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Abstract 

Artificial Intelligence planning problem consists of finding a 

sequence of applicable actions that allow a planner to move 

from an initial state – defined by some state variables in a 

given representation – to a goal state. This can be done using 

different planning algorithms which may be based on direct 

brute-force search of in more advanced heuristic search. The 

main restrictions in AI planning problems are space and time 

complexities which depend in general from the data 

representation and the used planning algorithm. 

In this paper we present a novel data representation for AI 

panning problems that can serve the most of the existing 

planning algorithms. The proposed data representation is 

based on a variety of bit arrays used to represent the planning 

search space and to allow a speed search through it.  The 

objectives of this representation are: in one hand, to decrease 

the memory space consumption which is critical for all AI 

algorithms in order to solve bigger problems and in the other 

hand, to allow an in-memory quasi-direct access in search 

space which is crucial for reducing the time complexity of 

planning algorithms. Using bit arrays decreases the space 

consumption due to the allocation of bits instead of strings for 

all states and state variables; it also allows accessing data 

through quasi-direct array indexes instead of string matching 

search technics. To test the efficiency of the proposed 

representation, a depth first search planning algorithm is 

implemented and evaluated. 
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INTRODUCTION  

Nowadays Artificial Intelligence planning is used in a many 

fields, such as robotics, medicine, aviation, industry etc. [1] It 

consists of choosing a sequence of actions to be done in a 

specific order to let the planner move from an initial state, to a 

goal state. A state is defined by a set of variables’ values that 

can be propositional as in some representations and they are 

called fluents or atoms, or multivalued called state variables. 

An action is an operation performed that changes the value of 

one or more variables, and changes consequently the state, it 

has pre-conditions and post-conditions that help the planner to 

choose the right action or actions to be applied at a given state. 

Since AI planning was introduced in many fields that need a 

very fast, accurate and efficient decision making and doesn’t 

tolerate significant delays and results looseness (e.g. medicine, 

military, industries and gaming etc...), for these reasons speed 

and precision are critical in all AI planners, and they require 

efficient algorithms, with as low as possible space and time 

complexities, to be applied on data saved in primary memory. 

Data cannot be saved in the secondary memory, because 

despite its bigger capacity, the latency that results when 

reading from static memory is not tolerable in a planning 

problem. Normally, these algorithms should be domain 

independent to work in many situations independently from the 

problem that needs to be solved. For instance the same 

algorithm should work in blocks world, logistics, or any other 

problem giving a right and precise answer within the same 

complexity concerning time and space. As a consequence, 

variables should all be saved on main memory, as well as 

possible actions each with its preconditions and effects, and the 

planner should keep track of the information of every state he 

evaluated with the corresponding action. This will make a huge 

amount of continuously increasing data when dealing with 

planning problems, and will limit planners to solve relatively 

small problems. There have been many attempts to decrease 

the time and space complexity by changing the data 

representation from the use of straight-forward propositional 

variables to finite domain state-variables that decrease the size 

of the state and accelerate access to it in search and update 

operations [2] 

Introducing new heuristic methods and different planning 

algorithms such as HSP [4],and FF [5] and this research area is 

still open for any innovation that can help solving bigger 

problems faster and more efficiently. To make improvements 

in AI planning, two things must be taken into consideration: 

reduction of space and time complexities. Reducing space 

complexity means solving bigger problems some attempts 

have been done in this mean by reducing the search space like 

with GraphPlan [6], others by proposition new data 

representation like with SAS+ [7]. Reducing time complexity 

means solving more complicated problems many attempts 

have been done in this mean especially through the use of 

heuristic search like in HSP [4],  FF [5] and the Fast 

Downward [8]. Consequently, the problem of space and time 

complexities can at some level be solved by using of bigger 

memory and more powerful processors by applying some 

heuristics and advanced algorithms, and. However, the 

increase in the amount of data is huge as well as the increase of 

the complexity of computations through time. So finding a 

better and more adapted representation for data makes space 

complexity shrink and time complexity affected by the way to 
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access and update data. In this paper we propose the usage of a 

bit array based representation to store data, allocating one bit 

for each value of the finite-domain variables; so we will gain in 

space using this compact representation. Although, since the 

representation is array based, the access to data in search and 

compare and update operations becomes faster and thus, the 

time complexity of these operations decreases compared to 

string manipulations through string matching and replacing. In 

the rest of this paper, we will start by stating some variable 

representations that were initiated through time, we will 

present our proposed bit array representation, we will present a 

breadth-first search algorithm running on the proposed bit 

array representation and we will discuss our results before 

concluding our work. 

