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Abstract 

This paper describes the simulation of an automated virtual 
car which is developed using a machine learning algorithm 
called Deep Reinforcement (Q) learning. The basic motive of 
this paper is to develop a self-driving car where the source and 
destination would be fixed and based on the data it receives 
from the environment it continuously trains itself to reduce the 
mistakes. 
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LITERATURE REVIEW 

a) Playing Atari with Deep Reinforcement Learning 

 This paper shows the primary significant learning model 
to viably learn control approaches particularly from high-
dimensional material data using bolster learning. The 
model is a convolutional neural framework, organized 
with an assortment of Q-learning, whose data is rough 
pixels and whose yield is a regard work studying future 
prizes. We apply our technique to seven Atari 2600 
beguilements from the Arcade Learning Environment, 
with no difference in the building or learning estimation 
.We apply our method to seven Atari 2600 beguilements 
from the Arcade Learning Environment, with no change 
of the building or learning estimation. The model beats 
every single past philosophy on six of the redirections 
and beats a human ace on three of them. 

b) Human-level control through deep reinforcement learning 

 In this paper, we use late advances in getting ready 
significant neural frameworks to develop a novel 
recreated administrator, named a significant Q-
mastermind that can increase successful game plans 
clearly from high-dimensional unmistakable wellsprings 
of data using end-to-end fortress learning. We attempted 
this administrator on the testing zone of awesome Atari 

2600 amusements. We show that the significant Q-
organize master, tolerating only the pixels and the 
preoccupation score as inputs, could beat the execution of 
all past counts and achieve a level equivalent to that of a 
specialist human-beguilement’s analyser over a set of 49 
entertainments, using a comparable figuring, arrange 
outline and hyper parameters. This work traverses the 
hole between high-dimensional material wellsprings of 
data and exercises, achieving the first fake pro that is 
prepared for making sense of how to surpass desires at a 
different bunch of testing errands. 

c) Reinforcement Learning Methods for Continuous-Time 
Markov Decision Problems 

 Consequent to investigating semi-Markov Decision 
Issues and Bellman & optimality condition in that setting, 
this paper has made a couple of figures like those named 
above, acclimated to the plan of semi-Markov Decision 
Problems. This paper shows the estimations like semi-
Markov Decision Problems and Bellman & optimality 
condition in that extraordinary condition, by applying 
them to the issue of choosing the perfect control for a 
fundamental queueing system and along these lines close 
with a talk of conditions under which these figures may 
be advantageously associated. 

d) Reinforcement Learning in Finite MDPs: PAC Analysis 

 This paper looks at the issue of learning close perfect lead 
in restricted Markov Decision Processes (MDPs) with a 
polynomial number of tests. These "PAC-MDP" counts 
join the definitely comprehended E3and R-MAX 
estimations and furthermore the later Delayed Q-learning 
count. The paper gathers the present best in class by 
presenting limits for the issue in a united speculative 
structure. A better examination for upper and lower limits 
is acquainted with yield information into the complexities 
between the without display Put off Q-learning and the 
model-based R-MAX. 
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FRAMEWORK 

Markov decision strategies (MDPs) give a logical framework 
for showing decision making in conditions where comes about 
are not entirely unpredictable and mostly under the control of 
a decision maker. MDPs are significant for think a broad 
assortment of streamlining issues clarified by methods for 
dynamic programming and bolster learning. MDPs were 
alluded to in any occasion as in front of calendar as the 1950s 
(cf. Bellman 1957); a middle variety of research on Markov 
decision methods happened in light of Ronald A. Howard 
book dispersed in 1960, Dynamic Programming and Markov 
Processes. They are used as a piece of a wide domain of 
disciplines, including mechanical self-rule, customized 
control, money related perspectives, and amassing. More 
precisely, a Markov decision process is a discrete time 
stochastic control process. At each time step, the method is in 
some state 's', and the boss may pick any movement 'a' that is 
open in state 's'. The system responds at the next time progress 
by self-assertively moving into another state s1, and giving 
the boss a relating repay. The probability that the 
methodology moves into its new state s1 is influenced by the 
picked movement. Specifically, it is given by the state change 
work P a ( s , s1 ). Along these lines, the accompanying state 
s1 depends on the present state s and the decision maker’s 
action a. In any case, given s and an, it is prohibitively self-
ruling of each and every past state and exercises; in distinctive 
words, the state changes of a MDP satisfies the Markov 
property. 

