
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8372-8376
© Research India Publications. http://www.ripublication.com

8372

Automated Virtual Car Simulation using Deep Reinforcement (Q) Learning

Indraneel Brahma

Vellore Institute of Technology - University in Vellore,
Tamil Nadu, India.

Soumallya Boral

Vellore Institute of Technology - University in Vellore,
Tamil Nadu, India.

Sandipan Basak

Vellore Institute of Technology - University in Vellore,
Tamil Nadu, India.

Satyaki Mukherjee

Vellore Institute of Technology - University in Vellore,
Tamil Nadu, India.

Under the guidance of

Dr. Swarnalatha P (Associate Professor)
School of Computer Science and Engineering

Vellore Institute of Technology - University in Vellore,
Tamil Nadu, India.

Abstract

This paper describes the simulation of an automated virtual
car which is developed using a machine learning algorithm
called Deep Reinforcement (Q) learning. The basic motive of
this paper is to develop a self-driving car where the source and
destination would be fixed and based on the data it receives
from the environment it continuously trains itself to reduce the
mistakes.

Keywords: Deep Reinforcement learning, machine learning,
automated

LITERATURE REVIEW

a) Playing Atari with Deep Reinforcement Learning

 This paper shows the primary significant learning model
to viably learn control approaches particularly from high-
dimensional material data using bolster learning. The
model is a convolutional neural framework, organized
with an assortment of Q-learning, whose data is rough
pixels and whose yield is a regard work studying future
prizes. We apply our technique to seven Atari 2600
beguilements from the Arcade Learning Environment,
with no difference in the building or learning estimation
.We apply our method to seven Atari 2600 beguilements
from the Arcade Learning Environment, with no change
of the building or learning estimation. The model beats
every single past philosophy on six of the redirections
and beats a human ace on three of them.

b) Human-level control through deep reinforcement learning

 In this paper, we use late advances in getting ready
significant neural frameworks to develop a novel
recreated administrator, named a significant Q-
mastermind that can increase successful game plans
clearly from high-dimensional unmistakable wellsprings
of data using end-to-end fortress learning. We attempted
this administrator on the testing zone of awesome Atari

2600 amusements. We show that the significant Q-
organize master, tolerating only the pixels and the
preoccupation score as inputs, could beat the execution of
all past counts and achieve a level equivalent to that of a
specialist human-beguilement’s analyser over a set of 49
entertainments, using a comparable figuring, arrange
outline and hyper parameters. This work traverses the
hole between high-dimensional material wellsprings of
data and exercises, achieving the first fake pro that is
prepared for making sense of how to surpass desires at a
different bunch of testing errands.

c) Reinforcement Learning Methods for Continuous-Time
Markov Decision Problems

 Consequent to investigating semi-Markov Decision
Issues and Bellman & optimality condition in that setting,
this paper has made a couple of figures like those named
above, acclimated to the plan of semi-Markov Decision
Problems. This paper shows the estimations like semi-
Markov Decision Problems and Bellman & optimality
condition in that extraordinary condition, by applying
them to the issue of choosing the perfect control for a
fundamental queueing system and along these lines close
with a talk of conditions under which these figures may
be advantageously associated.

d) Reinforcement Learning in Finite MDPs: PAC Analysis

 This paper looks at the issue of learning close perfect lead
in restricted Markov Decision Processes (MDPs) with a
polynomial number of tests. These "PAC-MDP" counts
join the definitely comprehended E3and R-MAX
estimations and furthermore the later Delayed Q-learning
count. The paper gathers the present best in class by
presenting limits for the issue in a united speculative
structure. A better examination for upper and lower limits
is acquainted with yield information into the complexities
between the without display Put off Q-learning and the
model-based R-MAX.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8372-8376
© Research India Publications. http://www.ripublication.com