 

REPRESENTATIONS OVERVIEW 

There exist many data representations, the commonly used 

ones are STRIPS [9], PDDL [11] and SAS+ [7]. They can all 

be used for representing planning problems, but they differ by 

the form of presenting, accessing, analyzing and updating 

data, and each algorithm is done based on some specific 

representation, and optimized to be used with data stored 

following the accordingly designed representation.  

 

STRIPS 

In STRIPS representation [9], the problem is represented by a 

tuple Ѱ = (P, O, I, G): 

 P: is a set that represents all propositional facts (also 

called conditions and ground atomic formulas). 

 O: is a set that groups all operators or actions, each o 

 O defined by a triple (pre(o), add(o), del(o)) with 

pre(o), add(o) and del(o) ⊆ P and where pre(o) is a 

set that defines preconditions of the operator, add(o) 

and del(o) define positive and negative post-

conditions respectively. 

 I and G are both states ⊆ P, where I represents the 

initial state and G the desired state also called goal 

state. 

 Three sets of actions exist in this representation in 

addition to previously defined ones, PRE(p), DEL(p) 

and ADD(p), they define actions that have p as one 

of their precondition, delete or add effect 

respectively [10]. 

To apply an operator to a state, the operator precondition must 

be included in this state, and after it is performed, we apply 

delete and add to move to another state. 

In STRIPS the state is represented as a set of positive literals, 

containing all elements considered in the problem. For 

example in the logistics domain where we have 4 positions A, 

B, C and D and 2 packets P1, P2 and one Truck T; the state 

must include the positive literals of all the considered 

elements (P1, P2, T): 

Suppose T is at A, P1 at B and P2 at D; the state will be 

described as follows: 

At (P1; B) ^ At (P2; D) ^ At (T, A) 

The goal state is a partial condition state, it takes the same 

form like a state but can include only some information of the 

only considered variables: 

Example: 

      At (P1; A) ^ At (P2; A) 

In this example 3 actions are possible: pack (P) unpack (P) 

and move (T). And will be represented as follows: 

Action (MoveT (from; to); 

PRECOND: At (T; from) 

EFFECT: ┐At (T; from) ^ At (T; to)) 

Action (Pack (P, from); 

PRECOND: At (P; from) ^ At (T, from) 

EFFECT: ┐At (P; from) ^ At (P; T)) 

Action(Unpack (p; to); 

PRECOND: At (p; T) ^ At(T, to) 

EFFECT:  ┐ At (P; T) ^ At (P; to)) 

Despite the fact that STRIPS has no negated preconditions 

and doesn’t specify any type for objects, it is accepted as input 

to the majority of planners, but the need for more advanced 

features has resulted in creating the PDDL. 

 

PDDL 

PDDL (Planning Domain Definition Language) [11] is 

defined as a standard to represent planning problems, it 

includes internally the STRIPS representation and adds more 

features to it, like negated preconditions and specifying object 

types. It also has conditional effects and safety constraint 

specifications as well as definition for subactions and 

subgoals. In its recent version it allows numeric values for 

variables and Manages many problems in different fields by 

differing language features subsets. 

Unlike STRIPS, PDDL doesn’t have only positive 

preconditions and two types of effects (add & delete), PDDL 

only has preconditions and effects (post-conditions), and both 

contain positive and negative terms. 

