
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

540

AI Planning Search In Direct Access Bit Array Based Representation

Joseph I. Zalaket1 and Joe M. Khalil

Faculty of Engineering, dept. of Computer Engineering,
Holy Spirit University of Kaslik,

Jounieh, Lebanon.

1ORCID 6506327855

Abstract

Artificial Intelligence planning problem consists of finding a

sequence of applicable actions that allow a planner to move

from an initial state – defined by some state variables in a

given representation – to a goal state. This can be done using

different planning algorithms which may be based on direct

brute-force search of in more advanced heuristic search. The

main restrictions in AI planning problems are space and time

complexities which depend in general from the data

representation and the used planning algorithm.

In this paper we present a novel data representation for AI

panning problems that can serve the most of the existing

planning algorithms. The proposed data representation is

based on a variety of bit arrays used to represent the planning

search space and to allow a speed search through it. The

objectives of this representation are: in one hand, to decrease

the memory space consumption which is critical for all AI

algorithms in order to solve bigger problems and in the other

hand, to allow an in-memory quasi-direct access in search

space which is crucial for reducing the time complexity of

planning algorithms. Using bit arrays decreases the space

consumption due to the allocation of bits instead of strings for

all states and state variables; it also allows accessing data

through quasi-direct array indexes instead of string matching

search technics. To test the efficiency of the proposed

representation, a depth first search planning algorithm is

implemented and evaluated.

Keywords: Artificial Intelligence; Planning; Search Space;

Bit Array

INTRODUCTION

Nowadays Artificial Intelligence planning is used in a many

fields, such as robotics, medicine, aviation, industry etc. [1] It

consists of choosing a sequence of actions to be done in a

specific order to let the planner move from an initial state, to a

goal state. A state is defined by a set of variables’ values that

can be propositional as in some representations and they are

called fluents or atoms, or multivalued called state variables.

An action is an operation performed that changes the value of

one or more variables, and changes consequently the state, it

has pre-conditions and post-conditions that help the planner to

choose the right action or actions to be applied at a given state.

Since AI planning was introduced in many fields that need a

very fast, accurate and efficient decision making and doesn’t

tolerate significant delays and results looseness (e.g. medicine,

military, industries and gaming etc...), for these reasons speed

and precision are critical in all AI planners, and they require

efficient algorithms, with as low as possible space and time

complexities, to be applied on data saved in primary memory.

Data cannot be saved in the secondary memory, because

despite its bigger capacity, the latency that results when

reading from static memory is not tolerable in a planning

problem. Normally, these algorithms should be domain

independent to work in many situations independently from the

problem that needs to be solved. For instance the same

algorithm should work in blocks world, logistics, or any other

problem giving a right and precise answer within the same

complexity concerning time and space. As a consequence,

variables should all be saved on main memory, as well as

possible actions each with its preconditions and effects, and the

planner should keep track of the information of every state he

evaluated with the corresponding action. This will make a huge

amount of continuously increasing data when dealing with

planning problems, and will limit planners to solve relatively

small problems. There have been many attempts to decrease

the time and space complexity by changing the data

representation from the use of straight-forward propositional

variables to finite domain state-variables that decrease the size

of the state and accelerate access to it in search and update

operations [2]

Introducing new heuristic methods and different planning

algorithms such as HSP [4],and FF [5] and this research area is

still open for any innovation that can help solving bigger

problems faster and more efficiently. To make improvements

in AI planning, two things must be taken into consideration:

reduction of space and time complexities. Reducing space

complexity means solving bigger problems some attempts

have been done in this mean by reducing the search space like

with GraphPlan [6], others by proposition new data

representation like with SAS+ [7]. Reducing time complexity

means solving more complicated problems many attempts

have been done in this mean especially through the use of

heuristic search like in HSP [4], FF [5] and the Fast

Downward [8]. Consequently, the problem of space and time

complexities can at some level be solved by using of bigger

memory and more powerful processors by applying some

heuristics and advanced algorithms, and. However, the

increase in the amount of data is huge as well as the increase of

the complexity of computations through time. So finding a

better and more adapted representation for data makes space

complexity shrink and time complexity affected by the way to

mailto:josephzalaket@usek.edu.lb
mailto:joe.m.khalil@net.usek.edu.lb

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

541

access and update data. In this paper we propose the usage of a

bit array based representation to store data, allocating one bit

for each value of the finite-domain variables; so we will gain in

space using this compact representation. Although, since the

representation is array based, the access to data in search and

compare and update operations becomes faster and thus, the

time complexity of these operations decreases compared to

string manipulations through string matching and replacing. In

the rest of this paper, we will start by stating some variable

representations that were initiated through time, we will

present our proposed bit array representation, we will present a

breadth-first search algorithm running on the proposed bit

array representation and we will discuss our results before

concluding our work.