Markov decision strategies are an extension of Markov 
chains; the refinement is the extension of exercises (allowing 
choice) and prizes (giving motivation). Then again, if only a 
solitary movement exists for each state (e.g. &quot; 
wait&quot;) and all prizes are the same (e.g. 
&quot;zero&quot;), a Markov decision process reduces to a 
Markov chain. 

 

METHODOLOGY 

For AI to be considered extremely sharp they should surpass 
desires at a wide variety of assignments that are considered 
striving for individuals. Until this point, it had quite recently 
been possible to make individual computations prepared for 
acing a single specific region. We use a library in python 
called Kivy on windows to gather a virtual car expo which 
wanders discretionarily on a dull screen on the PC, use 
Pytorch and Deep Q-Learning, i.e. significant Fortress 
learning through different library in python to set up the auto 
by giving a psyche to the auto which will impact it to take 
after a road structure from the source to the objective and a 
short time later and we may complete the whole undertaking 
on Linux or Ubuntu 

 

Figure 1: Various Convolutional Layers showing the actual 
Architecture of the Learning Process 

 

Addition 1: Convolutional Layers 

Since our prouct will make sense of how to play videogames, 
it must have the ability to understand the diversion's screen 
yield in a way that is in any occasion like how individuals or 
other clever animals can. Instead of considering each pixel 
openly, convolutional layers empower us to consider locale of 
a photo and keep up spatial associations between the things on 
the screen as we send data up to greater measures of the 
framework. In this manner, they act so additionally to human 
open fields. In all actuality there is an accumulation of 
research exhibiting that convolutional neural network learns 
depictions that resemble those of the primate visual cortex. 
Everything considered, they are great for the underlying 
couple of parts inside our framework. 

In Tensor flow, we can use the tf.contrib.layers.convolution2d 
ability to successfully make a convolutional layer. We make 
for fill in as takes after: convolution_layer = 
tf.contrib.layers.convolution2d(inputs,num_outputs, 
kernel_size,stride,padding) 

Here num_outs suggests what number of channels we would 
apply to the past layer. kernel_size suggests to how immense a 
window we should need to slide over the past layer. Walk 
proposes what number of pixels we need to skip as we slide 
the window over the layer. At long last, cushioning suggests 
whether we require our window to slide over fundamentally 
the base layer ("Honest to goodness") or consolidate padding 
around it ("SAME") sought after to guarantee that the 
convolutional layer has an Indistinguishable estimations from 
the past layer. For additional data, see the Tensorflow 
documentation. 

 

Addition 2: Experience Replay 

The second noteworthy development to impact DQNs to work 
is Experience Replay. The basic idea is that by securing an 
expert's experiences, and after that subjectively drawing packs 
of them to set up the framework, we would more have the 
capacity to healthily make sense of how to perform well in the 
endeavor. By keeping the experiences, we draw self-assertive, 
we keep the sort out from simply getting some answers 
concerning what it is in a split second doing in nature and 
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empower it to pick up from a more varied display of past 
experiences. Every last one of these encounters are secured as 
a tuple of <state, action, reward, next state>. The Experience 
Replay reinforce stores a settled number of later recollections, 
and as new ones come in, old ones are expelled. Precisely 
when the time comes to set us up, essentially draw a uniform 
group of self-emphatic recollections from the help, and set up 
our structure with them. For our DQN, we will produce an 
immediate class that handles securing and recovering 
memories. 

 

Addition 3: Separate Target Network 

The third real expansion to the DQN that makes it one of a 
kind is the use of a moment arrange amid the preparation 
methodology. This second system is utilized to produce the 
objective Q esteems that will be utilized to process the 
misfortune for each activity amid preparing. For what reason 
not utilize simply utilize one system for the two estimations? 
The issue is that at each progression of preparing, the Q-
system's esteems move, and in the event that we are utilizing 
an always moving arrangement of qualities to alter our system 
esteems, at that point the esteem estimations can without 
much of a stretch winding wild. The system can move toward 
becoming destabilized by falling into criticism circles between 
the objective and evaluated Q-values. With a specific end goal 
to alleviate that hazard, the objective system's weights are 
settled, and just intermittently or gradually refreshed to the 
essential Q-systems esteems. Along these lines preparing can 
continue in a more steady way. 