PDDL has appeared in many versions: PDDL 1.2 added 

checking for actions expansions existence [11] PDDL 2.1 [12] 

added numeric fluents, plan-metrics that allow plan 

optimization, and continuous actions or durable actions that 

allow more realistic problem analysis. PDDL 2.2 [13] added 

derived predicates to evaluate dependency between 

conditions, and timed initial literals in order to detect actions 

done independently from the plan. PDDL 3.0 [14] added state-

trajectory constraints and preferences. And finally PDDL 3.1 

joined object-fluents to previous features which are analogous 

to the numeric fluents introduced in PDDL 2.1. Where 

numeric fluents map a tuple of objects to a number, object 

fluents map a tuple of objects to an object of the problem. 
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As an example to PDDL representation, we’re going to take 

the Gripper task example where there are 2 rooms and 4 balls 

and a robot that can move balls between these rooms with the 

use of any of his hands. (the example is taken from a 

presentation done by Malte Helmert) 

 Objects declaration: 

 (:objects firstRoom secondRoom ballA ballB ballC ballD 

leftHand rightHand) 

 Predicates: 

 (:predicates (IsARoom ?x) (IsABall ?x) (IsAGripper ?x) 

(robotAt ?x) (ballAt ?x ?y) (freeGripper ?x) 

(carryingGripper ?x ?y)) 

 Initial state: 

 (:init (IsARoom firstRoom) (IsARoom secondRoom) 

(IsABall ballA) (IsABall ballB) (IsABall ballC) (IsABall 

ballD) (IsAGripper leftHand) (IsAGripper rightHand) 

(freeGripper leftHand) (freeGripper rightHand) (robotAt 

firstRoom) (ballAt ballA firstRoom) (ballAt ballB 

firstRoom) (ballAt ballC firstRoom) (ballAt ballD 

firstRoom)) 

 Goal State: 

 (:goal (and (ballAt ballA secondRoom) (ballAt ballB 

secondRoom) (ballAt ballC secondRoom) (ballAt ballD 

secondRoom))) 

 Actions (move, pickup, drop) 

(:action move :parameters (?x ?y)  

:precondition (and (IsARoom ?x) (IsARoom ?y) 

(robotAt ?x))  

:effect (and (robotAt ?y) (not (robotAt ?x)))) 

 

(:action pick-up :parameters (?x ?y ?z)  

:precondition (and (IsABall ?x) (IsARoom ?y) 

(IsAGripper ?z) (ballAt ?x ?y) (robotAt ?y) 

(freeGripper ?z))  

:effect (and (carryingGripper ?z ?x) (not (ballAt ?x ?y)) 

(not (freeGripper ?z)))) 

 

(:action drop :parameters (?x ?y ?z)  

:precondition (and (IsABall ?x) (IsARoom ?y) 

(IsAGripper ?z) (carryingGripper ?z ?x) (robotAt ?y))  

:effect (and (ballAt ?x ?y) (freeGripper ?z) (not 

(carryingGripper ?z ?x)))) 

 

 

SAS+ 

SAS+ [7] is a light modification on STRIPS, but there exist 

some variations between them. There are two main 

differences between these representations: on the first hand, 

SAS+ uses multi-valued state variable to represent facts 

instead of using propositional fluents, so a number of 

mutually exclusive propositional atoms can be replaced by 

one multi-valued variable. So we can describe problems in a 

natural way, we can also reduce the complexity of some 

problems solved with restrictions using STRIPS and be able to 

remove these restrictions, and generalizing state variables to 

other domains will take smaller steps [3]. On the second hand, 

for the actions representation, each action has a precondition, 

post-condition and prevail-condition: 

Pre and Post-conditions define the old and new value of a 

state variable after performing an action, and prevail-

condition is a special kind of precondition; it only includes 

conditions that will remain the same after execution.  

SAS+ representation is suitable for many algorithms, but the 

most fitting one with it is the algorithm for the fast downward 

planner. 

By using the multivalued state variables, in SAS+ the 

representation of states becomes easier and faster, the 

variables are always present in every comparison (now always 

defined), so the procedures of this algorithm can access the 

required field directly by counting the separators, with no 

need to compare the value with every portion of the string. 