REPRESENTATIONS OVERVIEW

There exist many data representations, the commonly used

ones are STRIPS [9], PDDL [11] and SAS+ [7]. They can all

be used for representing planning problems, but they differ by

the form of presenting, accessing, analyzing and updating

data, and each algorithm is done based on some specific

representation, and optimized to be used with data stored

following the accordingly designed representation.

STRIPS

In STRIPS representation [9], the problem is represented by a

tuple Ѱ = (P, O, I, G):

 P: is a set that represents all propositional facts (also

called conditions and ground atomic formulas).

 O: is a set that groups all operators or actions, each o

 O defined by a triple (pre(o), add(o), del(o)) with

pre(o), add(o) and del(o) ⊆ P and where pre(o) is a

set that defines preconditions of the operator, add(o)

and del(o) define positive and negative post-

conditions respectively.

 I and G are both states ⊆ P, where I represents the

initial state and G the desired state also called goal

state.

 Three sets of actions exist in this representation in

addition to previously defined ones, PRE(p), DEL(p)

and ADD(p), they define actions that have p as one

of their precondition, delete or add effect

respectively [10].

To apply an operator to a state, the operator precondition must

be included in this state, and after it is performed, we apply

delete and add to move to another state.

In STRIPS the state is represented as a set of positive literals,

containing all elements considered in the problem. For

example in the logistics domain where we have 4 positions A,

B, C and D and 2 packets P1, P2 and one Truck T; the state

must include the positive literals of all the considered

elements (P1, P2, T):

Suppose T is at A, P1 at B and P2 at D; the state will be

described as follows:

At (P1; B) ^ At (P2; D) ^ At (T, A)

The goal state is a partial condition state, it takes the same

form like a state but can include only some information of the

only considered variables:

Example:

 At (P1; A) ^ At (P2; A)

In this example 3 actions are possible: pack (P) unpack (P)

and move (T). And will be represented as follows:

Action (MoveT (from; to);

PRECOND: At (T; from)

EFFECT: ┐At (T; from) ^ At (T; to))

Action (Pack (P, from);

PRECOND: At (P; from) ^ At (T, from)

EFFECT: ┐At (P; from) ^ At (P; T))

Action(Unpack (p; to);

PRECOND: At (p; T) ^ At(T, to)

EFFECT: ┐ At (P; T) ^ At (P; to))

Despite the fact that STRIPS has no negated preconditions

and doesn’t specify any type for objects, it is accepted as input

to the majority of planners, but the need for more advanced

features has resulted in creating the PDDL.

PDDL

PDDL (Planning Domain Definition Language) [11] is

defined as a standard to represent planning problems, it

includes internally the STRIPS representation and adds more

features to it, like negated preconditions and specifying object

types. It also has conditional effects and safety constraint

specifications as well as definition for subactions and

subgoals. In its recent version it allows numeric values for

variables and Manages many problems in different fields by

differing language features subsets.

Unlike STRIPS, PDDL doesn’t have only positive

preconditions and two types of effects (add & delete), PDDL

only has preconditions and effects (post-conditions), and both

contain positive and negative terms.