 

Going Beyond DQN 

With the additions above,, we have all that we need to 
replicate the DWN of 2014. In any case, the world moves 
snappy, and different updates well past the DQN 
configuration portrayed by DeepMind, have contemplated 
altogether more significant execution and strength. Before 
setting up your new DQN on your most adored ATARI 
delight, I would propose taking a gander at the more a la mode 
increments. I will give a portrayal and some code for two of 
them: Double DQN, and Dueling DQN. Both are definitely 
not hard to execute, and by joining the two techniques, we can 
accomplish better execution with speedier arranging times. 

 

Double DQN 

The standard nature behind Double DQN is that the regular 
DQN as frequently as conceivable overestimates the Q-
estimations of the potential moves to make in a given state. 
While this would be fine if all activities were continually 
overestimates likewise, there was motivation to trust this 
wasn't the condition. You can without a considerable amount 
of a broaden envision that if certain dangerous activities as 
regularly as conceivable were given higher Q-values than 
consummate activities, the manager would experience huge 
inconveniences dependably taking in the perfect strategy. 
With a specific extreme goal to audit for this, the producers of 

DDQN paper propose an immediate trap: instead of taking the 
most outrageous over Q-values when figuring the objective Q 
respect for our arranging step, we utilize our basic structure to 
picked a development, and our objective system to make the 
objective Q-respect for that activity. By decoupling the 
activity decision from the objective Q-respect age, we can 
fundamentally diminish the overestimation, and prepare 
speedier and all the more dependably. The going with is the 
new DDQN condition for strengthening the objective respect. 

Q-Target = r + γQ(s’,argmax(Q(s’,a,ϴ),ϴ’)) 

 

 
Figure 2: Double Deep Q Learning 

 

With a specific extreme target to clarify the thinking behind 
the building changes that Dueling DQN makes, we have to 
first clear up some place in the extent of a couple of extra 
stronghold learning terms. The Q-values that we have been 
talking about so far relate to how it is so unbelievable to make 
a specific move given a specific state. This can be shaped as 
Q(s,a). This development given state can genuinely be spoiled 
into two more basic contemplations of basic worth. The first is 
the respect work V, which says fundamental that it, is so 
marvellous to be in any given state. The second is the 
favoured perspective work A(a), which tells how much better 
making a specific move would be separated from the others. 
We would then have the ability to consider Q being the mix of 
V and A. All the more formally: 

Q(s,a) =V(s) + A(a) 

 

The objective of Duelling DQN is to have a structure that 
openly shapes the immense position and respect breaking 
points, and joins them once more into a solitary Q-work 
precisely at the last layer. It might appear, in every way, to be 
truly purposeless to do this at first look. Why disintegrate a 
cut off that we will simply store up back? The best way to 
deal with understanding the favoured point of view is to 
regard that our fortification learning expert should not think 
about both respect and perfect position at any given time. For 
instance: envision sitting outside in a diversion centre seeing 
the nightfall. It is astonishing, and essentially remunerating to 
stay there. No move should be made, and it doesn't generally 
look great to consider the benefit of staying there as being 
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balanced on anything past the normal state you are in. We can 
accomplish all the more fit checks of express a propelling 
power by decoupling it from the need of being joined to 
particular activities. 

 

PROCEDURE 

We have made our Virtual Car utilizing the Kivy Library in 
Python and the car.kv record is the execution of the car like a 
demonstrating software. 

The map.py is the python file which we run to create the 
environment of the car including the sand layers and the black 
road. 

This has a lot of modules for the car to maintain, and as 
required we have implemented more than 60 % of the 
features: - 

1. The environment for the car to self-drive itself, i.e. the 
road the sand-boundaries that we can add if we want. 

2. The 360-degree movement of the car in its 
environment. 

3. The button responses on the map, i.e. 

 Clear – To clear the road of any sand-boundaries, that 
we have drawn on the map using the mouse. 