As an example, we’ll take the same like in PDDL but with one 

Gripper: 

 State variables 

 

Index Description Domain 

1 RobotAt {First, Second} 

2 BallAAt {FirstRoom, SecondRoom, Robot } 

3 BallBAt {FirstRoom, SecondRoom, Robot } 

4 BallCAt {FirstRoom, SecondRoom, Robot } 

5 BallDAt {FirstRoom, SecondRoom, Robot } 

6 Gripper {Free, Carrying} 

 

 Initial state 

        <F, F, F, F, F, F> 

 Goal state 

<u, S, S, S,S,F > 

 Actions 

Action Pre Post Prv  



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548 

© Research India Publications.  http://www.ripublication.com 

543 

MoveRobot(X, Y) <X, u, u, u, 

u, u> 

<Y, u, u, u, 

u, u> 

<u, u, u, u, 

u, u> 

PickUpA(X) <u, X, u, u, 

u, F> 

<u, R, u, u, 

u, C> 

<X, u, u, u, 

u, u> 

PickUpB(X) <u, u, X, u, 

u, F> 

<u, u, R, u, 

u, C> 

<X, u, u, u, 

u, u> 

PickUpC(X) <u, u, u, X, 

u, F> 

<u, u, u, R, 

u, C> 

<X, u, u, u, 

u, u> 

PickUpD(X) <u, u, u, u, 

X, F> 

<u, u, u, u, 

R, C> 

<X, u, u, u, 

u, u> 

DropA(X) <u, R, u, u, 

u, C> 

<u, X, u, u, 

u, F> 

<X, u, u, u, 

u, u> 

DropB(X) <u, u, R, u, 

u, C> 

<u, u, X, u, 

u, F> 

<X, u, u, u, 

u, u> 

DropC(X) <u, u, u, R, 

u, C> 

<u, u, u, X, 

u, F> 

<X, u, u, u, 

u, u> 

DropD(X) <u, u, u, u, 

R, C> 

<u, u, u, u, 

X, F> 

<X, u, u, u, 

u, u> 

 

 

BIT ARRAY BASED REPRESENTATION FOR 

PLANNING PROBLEMS 

Problem 

The major deficiencies in AI planning are the huge space and 

time consumptions that limit the solvable problems to 

relatively restricted and small sized problems. As mentioned 

in the previous chapter, restrictions must be applied on data 

representation and manipulation, in order to limit the 

complexity to a determined level. For instance, the restrictions 

in SAS+ can affect the number of state variables changed by 

each operation, the number of values in the domain of each 

multivalued variable, the number of operators that can lead to 

an effect and obliging all preconditions not changed after the 

execution to have the same value [3]. All these restrictions are 

caused by the high complexity, and once the complexity is 

better in terms of space and time, this increases the capacity of 

reaching the solution of a bigger and more complex problem 

with less and less restrictions depending on the complexity 

amelioration. There have been many attempts to reduce the 

complexity, but available enhancements on data 

representations didn’t succeed to reduce these complexities 

enormously, and they still get close results compared to the 

representations that they intended to improve. For example, 

using multivalued discrete state variables instead of fluents in 

SAS and SAS+ has relatively decreased space and time 

consumptions compared to STRIPS, but computationally 

when both representations are used for a planning algorithm, 

they give relatively close results in terms of space and time 

complexities. As a result, we still can’t solve as big and 

complex problems as we need in the fields where Artificial 

Intelligence planning is introduced despite the advanced 

search algorithms mainly based on heuristics, so here comes 

the need to do domain dependent algorithm in some cases, but 

researchers are still looking for a better generic and domain 

independent algorithm that can solve problems from different 

domains with no restrictions on the chosen domain. This 

initiates the need for a new data representation beside the 

current and future advanced algorithms that have made 

remarkable improvements in terms of time complexity but 

even this achievement can be enhanced and improved by 

changing the data representation and the way to access data 

which are two main causes of the high complexity. A new 

challenge raises here, the problematic in this research field is 

doing whatever it takes to improve space and time 

complexity, so the best way to do it, is to find a better model 

to store data than in traditional representations (STRIPS, 

PDDL, SAS+ etc…), and a better way to access data rather 

than string matching to search and compare preconditions, 

intermediate states, results etc… So we have to find a lighter 

easily manageable structure to represent states and a faster –

less complex- method to access needed information such as 

for searching for preconditions and applying post-conditions. 

Our proposed solution is described in the following paragraph.  