PDDL has appeared in many versions: PDDL 1.2 added

checking for actions expansions existence [11] PDDL 2.1 [12]

added numeric fluents, plan-metrics that allow plan

optimization, and continuous actions or durable actions that

allow more realistic problem analysis. PDDL 2.2 [13] added

derived predicates to evaluate dependency between

conditions, and timed initial literals in order to detect actions

done independently from the plan. PDDL 3.0 [14] added state-

trajectory constraints and preferences. And finally PDDL 3.1

joined object-fluents to previous features which are analogous

to the numeric fluents introduced in PDDL 2.1. Where

numeric fluents map a tuple of objects to a number, object

fluents map a tuple of objects to an object of the problem.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

542

As an example to PDDL representation, we’re going to take

the Gripper task example where there are 2 rooms and 4 balls

and a robot that can move balls between these rooms with the

use of any of his hands. (the example is taken from a

presentation done by Malte Helmert)

 Objects declaration:

 (:objects firstRoom secondRoom ballA ballB ballC ballD

leftHand rightHand)

 Predicates:

 (:predicates (IsARoom ?x) (IsABall ?x) (IsAGripper ?x)

(robotAt ?x) (ballAt ?x ?y) (freeGripper ?x)

(carryingGripper ?x ?y))

 Initial state:

 (:init (IsARoom firstRoom) (IsARoom secondRoom)

(IsABall ballA) (IsABall ballB) (IsABall ballC) (IsABall

ballD) (IsAGripper leftHand) (IsAGripper rightHand)

(freeGripper leftHand) (freeGripper rightHand) (robotAt

firstRoom) (ballAt ballA firstRoom) (ballAt ballB

firstRoom) (ballAt ballC firstRoom) (ballAt ballD

firstRoom))

 Goal State:

 (:goal (and (ballAt ballA secondRoom) (ballAt ballB

secondRoom) (ballAt ballC secondRoom) (ballAt ballD

secondRoom)))

 Actions (move, pickup, drop)

(:action move :parameters (?x ?y)

:precondition (and (IsARoom ?x) (IsARoom ?y)

(robotAt ?x))

:effect (and (robotAt ?y) (not (robotAt ?x))))

(:action pick-up :parameters (?x ?y ?z)

:precondition (and (IsABall ?x) (IsARoom ?y)

(IsAGripper ?z) (ballAt ?x ?y) (robotAt ?y)

(freeGripper ?z))

:effect (and (carryingGripper ?z ?x) (not (ballAt ?x ?y))

(not (freeGripper ?z))))

(:action drop :parameters (?x ?y ?z)

:precondition (and (IsABall ?x) (IsARoom ?y)

(IsAGripper ?z) (carryingGripper ?z ?x) (robotAt ?y))

:effect (and (ballAt ?x ?y) (freeGripper ?z) (not

(carryingGripper ?z ?x))))

SAS+

SAS+ [7] is a light modification on STRIPS, but there exist

some variations between them. There are two main

differences between these representations: on the first hand,

SAS+ uses multi-valued state variable to represent facts

instead of using propositional fluents, so a number of

mutually exclusive propositional atoms can be replaced by

one multi-valued variable. So we can describe problems in a

natural way, we can also reduce the complexity of some

problems solved with restrictions using STRIPS and be able to

remove these restrictions, and generalizing state variables to

other domains will take smaller steps [3]. On the second hand,

for the actions representation, each action has a precondition,

post-condition and prevail-condition:

Pre and Post-conditions define the old and new value of a

state variable after performing an action, and prevail-

condition is a special kind of precondition; it only includes

conditions that will remain the same after execution.

SAS+ representation is suitable for many algorithms, but the

most fitting one with it is the algorithm for the fast downward

planner.

By using the multivalued state variables, in SAS+ the

representation of states becomes easier and faster, the

variables are always present in every comparison (now always

defined), so the procedures of this algorithm can access the

required field directly by counting the separators, with no

need to compare the value with every portion of the string.

As an example, we’ll take the same like in PDDL but with one

Gripper:

