Enhancement of Dielectric Characteristics of Transformer oils with Nanoparticles

(1) Mahmoud M. Hessien, (2)(4) Nehmdoh A. Sabiha, (3)(5) Sherif S. M. Ghoneim, and (3) Ahmad A. Alahmadi

(1) Department of Chemistry, College of Science, Taif University, Saudi Arabia.
(2) Science Stream, Preparatory Year Deanship, Taif University, Taif, KSA.
(3) Department of Electrical Engineering, College of Engineering, Taif University, Taif, KSA.
(4) Department of Electrical Engineering, Faculty of Engineering, Menoufia University, 32511, Menoufia, Egypt.
(5) Electrical Department, Faculty of Industrial Education, Suez University, 43527, Suez, Egypt.

Abstract
There is a wide range of applications of nanocrystalline manganese nickel ferrites in electrical devices, however, such nanocrystalline compositions are not applied beforehand for enhancing the dielectric withstand voltages of the transformer oils. In this paper, nanofluid for power transformers examined toward enhancing the oil dielectric characteristics. The nanofluid is prepared using the synthesized nanoparticles of manganese nickel ferrite concerning substitution of 20% and through the oxalate precursor route annealed at 1000°C. The nanostructure of Mn0.8Ni0.2Fe2O4 is evaluated and verified by the scanning electron microscopy (SEM) and x-ray diffractometer (XRD). Nanofluid dielectric characteristics are examined by applying the standard impulse voltage waveform using pin-hemisphere test cell. Different concentrations of nanocrystalline manganese nickel ferrite in the transformer oils such as 0.02, 0.04, and 0.06 g/l are experimentally tested to ascertain the enhancement of using the proposed nanocrystalline particles. The dielectric withstand voltage is enhanced by around 40% with using the proposed nanocrystalline Mn0.8Ni0.2Fe2O4 powder.

Keywords: Nanofluids, nanocrystalline manganese nickel ferrite, power transformers.

INTRODUCTION
Enhancing the performance of the mineral oil that uses as insulation and coolant material in power transformers is the main request of the mineral oil suppliers. For this reason, the researchers in last decades tried to seek about the additive nanoparticles that improve the thermal and dielectric properties of the oils which results in reducing the volume of the high voltage equipment and increase their power densities [1].

The nanoparticles were categorized into conductive, semiconductive, and dielectric particles where these nanoparticles enhanced the dielectric strength of the oils by trapping and de-trapping the free electrons that generated due to the thermal and electrical stresses on the insulation oils [2]. Additionally, the interfacial zones (the interphase regions) were developed around the filler particles between the oil and nanoparticles [3].

As the nanofluids is used to enhance the dielectric strength of the transformer oil, adding and dispersing nanoparticles in the oils constructed the oil-based nanofluids and the metal oxides were considered the most known nanoparticles [4]. Several metal oxides nanoparticles such as zinc oxide (ZnO) [5-7] titanium dioxide (TiO2) [4-6][8-9], silicon dioxide (SiO2) [4,10], aluminum oxide (Al2O3) [4], magnetite (Fe3O4) [1], [11-13], and hematite (Fe2O3) [14] were added to the oil to develop the nanofluids.

In [14], the Fe3O4 and SiO2 nanoparticles are added to natural ester oil to enhance its dielectric properties. The results demonstrated that the performance of the oil with Fe3O4 is better than that with SiO2 but beyond a threshold value of the nanoparticles concentration, the breakdown voltage will decrease. In [4], the thermal transport properties of the transformer oil with nanoparticles (Al2O3, SiO2, and TiO2) at different concentrations was investigated. In [15], the AC breakdown strength of the transformer oil was enhanced using plasma treated silica nanoparticles to obtain plasma treated nanofluids. The results illustrated that the breakdown strength of the plasma treated nanofluids increased comparing with pure oil and untreated nanofluids. The AC, DC, and impulse voltage waveforms were applied to the transformer oil with TiO2 to investigate the performance of the nanofluids according to ASTM standard.

Nanocrystalline manganese nickel ferrites are the famous substitution ferrite system providing promising electrical properties exploited in the industry. The manganese nickel ferrite system was represented as Mn3Ni1-xFe2O4 and it was crystalized in an inverse spinel structure. Controlling the substitution factor x that is defined inversion parameter was assessed during the preparation process and heat treatments [16-19]. Completely inversion could be done for the factor x,
in which it could be changed from zero to one. This provided a chance of a wide enhancement of the physical, magnetic, electric, and electronic properties. Although these wide prospects were attained for the nanocrystalline manganese nickel ferrite systems, it was not applied for enhancing the properties were attained for the nanocrystalline manganese in which it could be changed from zero to one. This provided a dielectric characteristics.