 

Proposed Solution 

The most important requirement in our method is to decrease 

space and time consumptions. Space consumption can be 

decreased by using a light and compact data representation 

model, and time complexity reduction should be based on 

improving the way the algorithms accesses, compares and 

updates data in the given representation. 

 

Data representation and space reduction 

To decrease space consumption, we used the main advantage 

of SAS+ over other representations to store data, which is the 

multivalued aspect of variables, so each state variable will be 

represented in an array of bits (a BitSet), where each bit 

represents one value of the domain that this variable could 

have, as a consequence, each array of bit will contain one or 

many values set to 1 and the others filled with 0. For example: 

suppose we have a state variable representing the number of 

packets in a truck, and the truck capacity is 5 packets. 

In STRIPS and PDDL (multiple propositional variables):  

 zeroInTruck = True/False, oneInTruck = True/False, 

twoInTruck = True/False, threeInTruck = True/False, 

fourInTruck = True/False, fiveInTruck = True/False 

In SAS+: 

 numOfPackets  {0, 1, 2, 3, 4, 5} 

 In our new proposition: 

 numOfPackets  

 

0 1 2 3 4 5 

0/1 0/1 0/1 0/1 0/1 0/1 

In this specific example, we have consumed one pointer size 

for each variable instead of 6 in propositional representation, 

and 1 bit for each value in the domain instead of 32 bits (size 

of integer) for each value in SAS+. 
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When multiple variables have similar representations, we can 

group them into one bit matrix. So that instead of the name of 

the variable, it will have an index in the matrix. For example 

if we have 4 trucks (named Truck 0 – 3), and can contain 5 

packets each, they will be represented in a 4x6 matrix. 

 

 0 1 2 3 4 5 

Truck 0 0/1 0/1 0/1 0/1 0/1 0/1 

Truck 1 0/1 0/1 0/1 0/1 0/1 0/1 

Truck 2 0/1 0/1 0/1 0/1 0/1 0/1 

Truck 3 0/1 0/1 0/1 0/1 0/1 0/1 

 

Knowing that each row must contain values set to 1 or 0. 

Sometimes we need to make some modifications in the 

structure of each variable, so it can fit in the matrix with 

others. As a result, there will be some restrictions on the 

matrix like fields that cannot be set. For this reason we 

sometimes use restriction helpful matrix that has the same size 

as the original one and specifies the fields that cannot be set. 

In blocks world for instance, in order to use the same index to 

access a given block in any row, we need to add a field for 

each block pointing to itself:  

Consider blocks world example for 3 blocks. 

 On(A)  {B, C, T} 

 On(B)  {A, C, T} 

 On(C)  {A, B, T} 

In order to put them in the same matrix, we add A to On(A), B 

to On(B) and C to On(C). 

 0 (A) 1(B) 2(C) 3(T) 

On(A) 0 0/1 0/1 0/1 

On(B) 0/1 0 0/1 0/1 

On(C) 0/1 0/1 0 0/1 

 

The restriction helpful matrix in this case will be: 

1 0 0 0 

0 1 0 0 

0 0 1 0 

 

This structure might not look as compact as possible, it is 

quite sure that we can replace these 6 fields of 1 bit each 

(which makes 6 bits), with log2(6) = 2.5849 => 3 bits. 

Theoretically we can, but it would increase the time 

complexity and complicate data manipulation operations. So 

we cannot work on decreasing space without considering time 

consumption, besides that our goal includes time amelioration.  

In some specific cases, the vectors may contain multiple 

variables where some variables domains is only {0,1} and are 

closely related to each other, so it will result in a one-field 

matrix that can be considered as a bit array, but with more 

than one field that could be set. In blocks world for example, 

one variable is needed per block to check if a block is clear 

(can be moved) or has another block put over it. Suppose we 

have 3 blocks A, B and C put on the table as shown in figure 

1. 

 

A  B  C 

 

Figure 1 

 

A state can be defined now as a set 

of matrices and/or bit arrays; it 

could contain multiple separated 

matrices and bit sets that will be 

combined on runtime in one bit set. 