 State variables

Index Description Domain

1 RobotAt {First, Second}

2 BallAAt {FirstRoom, SecondRoom, Robot }

3 BallBAt {FirstRoom, SecondRoom, Robot }

4 BallCAt {FirstRoom, SecondRoom, Robot }

5 BallDAt {FirstRoom, SecondRoom, Robot }

6 Gripper {Free, Carrying}

 Initial state

 <F, F, F, F, F, F>

 Goal state

<u, S, S, S,S,F >

 Actions

Action Pre Post Prv

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

543

MoveRobot(X, Y) <X, u, u, u,

u, u>

<Y, u, u, u,

u, u>

<u, u, u, u,

u, u>

PickUpA(X) <u, X, u, u,

u, F>

<u, R, u, u,

u, C>

<X, u, u, u,

u, u>

PickUpB(X) <u, u, X, u,

u, F>

<u, u, R, u,

u, C>

<X, u, u, u,

u, u>

PickUpC(X) <u, u, u, X,

u, F>

<u, u, u, R,

u, C>

<X, u, u, u,

u, u>

PickUpD(X) <u, u, u, u,

X, F>

<u, u, u, u,

R, C>

<X, u, u, u,

u, u>

DropA(X) <u, R, u, u,

u, C>

<u, X, u, u,

u, F>

<X, u, u, u,

u, u>

DropB(X) <u, u, R, u,

u, C>

<u, u, X, u,

u, F>

<X, u, u, u,

u, u>

DropC(X) <u, u, u, R,

u, C>

<u, u, u, X,

u, F>

<X, u, u, u,

u, u>

DropD(X) <u, u, u, u,

R, C>

<u, u, u, u,

X, F>

<X, u, u, u,

u, u>

BIT ARRAY BASED REPRESENTATION FOR

PLANNING PROBLEMS

Problem

The major deficiencies in AI planning are the huge space and

time consumptions that limit the solvable problems to

relatively restricted and small sized problems. As mentioned

in the previous chapter, restrictions must be applied on data

representation and manipulation, in order to limit the

complexity to a determined level. For instance, the restrictions

in SAS+ can affect the number of state variables changed by

each operation, the number of values in the domain of each

multivalued variable, the number of operators that can lead to

an effect and obliging all preconditions not changed after the

execution to have the same value [3]. All these restrictions are

caused by the high complexity, and once the complexity is

better in terms of space and time, this increases the capacity of

reaching the solution of a bigger and more complex problem

with less and less restrictions depending on the complexity

amelioration. There have been many attempts to reduce the

complexity, but available enhancements on data

representations didn’t succeed to reduce these complexities

enormously, and they still get close results compared to the

representations that they intended to improve. For example,

using multivalued discrete state variables instead of fluents in

SAS and SAS+ has relatively decreased space and time

consumptions compared to STRIPS, but computationally

when both representations are used for a planning algorithm,

they give relatively close results in terms of space and time

complexities. As a result, we still can’t solve as big and

complex problems as we need in the fields where Artificial

Intelligence planning is introduced despite the advanced

search algorithms mainly based on heuristics, so here comes

the need to do domain dependent algorithm in some cases, but

researchers are still looking for a better generic and domain

independent algorithm that can solve problems from different

domains with no restrictions on the chosen domain. This

initiates the need for a new data representation beside the

current and future advanced algorithms that have made

remarkable improvements in terms of time complexity but

even this achievement can be enhanced and improved by

changing the data representation and the way to access data

which are two main causes of the high complexity. A new

challenge raises here, the problematic in this research field is

doing whatever it takes to improve space and time

complexity, so the best way to do it, is to find a better model

to store data than in traditional representations (STRIPS,

PDDL, SAS+ etc…), and a better way to access data rather

than string matching to search and compare preconditions,

intermediate states, results etc… So we have to find a lighter

easily manageable structure to represent states and a faster –

less complex- method to access needed information such as

for searching for preconditions and applying post-conditions.

Our proposed solution is described in the following paragraph.

Proposed Solution

The most important requirement in our method is to decrease

space and time consumptions. Space consumption can be

decreased by using a light and compact data representation

model, and time complexity reduction should be based on

improving the way the algorithms accesses, compares and

updates data in the given representation.

Data representation and space reduction

To decrease space consumption, we used the main advantage

of SAS+ over other representations to store data, which is the

multivalued aspect of variables, so each state variable will be

represented in an array of bits (a BitSet), where each bit

represents one value of the domain that this variable could

have, as a consequence, each array of bit will contain one or

many values set to 1 and the others filled with 0. For example:

suppose we have a state variable representing the number of

packets in a truck, and the truck capacity is 5 packets.