8373

FRAMEWORK

Markov decision strategies (MDPs) give a logical framework
for showing decision making in conditions where comes about
are not entirely unpredictable and mostly under the control of
a decision maker. MDPs are significant for think a broad
assortment of streamlining issues clarified by methods for
dynamic programming and bolster learning. MDPs were
alluded to in any occasion as in front of calendar as the 1950s
(cf. Bellman 1957); a middle variety of research on Markov
decision methods happened in light of Ronald A. Howard
book dispersed in 1960, Dynamic Programming and Markov
Processes. They are used as a piece of a wide domain of
disciplines, including mechanical self-rule, customized
control, money related perspectives, and amassing. More
precisely, a Markov decision process is a discrete time
stochastic control process. At each time step, the method is in
some state 's', and the boss may pick any movement 'a' that is
open in state 's'. The system responds at the next time progress
by self-assertively moving into another state s1, and giving
the boss a relating repay. The probability that the
methodology moves into its new state s1 is influenced by the
picked movement. Specifically, it is given by the state change
work P a (s , s1). Along these lines, the accompanying state
s1 depends on the present state s and the decision maker’s
action a. In any case, given s and an, it is prohibitively self-
ruling of each and every past state and exercises; in distinctive
words, the state changes of a MDP satisfies the Markov
property.

Markov decision strategies are an extension of Markov
chains; the refinement is the extension of exercises (allowing
choice) and prizes (giving motivation). Then again, if only a
solitary movement exists for each state (e.g. "
wait") and all prizes are the same (e.g.
"zero"), a Markov decision process reduces to a
Markov chain.

METHODOLOGY

For AI to be considered extremely sharp they should surpass
desires at a wide variety of assignments that are considered
striving for individuals. Until this point, it had quite recently
been possible to make individual computations prepared for
acing a single specific region. We use a library in python
called Kivy on windows to gather a virtual car expo which
wanders discretionarily on a dull screen on the PC, use
Pytorch and Deep Q-Learning, i.e. significant Fortress
learning through different library in python to set up the auto
by giving a psyche to the auto which will impact it to take
after a road structure from the source to the objective and a
short time later and we may complete the whole undertaking
on Linux or Ubuntu

Figure 1: Various Convolutional Layers showing the actual
Architecture of the Learning Process

Addition 1: Convolutional Layers

Since our prouct will make sense of how to play videogames,
it must have the ability to understand the diversion's screen
yield in a way that is in any occasion like how individuals or
other clever animals can. Instead of considering each pixel
openly, convolutional layers empower us to consider locale of
a photo and keep up spatial associations between the things on
the screen as we send data up to greater measures of the
framework. In this manner, they act so additionally to human
open fields. In all actuality there is an accumulation of
research exhibiting that convolutional neural network learns
depictions that resemble those of the primate visual cortex.
Everything considered, they are great for the underlying
couple of parts inside our framework.

In Tensor flow, we can use the tf.contrib.layers.convolution2d
ability to successfully make a convolutional layer. We make
for fill in as takes after: convolution_layer =
tf.contrib.layers.convolution2d(inputs,num_outputs,
kernel_size,stride,padding)

Here num_outs suggests what number of channels we would
apply to the past layer. kernel_size suggests to how immense a
window we should need to slide over the past layer. Walk
proposes what number of pixels we need to skip as we slide
the window over the layer. At long last, cushioning suggests
whether we require our window to slide over fundamentally
the base layer ("Honest to goodness") or consolidate padding
around it ("SAME") sought after to guarantee that the
convolutional layer has an Indistinguishable estimations from
the past layer. For additional data, see the Tensorflow
documentation.

Addition 2: Experience Replay

The second noteworthy development to impact DQNs to work
is Experience Replay. The basic idea is that by securing an
expert's experiences, and after that subjectively drawing packs
of them to set up the framework, we would more have the
capacity to healthily make sense of how to perform well in the
endeavor. By keeping the experiences, we draw self-assertive,
we keep the sort out from simply getting some answers
concerning what it is in a split second doing in nature and

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8372-8376
© Research India Publications. http://www.ripublication.com

8374

empower it to pick up from a more varied display of past
experiences. Every last one of these encounters are secured as
a tuple of <state, action, reward, next state>. The Experience
Replay reinforce stores a settled number of later recollections,
and as new ones come in, old ones are expelled. Precisely
when the time comes to set us up, essentially draw a uniform
group of self-emphatic recollections from the help, and set up
our structure with them. For our DQN, we will produce an
immediate class that handles securing and recovering
memories.