In this paper, the nanocrystalline manganese nickel ferrite system concerning substitution degree of 20% (Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$) introduced in [16] is used to enhance the dielectric withstand voltages of the transformer oils. The nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ was synthesized via the oxalate precursor route. Based on analyses using XRD and SEM provided the nanocrystalline evidences. Different concentrations of the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ grams per oil litre (g/l) are considered. The nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ is distributed in the oil using the sonicator considering concentrations of 0.02, 0.04, and 0.06 g/l. The experimental measurements using the impulse generator confirmed the dielectric enhancement of incorporating the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ into the transformer oil.

Preparation and Evaluation of Nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ Powder:

Nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powder introduced in [16] was prepared using the oxalate precursor method. The principles of oxalate precursors technique depended on chelating the cations with the aid of oxalic acids. This method of nanocrystalline powder synthesis achieved uniform distribution cations based on the designed ratio after the drying process. The synthesized powder has advantages such as homogenous nanostructure and uniform shape processed at appropriate annealing temperatures.

The chemical organic sources used for the preparation process were ferric chloride, manganese chloride, nickel chloride, and oxalic acid anhydrous. For precisely producing nanocrystalline of Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$, the stoichiometric ratio is adjusted of these organic sources. Then, the laboratory processes such as chemical organic mixing solution, magnetic stirring, evaporation, thermal heating and precursor drying fixed at annealing temperature were accomplished. These laboratory processes to synthesize the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powder were informatively discussed in [16]. However, it is important to mention that the 0.2 mol (molecular weight unit) of manganese chloride, 0.8 mol of nickel chloride, 2 mol of ferric chloride, and 4 mol of oxalic acid were considered in the mixture charging.

In [16], a wide range evaluation of the nanocrystalline formation, size, as well as morphology and magnetic properties was reported using tests such as thermal analyzer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). Based on the presented application in this paper, only the XRD and SEM results are discussed in this section where these results are used to confirm the nanocrystalline synthesis of manganese nickel ferrite system based on 20% substitution (Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$).

For different annealing temperatures in a range 400 to 110 °C, ref [16] presented the XRD patterns of the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powders. It was found that the different annealing temperatures produced different nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powders. For annealing temperatures less than 800 °C, there were impurities that could negatively influence on the transformer oil dielectric characteristics. For annealing temperatures equal to and greater than 800 °C, a single phase nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ was synthesized. However, the higher annealing temperatures increased the nanocrystalline sizes. Compromising between the avoiding of impurities at low annealing temperatures and avoiding of high nanocrystalline sizes produced at high annealing temperatures, the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ annealed at 1000 °C is selected in this paper to enhance the dielectric withstand voltages of the power transformer oils as discussed in the following section. This is to exploit the advantages of dispersing the single-phase nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ in the transformer oils. The other observation was that the Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ annealed at 1000 °C was had the highest lattice parameter comparing with the other annealing temperatures.

Figure 1 shows the XRD patterns examined for Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ ferrite annealed at 1000 °C. From the curve this figure, a single-phase nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powder was produced. Furthermore, the nanocrystalline size was found 161 nm for the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ ferrite annealed at 1000 °C.

![Figure 1: XRD patterns of Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ solution annealed at 1000 °C for 2 hr.](image)

Using the synthesized nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ annealed at different annealing temperatures for 2 hr, Ref. [16] presented the results obtained by the scanning electron
microscopy at Taif university. It was found from the SEM results that the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ treated at annealing temperature less than 800 °C had incomplete nanosturcture. However, annealing temperatures equal to and greater than 800 °C possessed better nanoocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$. For annealing temperatures 900, 1000, and 1100 °C, better homogenous microstructures were found. Accordingly, the selection of utilizing nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ annealed at 1000 °C could be appropriate to enhance the dielectric withstand voltages of the transformer oils. Figure 2 depicts the measured micrographs at different areas and different scales to show the morphology of the synthesized nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powder. From these figures, the homogeneity of nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ was ascertained. The average grain size was found in the range of 1 to 1.5 μm as addressed in [16].