In STRIPS and PDDL (multiple propositional variables):

 zeroInTruck = True/False, oneInTruck = True/False,

twoInTruck = True/False, threeInTruck = True/False,

fourInTruck = True/False, fiveInTruck = True/False

In SAS+:

 numOfPackets {0, 1, 2, 3, 4, 5}

 In our new proposition:

 numOfPackets

0 1 2 3 4 5

0/1 0/1 0/1 0/1 0/1 0/1

In this specific example, we have consumed one pointer size

for each variable instead of 6 in propositional representation,

and 1 bit for each value in the domain instead of 32 bits (size

of integer) for each value in SAS+.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

544

When multiple variables have similar representations, we can

group them into one bit matrix. So that instead of the name of

the variable, it will have an index in the matrix. For example

if we have 4 trucks (named Truck 0 – 3), and can contain 5

packets each, they will be represented in a 4x6 matrix.

 0 1 2 3 4 5

Truck 0 0/1 0/1 0/1 0/1 0/1 0/1

Truck 1 0/1 0/1 0/1 0/1 0/1 0/1

Truck 2 0/1 0/1 0/1 0/1 0/1 0/1

Truck 3 0/1 0/1 0/1 0/1 0/1 0/1

Knowing that each row must contain values set to 1 or 0.

Sometimes we need to make some modifications in the

structure of each variable, so it can fit in the matrix with

others. As a result, there will be some restrictions on the

matrix like fields that cannot be set. For this reason we

sometimes use restriction helpful matrix that has the same size

as the original one and specifies the fields that cannot be set.

In blocks world for instance, in order to use the same index to

access a given block in any row, we need to add a field for

each block pointing to itself:

Consider blocks world example for 3 blocks.

 On(A) {B, C, T}

 On(B) {A, C, T}

 On(C) {A, B, T}

In order to put them in the same matrix, we add A to On(A), B

to On(B) and C to On(C).

 0 (A) 1(B) 2(C) 3(T)

On(A) 0 0/1 0/1 0/1

On(B) 0/1 0 0/1 0/1

On(C) 0/1 0/1 0 0/1

The restriction helpful matrix in this case will be:

1 0 0 0

0 1 0 0

0 0 1 0

This structure might not look as compact as possible, it is

quite sure that we can replace these 6 fields of 1 bit each

(which makes 6 bits), with log2(6) = 2.5849 => 3 bits.

Theoretically we can, but it would increase the time

complexity and complicate data manipulation operations. So

we cannot work on decreasing space without considering time

consumption, besides that our goal includes time amelioration.

In some specific cases, the vectors may contain multiple

variables where some variables domains is only {0,1} and are

closely related to each other, so it will result in a one-field

matrix that can be considered as a bit array, but with more

than one field that could be set. In blocks world for example,

one variable is needed per block to check if a block is clear

(can be moved) or has another block put over it. Suppose we

have 3 blocks A, B and C put on the table as shown in figure

1.

A B C

Figure 1

A state can be defined now as a set

of matrices and/or bit arrays; it

could contain multiple separated

matrices and bit sets that will be

combined on runtime in one bit set.

The major consumption of space happens on runtime. Each

state the planner has been through has to be saved for

comparisons in order to prevent the planner from getting back

to an already visited state and slows down the search or even

enters an infinite loop. So at runtime, when we want to save

the current state, we flatten it, put it in one bit set and save it,

so instead of saving a structure or an object (as in an object

oriented programming language), we will be saving one

variable that contains exactly the needed number of bits

without wasting more space on the structure description and

multiple pointers, and we save all the passed through states in

an array so we can profit more and more, this will have an

advantage on time as well and will be explained in the next

step. In fact, the flattening consists of concatenating all rows

in matrices and adding bit arrays to them at the end. For

example: Suppose a state that contains 3 matrices and 2 bit

sets:

Main structure: (random values are used to clarify the

flattening process)

Matrix 1 0 1 2 3 4

0 0 0 1 0 0

1 1 0 0 0 0

2 0 0 0 0 1

Matrix 2 0 1 2 3

0 1 0 0 0

1 0 0 1 0

Clear A 0 1

Clear B 1 1

Clear C 2 1

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

545

2 0 1 0 0

3 1 0 0 0

4 1 0 0 0

Array 1 0 0 1 0 0 0 0

Array 2 1 0 0 0 0 0

In this case the Flat State will look like this sequence of bits:

|0|0|1|0|0|1|0|0|0|0|0|0|0|0|1|1|0|0|0|0|0|1|0|0|1|0|0|1|0|0|0|1|0|0|0|

0|0|1|0|0|0|0|1|0|0|0|0|0|

This structure will consume less space in the intermediate

steps and will facilitate states comparison with each other to

cut cycles and prevent infinite loops and with the goal state to

define if the goal is reached or not.

