.6R 20 0.045 10.8 6.4 0.027 0.0406 124.6
Case3-30-0.6R Case3 30 0.046 11 6.6 0.027 0.0409 141.6
Case3-40-0.6R 40 0.05 12 7.2 0.03 0.041 188
Case 4-20-0.6R 20 0.038 9.1 5.6 0.023 0.032 142
Case 4-30-0.6R Case4 30 0.049 11 6.6 0.027 0.039 170
Case 4-40-0.6R 40 0.052 12.4 7.5 0.031 0.0406 84
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VERIFCATION displacement and velocity at the end of the preceding time
LINEAR SOLUTION EORMLUTION !nterval is used as the _initial conditions for the next time
interval [20]. This algorithm was programmed on excel

Solving the differential equation of motion represents in  sheet to verify the result of SAP2000 in case of single
Eq.(1) is exact for a function of exciting represented by  earthquake and adible one. Tow earthquake events are
linear parts. The solution method requires that the loading subjected to the SDOF structure showrFigurel the first
function must be expressed aneisa gingl@vent whilethe secora prie & d double eventsT h
can be obtained by simulating the point of loading function  with 6 sec timeseparation. These events representation are

by linear interpolation.Therefore, the total time of the shown inFigure4. thelinear timedisplacement history for
loading function is divided into N equal time periods of single event and double events using both SAP2000 and
duration At. For each At , t hManuak clputatos are idrawnfiigunes and kigure@ k i n
primary conditions at the beginning of that time period and respectively. It shown identical behavior between two
the linear loading function during the imtal. The proceduredn both the two type of events.
T
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i "
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(a) Single Event "EL CENTRO" (b) Double Events "EL CENTRQO" 6 sec

Figure.4: Input Earthquakes
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Figure.5: Linear timedisplacement history for single event
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Figure.6: Linear timedisplacement history for double events
4.2NONLINEAR SOLUTION FORMULATION initial conditions for the next time step. So it can be defined

the nonlinear behavior in this method is approximately
resulted from changing linear systems. The constant and the
linear acceleration methods are the two popular ousth
available in the literature [21]In this study the linear
ac%elﬁrf;\tlon methaod  is u§ed by%usmgPel}IONLlN program.

n m h .
. . . This prog?am WS teVeloped by AP y A. Charney. The
time lengths are usually used in these method. The condition results of this program was compared with the results of

of dynamic equilibrium is established at commence of each SAP2000 fo caliprate the rfal one. Single earthquak

;OLTI’]:ZI l:?age\(; gnl aﬁ ass-ll-mr; ?ion :h:tctsbgffiocigntss (Ii( ) Zntd t hn%meg ELéEN? O (USG STATION Illn])cwrasea% tedtin
» ) P y ) this ponlinear comparison as shown Figure7 (a) and
c(y) remain constant during rduR&a) bhsRd dh 'SXP2600 afitNONLIN Fepdchively.
coefficients are recalculating at the start of each time Nonlinear Time displacement history obtain by SAP2000
increment to include the nonlinear behavior. Then the Figure7(b) is icentical with the time displacement history
response found by using the displacement and velocity that found by NONLIN

calculated at the end of the time periwhich are used as the

There are many methods to find the solution of the nonlinear
equation of motion of structure subjected to time history
loading. The most effective method is named -&tgstep
integration method. The response of any structure is found at
a sequence of inerment s At of ti me i

A

x10 2 TIME

4
[
zwer

St T R O I A
[N RN RN N RN RN N
4. 8. 120 16, 200 24 28 32, 35, 40,

@) EL CENTRO (USGS STATION 117) (b) Displacement by SAP 2000
Figure 7: Nonlinear Time Displacement History based on SAP 2000
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EL CENTRO (USGS STATION 117)

RESULTS AND DISCUSSION

Table.1 shows the analysis cases investigate in this study.
These analysis is divided into four cases. Case 1 represents
single earthquake event with four different resistance. Two
repeated earthquakes events with 30 sec time duration
between them is remented in case 2 with also four
different resistance (R). While case 3 simulates three
successive earthquakes events with the same amplitude at
structural resistance equal to 0.8 &ith three different time
duration between them. Finally, case 4 shoves ibhavior

of SDOF structure under three repeated earthquakes events
with different amplitudes between the mainshock with
respect to beforshock and aftershock with same case three
par ameters in term of -tiRe an
history with input andhysteretic energies of case 1 are
shown inFigure9 toFigure12. FromFigure13 toFigurel7

the results of case 2 are shown. While the results of case 3
are shown irFigure18 toFigure22. Finally, the results of
case 4 are illustratdd Figure23to Figure27.