The major consumption of space happens on runtime. Each 

state the planner has been through has to be saved for 

comparisons in order to prevent the planner from getting back 

to an already visited state and slows down the search or even 

enters an infinite loop. So at runtime, when we want to save 

the current state, we flatten it, put it in one bit set and save it, 

so instead of saving a structure or an object (as in an object 

oriented programming language), we will be saving one 

variable that contains exactly the needed number of bits 

without wasting more space on the structure description and 

multiple pointers, and we save all the passed through states in 

an array so we can profit more and more, this will have an 

advantage on time as well and will be explained in the next 

step. In fact, the flattening consists of concatenating all rows 

in matrices and adding bit arrays to them at the end. For 

example: Suppose a state that contains 3 matrices and 2 bit 

sets: 

Main structure: (random values are used to clarify the 

flattening process) 

 

Matrix 1 0 1 2 3 4 

0 0 0 1 0 0 

1 1 0 0 0 0 

2 0 0 0 0 1 

 

 

 

Matrix 2 0 1 2 3 

0 1 0 0 0 

1 0 0 1 0 

Clear A 0 1 

Clear B 1 1 

Clear C 2 1 
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2 0 1 0 0 

3 1 0 0 0 

4 1 0 0 0 

 

 

Array 1 0 0 1 0 0 0 0 

 

Array 2 1 0 0 0 0 0 

 

In this case the Flat State will look like this sequence of bits: 

|0|0|1|0|0|1|0|0|0|0|0|0|0|0|1|1|0|0|0|0|0|1|0|0|1|0|0|1|0|0|0|1|0|0|0|

0|0|1|0|0|0|0|1|0|0|0|0|0| 

This structure will consume less space in the intermediate 

steps and will facilitate states comparison with each other to 

cut cycles and prevent infinite loops and with the goal state to 

define if the goal is reached or not. 

 

ALGORITHM AND TIME REDUCTION 

In this paragraph, our goal is not to define or explain a 

specific algorithm, because we are aiming to initiate a new 

data representation that fits with many algorithms and should 

help any applied algorithm to gain more space and time. 

Despite the differences between planning algorithms, the main 

functionalities are always the same, and proving that the bit 

array based data representation helps decreasing complexity in 

the access to data in searching, updating and states 

comparison in one algorithm should be enough to generalize 

this amelioration to cover all algorithms that work based on 

this representation and access data in the same way. 

As a prototype, we used the most basic planning algorithm to 

prove our proposition, which is a depth-first search based 

algorithm. The search will be applied in a dynamically 

constructed tree structure, where at each state we apply all 

possible actions so we have child states, and each child leads 

to new children states, and so on until reach the goal state. 

The first step in this algorithm is getting the initial and the 

goal state, flattening then comparing them to see if it needs to 

search for a plan or if the initial state is already the required 

one. Flattening the steps will help comparing them as a bit set 

instead of comparing objects. This makes it easier and faster. 

Once a bit is detected to be different between the first and the 

second bit set, the comparison stops. Even though both 

operations should have at least linear complexities O(n) in the 

worst case and a constant complexities O(1) in the best case. 

They have the same order of growth, but the bit set 

comparison takes less time than the comparison of objects 

since n in bit set (number of bits) is always less than n in an 

object holding the same information as the bit set. So in this 

step, we reduced the time of the operation for sure but not the 

time complexity.  

If the initial state is different than the goal state, the second 

step of the algorithm is to test all actions’ preconditions and to 

execute applicable functions – knowing that actions are 

translated into functions with preconditions as if statements, 

and effects as instructions to do if the conditions are satisfied.  

First we will compare the validation process of preconditions. 

Satisfaction of preconditions is based generally on a defined 

number of fields, the same in both cases, and should give the 

same result as well. In the existing data representations, there 

have to be Strings manipulation on data to find the variable 

we need to compare with the considered precondition; and 

here is the major strength of our representation, since we used 

bit arrays and bit matrices, preconditions will be based on 

indices. Accessing and comparing a value through its index 

will have constant time complexity in O(1), differently from 

String manipulation that has a complexity of O(n*k) in the 

best case, where n is the number of facts and k is the longest 

fact length as String. This action will be repeated for every 

new child node (state) before reaching the goal state. Same 

thing in applying post conditions: string manipulations are 

executed once again to find the field and update value. 