ALGORITHM AND TIME REDUCTION

In this paragraph, our goal is not to define or explain a

specific algorithm, because we are aiming to initiate a new

data representation that fits with many algorithms and should

help any applied algorithm to gain more space and time.

Despite the differences between planning algorithms, the main

functionalities are always the same, and proving that the bit

array based data representation helps decreasing complexity in

the access to data in searching, updating and states

comparison in one algorithm should be enough to generalize

this amelioration to cover all algorithms that work based on

this representation and access data in the same way.

As a prototype, we used the most basic planning algorithm to

prove our proposition, which is a depth-first search based

algorithm. The search will be applied in a dynamically

constructed tree structure, where at each state we apply all

possible actions so we have child states, and each child leads

to new children states, and so on until reach the goal state.

The first step in this algorithm is getting the initial and the

goal state, flattening then comparing them to see if it needs to

search for a plan or if the initial state is already the required

one. Flattening the steps will help comparing them as a bit set

instead of comparing objects. This makes it easier and faster.

Once a bit is detected to be different between the first and the

second bit set, the comparison stops. Even though both

operations should have at least linear complexities O(n) in the

worst case and a constant complexities O(1) in the best case.

They have the same order of growth, but the bit set

comparison takes less time than the comparison of objects

since n in bit set (number of bits) is always less than n in an

object holding the same information as the bit set. So in this

step, we reduced the time of the operation for sure but not the

time complexity.

If the initial state is different than the goal state, the second

step of the algorithm is to test all actions’ preconditions and to

execute applicable functions – knowing that actions are

translated into functions with preconditions as if statements,

and effects as instructions to do if the conditions are satisfied.

First we will compare the validation process of preconditions.

Satisfaction of preconditions is based generally on a defined

number of fields, the same in both cases, and should give the

same result as well. In the existing data representations, there

have to be Strings manipulation on data to find the variable

we need to compare with the considered precondition; and

here is the major strength of our representation, since we used

bit arrays and bit matrices, preconditions will be based on

indices. Accessing and comparing a value through its index

will have constant time complexity in O(1), differently from

String manipulation that has a complexity of O(n*k) in the

best case, where n is the number of facts and k is the longest

fact length as String. This action will be repeated for every

new child node (state) before reaching the goal state. Same

thing in applying post conditions: string manipulations are

executed once again to find the field and update value.

For example: in the 3 block example used before: to put A on

B after it was on C we have to execute the action putOn(x, y)

in PDDL where x = A, y = B and z=C;

Pre: clear(x) = true, clear(y) = true;

Post: clear(y)=false, on(x,y)=true, on(x,z)=false

In SAS+

Pre: clear(y)=true;

Prevail: clear(x)=true;

Post: clear(y)=false, on(x)=y.

This is how the action is stored in both cases, so there will be

string matching to find variables to compare and edit.

Instead, in our new representation actions will be like:

Pre:

clear(X)[x] = true, clear(X)[y] = true; --these are

translated to an “if” condition.

Post:

clear(X)[y]=false, clear(X)[z]=false, on(X,Y)[x][y]=true,

on(X,Y)[x][z]=false. --these are instructions to do.

Where x, y and z are the indices for A, B, and C (0, 1 and

2). By this representation, we don’t have to search for the

variable and set it to a specific value, we use the matrix

on(X,Y) with direct index or the bit set clear also with direct

index to the wanted field.

In addition, using a flat format bit set representing each state

for saving went through states and states comparison is surely

less complex than saving and comparing Strings representing

states or saving the whole objects with all references and

structure information. Besides that comparing a bit set is quite

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

546

faster and less complex than comparing Strings or objects.

Here’s another advantage of the new representation that can

also be used in applying heuristics in future implementations.