Addition 3: Separate Target Network

The third real expansion to the DQN that makes it one of a
kind is the use of a moment arrange amid the preparation
methodology. This second system is utilized to produce the
objective Q esteems that will be utilized to process the
misfortune for each activity amid preparing. For what reason
not utilize simply utilize one system for the two estimations?
The issue is that at each progression of preparing, the Q-
system's esteems move, and in the event that we are utilizing
an always moving arrangement of qualities to alter our system
esteems, at that point the esteem estimations can without
much of a stretch winding wild. The system can move toward
becoming destabilized by falling into criticism circles between
the objective and evaluated Q-values. With a specific end goal
to alleviate that hazard, the objective system's weights are
settled, and just intermittently or gradually refreshed to the
essential Q-systems esteems. Along these lines preparing can
continue in a more steady way.

Going Beyond DQN

With the additions above,, we have all that we need to
replicate the DWN of 2014. In any case, the world moves
snappy, and different updates well past the DQN
configuration portrayed by DeepMind, have contemplated
altogether more significant execution and strength. Before
setting up your new DQN on your most adored ATARI
delight, I would propose taking a gander at the more a la mode
increments. I will give a portrayal and some code for two of
them: Double DQN, and Dueling DQN. Both are definitely
not hard to execute, and by joining the two techniques, we can
accomplish better execution with speedier arranging times.

Double DQN

The standard nature behind Double DQN is that the regular
DQN as frequently as conceivable overestimates the Q-
estimations of the potential moves to make in a given state.
While this would be fine if all activities were continually
overestimates likewise, there was motivation to trust this
wasn't the condition. You can without a considerable amount
of a broaden envision that if certain dangerous activities as
regularly as conceivable were given higher Q-values than
consummate activities, the manager would experience huge
inconveniences dependably taking in the perfect strategy.
With a specific extreme goal to audit for this, the producers of

DDQN paper propose an immediate trap: instead of taking the
most outrageous over Q-values when figuring the objective Q
respect for our arranging step, we utilize our basic structure to
picked a development, and our objective system to make the
objective Q-respect for that activity. By decoupling the
activity decision from the objective Q-respect age, we can
fundamentally diminish the overestimation, and prepare
speedier and all the more dependably. The going with is the
new DDQN condition for strengthening the objective respect.

Q-Target = r + γQ(s’,argmax(Q(s’,a,ϴ),ϴ’))

Figure 2: Double Deep Q Learning

With a specific extreme target to clarify the thinking behind
the building changes that Dueling DQN makes, we have to
first clear up some place in the extent of a couple of extra
stronghold learning terms. The Q-values that we have been
talking about so far relate to how it is so unbelievable to make
a specific move given a specific state. This can be shaped as
Q(s,a). This development given state can genuinely be spoiled
into two more basic contemplations of basic worth. The first is
the respect work V, which says fundamental that it, is so
marvellous to be in any given state. The second is the
favoured perspective work A(a), which tells how much better
making a specific move would be separated from the others.
We would then have the ability to consider Q being the mix of
V and A. All the more formally:

Q(s,a) =V(s) + A(a)

The objective of Duelling DQN is to have a structure that
openly shapes the immense position and respect breaking
points, and joins them once more into a solitary Q-work
precisely at the last layer. It might appear, in every way, to be
truly purposeless to do this at first look. Why disintegrate a
cut off that we will simply store up back? The best way to
deal with understanding the favoured point of view is to
regard that our fortification learning expert should not think
about both respect and perfect position at any given time. For
instance: envision sitting outside in a diversion centre seeing
the nightfall. It is astonishing, and essentially remunerating to
stay there. No move should be made, and it doesn't generally
look great to consider the benefit of staying there as being

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8372-8376
© Research India Publications. http://www.ripublication.com

8375

balanced on anything past the normal state you are in. We can
accomplish all the more fit checks of express a propelling
power by decoupling it from the need of being joined to
particular activities.

PROCEDURE

We have made our Virtual Car utilizing the Kivy Library in
Python and the car.kv record is the execution of the car like a
demonstrating software.

The map.py is the python file which we run to create the
environment of the car including the sand layers and the black
road.

This has a lot of modules for the car to maintain, and as
required we have implemented more than 60 % of the
features: -

1. The environment for the car to self-drive itself, i.e. the
road the sand-boundaries that we can add if we want.

2. The 360-degree movement of the car in its
environment.

3. The button responses on the map, i.e.

 Clear – To clear the road of any sand-boundaries, that
we have drawn on the map using the mouse.

 Save – To save the car along with the map environment
that we have drawn on the map including the sand-
boundaries.