 Save – To save the car along with the map environment 
that we have drawn on the map including the sand-
boundaries. 

 Load – To load the AI or the brain of the car inside it so 
that it follows a path from the source (LEFT-TOP 
Corner of the map) to the destination (RIGHT-
BOTTOM corner of the map). 

4. How slow will the car move if it collides with the sand-
boundaries and how random will be the movement of 
the car in general. 

We have made our Virtual Car using the Kivy Library in 
Python and the car.kv file is the implementation of the car 
similar to a modelling software. 

The final implementation of our project is that the car (made 
out of the Library, Kivy in Python) will follow the sand roads 
that has been drawn on the map by the mouse pointer. We will 
first load the AI inside the brain if the car and then draw the 
sand roads inside the window. The car will first move in 
random ways to go from the source to the destination, then 
gradually the car will learn to follow the road. What actually 
happens is that the car keeps on getting reward after every 
round trip starting from the top left corner to the bottom right 
corner and then back and depending on this reward the car 
suits itself and thus tries to follow a path which will get a 
better reward. The reward system depends on 2 things. First, 
is the time taken for the complete trip and the second is that 
how many times the car is crossing a sand road boundary. 

The AI.py is the python file which is attached along with the 
map.py file to create the main brain of the car, i.e. to teach the 
car how to move about in its environment. The file has mainly 

3 modules: 

1. Network Class – This creates the AI network of the 
Convolutional Neural Network that we are creating 
using the reinforcement learning. 

2. Replay Memory Class – This module helps to push 
data inside every layer of the CNN that we have created 
inside the Network Module. 

3. The main module or the DQN Class – Here we use a lot 
of sub-modules: 

 Learn Module – It learns from its mistakes and from 
the negative rewards that it gets every time it does a 
mistake (e.g., crossing the sand road boundary). 

 Update module – It updates itself with the mistakes and 
the lesson learnt from the mistakes and so, from the 
next trip onwards it tries to take some road which has 
lesser negative reward than the one before. 

 Score Module – This module is used to calculate the 
score after every round trip and the score keeps on 
changing and mostly increases as the car gradually 
learns the proper roads and thus the rewards become 
positive. 

 

RESULTS 

The result of this algorithm gives us a reward-time graph as 
shown in Fig 5, showing the reward that is varying with 
respect to time. The reward usually tars with a negative 
outcome and then finally it gets a positive value as soon as the 
car starts following the designated road. The road is drawn 
randomly on the screen by the user and maintaining that road 
alignment the car gets trained. The car at the beginning starts 
to get off the track but after some time, the car starts to follow 
the designated road as has been shown in Fig 3 and Fig 4, and 
the reward becomes positive with time. 

 

 

Figure 3: The car is at the top-left corner of the road (source) 
and is inside the designated road 
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Figure 4: The car is at the bottom-right corner of the road 
(destination) and is inside the designated road 

 

Figure 5: The reward-time graph (reward – y axis and time – 
x axis), showing the reward gradually going towards a 
positive value staring from a negative value after the road is 
drawn on the screen 

 

CONCLUSION 

This is a basic simulation of an automated car implemented 
using Deep Reinforcement Learning which would 
automatically train itself based on the various data that it 
gathers from the environment and the obstacles drawn during 
the training period. This basic prototype can be implemented 
in a real- world car which can programmed using Arduino or 
Raspberry Pi hardware devices. 

 

Future Aspects 

What we can do to improve this algorithm and implement 
Google Maps in our simulation. Instead of creating the 
obstacles by ourselves we would import the google map API 
where obstacles would present by default and would consider 
the gradient factor too. The car would then have to follow the 
actual road as shown by some specific colored roads on the 
Google map. 

We can further work on the velocity of the car. We need to 
slow down the car when it is at a close proximity of an 
obstacle so that the whole model is more realistic and the then 
the final work left to be done would be implementing it on an 
actual car in the real world or at-least some prototype of a car 
built with Arduino or Raspberry-pi. We can have similar 
sensors that we have implemented on the virtual car with the 
help of various hardware components. 
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