HV Impulse Tests

In this section, the oil dielectric characteristics are evaluated by applying the high voltage (HV) impulse standard waveform when the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ powders were added to enhance the oil characteristics. These experimental tests were accomplished at the high voltage laboratory, electrical engineering department, college of engineering, Taif university, Saudi Arabia. A single stage impulse generator 140 kV depicted in Figure 1(a) was utilized to generate the standard waveform of the impulse voltage. A test cell of pin-hemisphere electrodes was used as shown in Figure 3(b) where the pin and hemisphere diameters are 0.36 cm and 3.6 cm, respectively. The gap distance between the pin and hemisphere was adjusted at 1.66 mm. The point behind utilizing a test cell of the non-uniform field and a gap distance less than the standard value was to advise lower impulse amplitudes applied on the test samples and therefore a reliable impulse testing was achieved. In other words, the test cell was not damaged. A 0.4 ltr of either pure oil or nanofilled oil was considered to fill in the test cell. The uniform dispersion of the nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ in the oil was achieved using the sonicator for one hour. Then, the impulse waveforms were applied on the test cell until achieving the dielectric breakdown.

The selected nanocrystalline Mn$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$ is utilized in this paper to enhance the dielectrics of the transformer oil. This study is extended in the following section using the 140 kV impulse generator.

Figure 2: SEM micrograph.
The experimental impulse waveforms were measured using four channels digital storage oscilloscope, 100MHz, 2 GS/s, model TDS2014C. Using the Matlab program, the scaling factor is considered to draw waveform samples in its real values. Figure 4 shows an example of generated impulse waveform applied on the test cell filled by pure transformer oils. The parameters of the impulse waveform shown in Figure 4 were found 42.2 kV and 1.2/50 μs. When the impulse amplitude was gradually and slightly increased until the breakdown occurred, Figure 5 shows the corresponding voltage waveform. The impulse amplitude was 43.4 kV. This value was considered in this study as the reference value to measure the enhancement of using the nanocrystalline manganese nickel ferrite.

![Figure 4: Impulse waveform applied on pure oil without dielectric breakdown.](image)

![Figure 5: Breakdown impulse waveform of pure oil.](image)

Table 1: Enhancing the transformer oil dielectric using nanocrystalline manganese nickel ferrite with a substitution degree of 20%.

<table>
<thead>
<tr>
<th>Nano concentration</th>
<th>Breakdown Voltage</th>
<th>Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure oil</td>
<td>43.4 kV</td>
<td>-</td>
</tr>
<tr>
<td>0.02 g/l</td>
<td>59.8 kV</td>
<td>37.7 %</td>
</tr>
<tr>
<td>0.04 g/l</td>
<td>61.8 kV</td>
<td>42.3 %</td>
</tr>
<tr>
<td>0.06 g/l</td>
<td>60.4 kV</td>
<td>39.1 %</td>
</tr>
</tbody>
</table>

Figure 6 shows the measured breakdown impulse voltage for different nanocrystalline concentrations of nanofluid. Comparing Figures 5 and 6, higher breakdown voltages of the transformer oil have been attained due to adding nanocrystalline manganese nickel ferrite (nanocrystalline Mn_{0.2}Ni_{0.8}Fe_{2}O_{4}). Table 1 summarizes the percentage enhancements where the higher increase in the breakdown voltage is 42.3 % when the nanocrystalline concentration is 0.04 g/l.

![Figure 6: Breakdown impulse waveforms of nanofluid oils at different concentrations.](image)
CONCLUSIONS

The nanocrystalline manganese nickel ferrite was prepared where during the synthesis process the nickel was substituted by 20 % manganese (Mn_{0.2}Ni_{0.8}Fe_{2}O_{4}). The nanocrystalline Mn_{0.2}Ni_{0.8}Fe_{2}O_{4} ferrite were dispersed in the transformer oil with the aid of sonication process for one hour. By evaluating the dielectric withstand voltage of the transformer oil, higher breakdown voltages were attained especially at nanocrystalline manganese nickel ferrite system-based concentration of 0.04 g/l. More than 40 % enhancement of the impulse breakdown voltage was ascertained. The laboratory evaluations confirmed the nanocrystalline manganese nickel ferrite enhancement of the transformer oil dielectric characteristic.

ACKNOWLEDGMENT

This work financially supported under research project grant number 5773-438-1 by Scientific Research Deanship, Taif University.

REFERENCES