 Load – To load the AI or the brain of the car inside it so
that it follows a path from the source (LEFT-TOP
Corner of the map) to the destination (RIGHT-
BOTTOM corner of the map).

4. How slow will the car move if it collides with the sand-
boundaries and how random will be the movement of
the car in general.

We have made our Virtual Car using the Kivy Library in
Python and the car.kv file is the implementation of the car
similar to a modelling software.

The final implementation of our project is that the car (made
out of the Library, Kivy in Python) will follow the sand roads
that has been drawn on the map by the mouse pointer. We will
first load the AI inside the brain if the car and then draw the
sand roads inside the window. The car will first move in
random ways to go from the source to the destination, then
gradually the car will learn to follow the road. What actually
happens is that the car keeps on getting reward after every
round trip starting from the top left corner to the bottom right
corner and then back and depending on this reward the car
suits itself and thus tries to follow a path which will get a
better reward. The reward system depends on 2 things. First,
is the time taken for the complete trip and the second is that
how many times the car is crossing a sand road boundary.

The AI.py is the python file which is attached along with the
map.py file to create the main brain of the car, i.e. to teach the
car how to move about in its environment. The file has mainly

3 modules:

1. Network Class – This creates the AI network of the
Convolutional Neural Network that we are creating
using the reinforcement learning.

2. Replay Memory Class – This module helps to push
data inside every layer of the CNN that we have created
inside the Network Module.

3. The main module or the DQN Class – Here we use a lot
of sub-modules:

 Learn Module – It learns from its mistakes and from
the negative rewards that it gets every time it does a
mistake (e.g., crossing the sand road boundary).

 Update module – It updates itself with the mistakes and
the lesson learnt from the mistakes and so, from the
next trip onwards it tries to take some road which has
lesser negative reward than the one before.

 Score Module – This module is used to calculate the
score after every round trip and the score keeps on
changing and mostly increases as the car gradually
learns the proper roads and thus the rewards become
positive.

RESULTS

The result of this algorithm gives us a reward-time graph as
shown in Fig 5, showing the reward that is varying with
respect to time. The reward usually tars with a negative
outcome and then finally it gets a positive value as soon as the
car starts following the designated road. The road is drawn
randomly on the screen by the user and maintaining that road
alignment the car gets trained. The car at the beginning starts
to get off the track but after some time, the car starts to follow
the designated road as has been shown in Fig 3 and Fig 4, and
the reward becomes positive with time.

Figure 3: The car is at the top-left corner of the road (source)
and is inside the designated road

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8372-8376
© Research India Publications. http://www.ripublication.com

8376

Figure 4: The car is at the bottom-right corner of the road
(destination) and is inside the designated road

Figure 5: The reward-time graph (reward – y axis and time –
x axis), showing the reward gradually going towards a
positive value staring from a negative value after the road is
drawn on the screen

CONCLUSION

This is a basic simulation of an automated car implemented
using Deep Reinforcement Learning which would
automatically train itself based on the various data that it
gathers from the environment and the obstacles drawn during
the training period. This basic prototype can be implemented
in a real- world car which can programmed using Arduino or
Raspberry Pi hardware devices.

Future Aspects

What we can do to improve this algorithm and implement
Google Maps in our simulation. Instead of creating the
obstacles by ourselves we would import the google map API
where obstacles would present by default and would consider
the gradient factor too. The car would then have to follow the
actual road as shown by some specific colored roads on the
Google map.

We can further work on the velocity of the car. We need to
slow down the car when it is at a close proximity of an
obstacle so that the whole model is more realistic and the then
the final work left to be done would be implementing it on an
actual car in the real world or at-least some prototype of a car
built with Arduino or Raspberry-pi. We can have similar
sensors that we have implemented on the virtual car with the
help of various hardware components.

REFERENCES

[1] Leemon Baird. Residual algorithms: Reinforcement
learning with function approximation. In Proceedings
of the 12th International Conference on Machine
Learning (ICML 1995), pages 30–37. Morgan
Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling.
Sketch- ased linear value function approximation. In
Advances in Neural Information Processing Systems
25, pages 2222–2230,2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. The arcade learning environment:
An evaluation platform for general agents.Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael
Bowling. Investigating contingency awareness using
atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael
Bowling. Bayesian learning of recursively factored
environments. In Proceedings of the Thirtieth
International Conference on Machine Learning
(ICML 2013), pages 1211–1219, 2013.