For example: in the 3 block example used before: to put A on 

B after it was on C we have to execute the action putOn(x, y) 

in PDDL where x = A, y = B and z=C; 

Pre: clear(x) = true, clear(y) = true; 

Post: clear(y)=false, on(x,y)=true, on(x,z)=false 

 

In SAS+ 

Pre: clear(y)=true; 

Prevail: clear(x)=true; 

Post: clear(y)=false, on(x)=y. 

This is how the action is stored in both cases, so there will be 

string matching to find variables to compare and edit. 

Instead, in our new representation actions will be like: 

Pre:  

clear(X)[x] = true, clear(X)[y] = true; --these are 

translated to an “if” condition. 

 

Post:  

clear(X)[y]=false, clear(X)[z]=false, on(X,Y)[x][y]=true, 

on(X,Y)[x][z]=false. --these are instructions to do. 

Where x, y and z are the indices for A, B, and C (0, 1 and 

2). By this representation, we don’t have to search for the 

variable and set it to a specific value, we use the matrix 

on(X,Y) with direct index or the bit set clear also with direct 

index to the wanted field. 

In addition, using a flat format bit set representing each state 

for saving went through states and states comparison is surely 

less complex than saving and comparing Strings representing 

states or saving the whole objects with all references and 

structure information. Besides that comparing a bit set is quite 
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faster and less complex than comparing Strings or objects. 

Here’s another advantage of the new representation that can 

also be used in applying heuristics in future implementations. 

Even though we cannot retrieve all information from a flat 

state and also we cannot know the number of matrices and bit 

sets contained in this state, but we don’t need to; we only need 

to compare and define if the latest state is similar to one 

visited before or not. All other information will be defined by 

2 more arrays used instead of representing the heavy tree 

structure; these features are specific for this basic prototype 

and can differ from a planner to another; but no planning 

algorithm will have to retrieve information about a state after 

it is flat, although it is possible, but it causes more delays. The 

2 parallel arrays are one for the actions that led to each state 

and one for the parent of each state; so that when the goal 

state is reached, we immediately know its ancestors and each 

action that corresponds to each transition: 

As a conclusion, the new data representation is proved to have 

better space and time complexities: 

 In space complexity: 

Using one bit for each value in the domain of state variables 

and grouping relatively close variables in matrices and bit sets 

–instead of separate propositional atoms (STRIPS and PDDL) 

and integer or string multivalued variables (SAS+)– is a more 

compact structure and helps gaining in space. In addition to 

the flat format used to store and compare visited states 

consumes less space than saving the object or the structure 

and the most important aspect is that it decreases the 

continuously increasing space on the runtime. 

 In time complexity: 

Two aspects are taken into consideration, the speed of search 

and the speed of update. The speed of search concerns 

checking preconditions and visited states as well as retrieving 

solution at the end, which are all improved with the bit array 

based representation and we proved that these could be done 

in less time than if we were working with other applications. 

The speed of update consists of negation and setting fields as 

a respond to post conditions also known as operations effects. 

Time complexity and consumption has improved thanks to the 

direct and easy access to data through indexes. 

 

RESULTS AND DISCUSSION 

It is sure that the depth-first search algorithm works on our 

new bit array based representation, and gives right sequences 

of actions so we can always assume having right results. 

However, giving the right answer is not enough for us; we 

have to prove that it takes less time. As shown in the previous 

paragraph, the complexity is better, but we have to prove it; so 

we’re going to represent the same state in STRIPS, SAS+ and 

our representation, and try to search for some conditions and 

update some information, and compare time consumption for 

each of them. 