This work shows a tool which is effective for measuring the
different responses of SDOF structural system under
different repeated earthquake events. Detailed study are
done to study the influence of successive earthquakes events
in term of the maximum responses and when it is occurs
with different tools for measurement of ductility of structure
due to these multiple earthquakes. It is indicated from case 1
(single events) that the steady state range of amplitude
reduced as the resistance deseebfrom 0.8 to 0.2 times the
structural elastic resistance functidrigure9 to Figure12).

It is also observed from the samAgjures that the difference
between input energy and hysteretic energy decreased as the
structural resistance decreases furtti@nally, it is shown

that the maximum amplitude occurs at the early time of
loading in this caseFigures of case 2 when a double
earthquakes events come to the picture as shown in
Figure13 toFigure16 with 30 second time interval between
them indicatesimilar patterns of case 1 behavior in terms of
steady state rang of amplitude and difference between input
energy and hysteretic energy. The clearly difference is the
time at which the maximum amplitude occurs is found to be
in later case after the firsivent was finished. It is concluded
from case 3 and case 4, as showrFigures.17 to 19 and
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Displacement

0.00

(b) Displacement by NONLIN

Figure 8: Nonlinear Time Displacement History based on NONLIN

Figures 20 to 22 respectively, that the maximum
displacement occurs at different times and with different
values. When comparirgigure10 toFigures.14, 18 and 2,

it can be shown that the ductility demand for the single
event changed in comparison with multiple events. In order
to measure the ductility demand, the ductility measure is
found by dividing the maximum displacement gn the
yield displacement y. In dalition to that the inelastic
displacement ratio which is found by dividing the ratio of
the maximum inelastic displacement gn the maximum
elastic displacementeyis used also as measured tool for
comparison of single event together with other doublg a
triple ones either with same amplitudes or different

di spl acement

Figure23 shows the variation of inelastic displacement ratio
(IDR) with the structural resistance function for case 1 and
case 2 loading. It is observed that the IDR is approach 1 at
resstance equal to 0.2 time the structural elastic resistance.
After that the IDR is drop to about 0.66 at structural
resistance equal to 0.4 time the structural elastic resistance.
When the resistance goes up the IDR approach one again
(Figure23a). Similarpattern it was observed in case of
double repeated earthquakes. The variation of IDR with time
between successive earthquakes for case 3 and case 4 is
shown inFigure24. From thesé&igures it is clearly shown

that the IDR reduced as the time between ssice
earthquakes increases. In case of triple earthquake of same
amplitudes the curve is concave up while in case of triple
earthquakes of different amplitudes the curve is concave
down. Figure25 shows the variation of ductility with
structural resistarcfor SDOF subjected to case 1 and case 2
loading. It is clearly shown from thedeéigures that the
ductility is reduced sharply when the resistance is increasing
from 0.2 to 0.4 time the elastic resistance function. After
that when the structural resistenincreased the ductility
still reducing in slightly manner. The variation of ductility
with time between successive earthquakes is drawn in
Figure26 for case 3 and case 4 loading. It is clear observed
from these Figures the ductility value for the equal
maximum amplitudes triple repeated earthquakes case 3 is
greater than the ductility value for the different maximum
amplitudes triple successive earthquakes case 4 for all three
different time between successive earthesak
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6.0 CONCOLUSIONS

The

ground motions on the

present work investigates the effect of successive
inelastic displacement SDOF

structure. Theeffect of time duration between repeated
earthquakes, structural resistance and different patterns of
multiple earthquakes is studied. The major part of this paper
is to find the inelastic displacement ratio of the successive
ground motions in term of dulity demand and inelastic
displacement ratio. This detailed study lead to followings:

1-

The increasing in the steady state range of
amplitudes resulted from the increase in the
structural resistance function irrespectively whether
SDOF structure is under rgjle or multiple
earthquakes

The decrease in the structural resistance of the
SDOF structure always leads to a decrease in the
difference between input and hysteretic energy
independently either a single or triple earthquakes.

The time which the maximum igplacement
amplitude occurs at early stage of loading in a
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single event but it is shifted when a multiple
earthquake is applied.

The maximum displacement of SDOF structure in
term of ductility demand or in term of inelastic
displacement ratio was founa tbe significantly
affected by the successive ground motions,
structural resistance function of SDOF, time
between multiple earthquakes and finally on the
pattern of the repeated earthquakes.
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