Even though we cannot retrieve all information from a flat

state and also we cannot know the number of matrices and bit

sets contained in this state, but we don’t need to; we only need

to compare and define if the latest state is similar to one

visited before or not. All other information will be defined by

2 more arrays used instead of representing the heavy tree

structure; these features are specific for this basic prototype

and can differ from a planner to another; but no planning

algorithm will have to retrieve information about a state after

it is flat, although it is possible, but it causes more delays. The

2 parallel arrays are one for the actions that led to each state

and one for the parent of each state; so that when the goal

state is reached, we immediately know its ancestors and each

action that corresponds to each transition:

As a conclusion, the new data representation is proved to have

better space and time complexities:

 In space complexity:

Using one bit for each value in the domain of state variables

and grouping relatively close variables in matrices and bit sets

–instead of separate propositional atoms (STRIPS and PDDL)

and integer or string multivalued variables (SAS+)– is a more

compact structure and helps gaining in space. In addition to

the flat format used to store and compare visited states

consumes less space than saving the object or the structure

and the most important aspect is that it decreases the

continuously increasing space on the runtime.

 In time complexity:

Two aspects are taken into consideration, the speed of search

and the speed of update. The speed of search concerns

checking preconditions and visited states as well as retrieving

solution at the end, which are all improved with the bit array

based representation and we proved that these could be done

in less time than if we were working with other applications.

The speed of update consists of negation and setting fields as

a respond to post conditions also known as operations effects.

Time complexity and consumption has improved thanks to the

direct and easy access to data through indexes.

RESULTS AND DISCUSSION

It is sure that the depth-first search algorithm works on our

new bit array based representation, and gives right sequences

of actions so we can always assume having right results.

However, giving the right answer is not enough for us; we

have to prove that it takes less time. As shown in the previous

paragraph, the complexity is better, but we have to prove it; so

we’re going to represent the same state in STRIPS, SAS+ and

our representation, and try to search for some conditions and

update some information, and compare time consumption for

each of them.

Strips: Init (On (A, D) ∧ On (B, C) ∧ On (C, T) ∧ On (D, T) ∧

Clear (A) ∧ Clear (B) ∧ ┐Clear (C) ∧ ┐Clear (D))

SAS+: <D, C, T, T, Y, Y, N, N>

Bit Array based representation:

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

1 1 0 0 1

And we’re going to put A on B:

[1] check if Clear A and Clear B 3 iterations

[2] Put Clear B to false

[3] Put A on B (or put On(A, B) true)

Average

results (ns)

STRIPS SAS+ Bit Array

[1] 55514 18194 10263

[1] 79305 23325 13528

[1] 53181 19127 13062

[2] 4198965 1236691 27524

[2] 5960003 1921979 25657

[2] 3660158 1249287 20992

[3] 4558637 453904 4199

[3] 3663891 508485 5598

[3] 11611650 506619 4665

Searching and comparing preconditions in addition to

applying effects are always present and very important in

planning problems, so this example, even if it is basic and

simple, doesn’t only prove that we are gaining in time, but

also that this improvement is important, the difference

between results is considerable. The experiments have clearly

showed how SAS+ has made an improvement to STRIPS in

using multivalued variables, the time delays have decreased

passing from STRIPS to SAS+. And finally tests have

revealed that our new method takes less time than both

STRIPS and SAS+, especially in the update operation. These

results cannot be generalized and taken as a reference to prove

that our representation is better, since it is done on one case

and a little number of iterations is done; but it can clearly

support our opinion already proven theoretically.

 Besides time improvements; the first String (STRIPS took

113 bytes) the second one (SAS+ took 22 bytes) and the Bit

set (Clear has 4 bits, but it might take 1 byte due to memory

allocation constraints) and the matrix is an array of 4 bit sets

of 5 bits each, suppose the bit set size is 1 byte, it took at most

4 bytes.

Our next step in experiments is to enlarge the problem as

much as we can, and take time records for each size of

problem starting with 4 cubes.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

547

Number of

cubes

Number of

visited states

Time (micro seconds)

4 52 67108.87

5 444 335544.3

6 3696 1140850.8

7 30098 2.1139292E7

8 143498 3.70340256E8

9 Memory saturation

We can easily notice the fast expansion of the problem, and

the fast augmentation in space and time consumptions,

knowing that these results are get with all the ameliorations

and enhancements of speed and space economy by using bit

arrays. It is normal for the algorithm to stop through full

memory at some point; stopping at the existence of 9 blocks is

not bad as a result since the algorithm used is a basic one,

neither heuristics nor advanced methods are used. This proves

that the use of our new representation based on bit arrays is

better and would be more helpful and useful if we use it with

more advanced algorithms.