Strips: Init (On (A, D) ∧ On (B, C) ∧ On (C, T) ∧ On (D, T) ∧ 

Clear (A) ∧ Clear (B) ∧ ┐Clear (C) ∧ ┐Clear (D)) 

SAS+: <D, C, T, T, Y, Y, N, N> 

Bit Array based representation:  

0 0 0 1 0 

0 0 1 0 0 

0 0 0 0 1 

0 0 0 0 1 

1 1 0 0 1 

 

And we’re going to put A on B: 

[1] check if Clear A and Clear B 3 iterations 

[2] Put Clear B to false 

[3] Put A on B (or put On(A, B) true) 

Average 

results (ns) 

STRIPS SAS+ Bit Array 

[1] 55514 18194 10263 

[1] 79305 23325 13528 

[1] 53181 19127 13062 

[2] 4198965 1236691 27524 

[2] 5960003 1921979 25657 

[2] 3660158 1249287 20992 

[3] 4558637 453904 4199 

[3] 3663891 508485 5598 

[3] 11611650 506619 4665 

 

Searching and comparing preconditions in addition to 

applying effects are always present and very important in 

planning problems, so this example, even if it is basic and 

simple, doesn’t only prove that we are gaining in time, but 

also that this improvement is important, the difference 

between results is considerable. The experiments have clearly 

showed how SAS+ has made an improvement to STRIPS in 

using multivalued variables, the time delays have decreased 

passing from STRIPS to SAS+. And finally tests have 

revealed that our new method takes less time than both 

STRIPS and SAS+, especially in the update operation. These 

results cannot be generalized and taken as a reference to prove 

that our representation is better, since it is done on one case 

and a little number of iterations is done; but it can clearly 

support our opinion already proven theoretically.  

 Besides time improvements; the first String (STRIPS took 

113 bytes) the second one (SAS+ took 22 bytes) and the Bit 

set (Clear has 4 bits, but it might take 1 byte due to memory 

allocation constraints) and the matrix is an array of 4 bit sets 

of 5 bits each, suppose the bit set size is 1 byte, it took at most 

4 bytes.  

Our next step in experiments is to enlarge the problem as 

much as we can, and take time records for each size of 

problem starting with 4 cubes. 
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Number of 

cubes 

Number of 

visited states  

Time (micro seconds) 

4 52 67108.87 

5 444 335544.3 

6 3696 1140850.8 

7 30098 2.1139292E7 

8 143498 3.70340256E8 

9 Memory saturation 
 

We can easily notice the fast expansion of the problem, and 

the fast augmentation in space and time consumptions, 

knowing that these results are get with all the ameliorations 

and enhancements of speed and space economy by using bit 

arrays. It is normal for the algorithm to stop through full 

memory at some point; stopping at the existence of 9 blocks is 

not bad as a result since the algorithm used is a basic one, 

neither heuristics nor advanced methods are used. This proves 

that the use of our new representation based on bit arrays is 

better and would be more helpful and useful if we use it with 

more advanced algorithms. 

 

CONCLUSION 

Artificial Intelligence planning problems have severe space 

consumption and time complexities. The space complexity 

problem is problematic, and should be reduced to the 

minimum in order to have the capacity to solve bigger 

problems, and the time complexity problem is critical, and 

should also be reduced to keep the maximum delay at runtime 

tolerable. 

To decrease space consumption, we used the main advantage 

of SAS+ over other representations to store data, which is the 

multivalued aspect of variables, so each state variable will be 

represented in an array of bits, where each bit represents one 

value of the domain that this variable could have, as a 

consequence, each array of bit will contain one or many 

values set to 1 and the others filled with 0. 

We have also proved that the bit array based data 

representation helps decreasing time complexity in accessing 

data in searching, updating and states comparison in all 

algorithms that work based on this representation and access 

data in the same way.  

Our light weight array based representation follows a 

successful time and space economic strategy. In terms of 

comparison it is better, faster and easier; since comparing bits 

is much simpler than comparing Strings.  

This method, by the use of the array structure, enhances the 

speed of search and update by the use of indexes pointing to 1 

bit. Experimental results have shown the advantage of the new 

method in finding, comparing and updating results, what 

brings its advantage over other data access methods used in 

other planner that have to match strings. String matching 

complexity is at least linear; data access and comparison 

complexity through the index is constant. 

For the new researchers who would like to enter this field, 

there is a lot of perspective work: first there is need to 

implement advanced algorithms and used some good 

heuristics based on this new representation, like FF [5] , fast 

downward [8] and others. 
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