CONCLUSION

Artificial Intelligence planning problems have severe space

consumption and time complexities. The space complexity

problem is problematic, and should be reduced to the

minimum in order to have the capacity to solve bigger

problems, and the time complexity problem is critical, and

should also be reduced to keep the maximum delay at runtime

tolerable.

To decrease space consumption, we used the main advantage

of SAS+ over other representations to store data, which is the

multivalued aspect of variables, so each state variable will be

represented in an array of bits, where each bit represents one

value of the domain that this variable could have, as a

consequence, each array of bit will contain one or many

values set to 1 and the others filled with 0.

We have also proved that the bit array based data

representation helps decreasing time complexity in accessing

data in searching, updating and states comparison in all

algorithms that work based on this representation and access

data in the same way.

Our light weight array based representation follows a

successful time and space economic strategy. In terms of

comparison it is better, faster and easier; since comparing bits

is much simpler than comparing Strings.

This method, by the use of the array structure, enhances the

speed of search and update by the use of indexes pointing to 1

bit. Experimental results have shown the advantage of the new

method in finding, comparing and updating results, what

brings its advantage over other data access methods used in

other planner that have to match strings. String matching

complexity is at least linear; data access and comparison

complexity through the index is constant.

For the new researchers who would like to enter this field,

there is a lot of perspective work: first there is need to

implement advanced algorithms and used some good

heuristics based on this new representation, like FF [5] , fast

downward [8] and others.

REFERENCES

[1] S. S. Shukla and V. Jaiswal, 2013, "Applicability of

Artificial Intelligence in Different Fields of Life,"

International Journal of Scientific Engineering and

Research (IJSER), pp. 28-35.

[2] M. Helmert, 2009, "Concise finite-domain

representations for PDDL planning tasks," Artificial

Intelligence 173, p. 503–535.

[3] C. Bäckström and B. Nebel, 1995, "Complexity Results

for SAS+ Planning" Computational Intelligence, Volume

11, Issue 4, pp. 625–655.

[4] B. Bonet and H. Geffner, 2001, "Planning as heuristic

search," Artificial Intelligence 129, p. 5–33.

[5] J. Hoffman and B. Nebel, 2001, "The FF Planning

System: Fast Plan Generation Through Heuristic Search,"

Journal of Artificial Intelligence Research, 14, pp. 253-

302.

[6] A. L. Blum and M. L. Furst, 1997, "Fast Planning

Through Planning Graph Analysis," Artificial

Intelligence, 90, pp. 281-300.

[7] R. Huang, Y. Chen and W. Zhang, 2012, "SAS+

Planning as Satisfability," Journal of Artificial

Intelligence Research 43, pp. 293-328.

[8] M. Helmert, 2006, "The Fast Downward Planning

System," pp. 191-246

[9] R. E. Fikes and N. J. Nilsson, 1971, "STRIPS: a new

approach to the application of theorem proving to

problem solving," Artificial Intelligence 2, pp. 189-208.

[10] T. Bylander, "The Computational Complexity of

Propositional STRIPS planning," Artificial intelligence, 7

March 1994.

[11] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A.

Ram, M. Veloso, D. Weld and D. Wilkins, 1998, "PDDL

— The Planning Domain Definition Language," Yale

Center for Computational Vision and Control Tech

Report CVC TR-98-003/DCS TR-1165.

[12] M. Fox and D. Long, 2003, "PDDL2.1: An Extension to

pddl for Expressing Temporal Planning Domains,"

Journal of Artificial Intelligence Research 20, pp. 61-

124.

[13] S. Edelkamp and J. Hoffman, 2004, "PDDL2.2: The

Language for the Classical Part of the 4th International

Planning Competition," Technical Report No. 195.

[14] A. Gerevini and D. Long, 2006, "Preferences and Soft

Constraints in PDDL3," Proceedings of the ICAPS-2006

Workshop on Preferences and Soft Constraints in

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 4 (2017) pp. 540-548

© Research India Publications. http://www.ripublication.com

548

Planning, p. 46–54.

