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Abstract 

In finance, dependence structure between assets is of great 

importance. For example, pricing options involving many 

assets, one must make preassumption about the dependence 

structure between assets or one important issue in risk 

management is to find out the dependence structure when 

calculating VaR. The aim of this paper is to explore the 

dynamic properties of a multidimensional Variance Gamma 

process, which has non Gaussian marginal features and non 

linear dependence structure. We use copula functions to 

specify the dependence structure of underlying assets. We 

study the effect of different choices for the dependence 

functions to the prices of a set of multi-asset equity options. 

The analysis is conducted using 5-dimensional baskets that 

consist of Jakarta Stock Exchange Composite Index (IHSG) 

and four other Asian Indices, Hang Seng, Nikkei, KOSPI, 

Straits Times Index (STI) and a standard payoff functions for 

multi-asset options. The results show that the different choices 

of dependence structure do not give significantly different 

option prices. 

Keywords:  Multidimensional Variance Gamma, Multi-assets 

Option Pricing, Nonlinear Dependence Structures, non 

Gaussian marginal.  

 

INTRODUCTION  

The most current issues in mathematical finance is the 

extension of the risk-neutral concept to the multidimensional 

case, that is a financial instrument constructed by more than 

two underlying assets, known as multivariate options. At least 

there are five deferent types of multivariate options, these are, 

the best or worst performer of a basket of underlying assets, 

an option on the difference between the prices of underlying 

assets, or an option on the maximum or minimum of the 

underlying assets. 

The difficulty with the Black-Scholes model is the assumption 

that the marginal is lognormally distributed. This assumption 

has been argued by many researchers or practitioners (see, 

Carr et al, 1998 or Madan, 1990) and suggested that Black-

Scholes model has to develop to be more realistic model to 

describe the behavior of stock prices. The most powerful and 

flexible model to describe drawback of Black and Scholes 

model is the class of Lévy models; see for example Cont and 

Tankov (2004), Luciano and Semeraro (2008), or Schoutens 

(2003), for reference of Lévy processes and their application 

in finance.  

One example of Levy process is the variance gamma (VG) 

process. The univariate variance gamma has been proposed to 

model stock prices, see for example in Carr et al (1998), Cont 

and Tankov (2004), and Geman et al (2001). The application 

of jump process for a single asset model has been initiated by  

Cont Tankov (2004) and Geman et al (2001). The popularity 

of Levy processes is due to its ability to capture jumps, 

skewness and kurtosis observed in the return distribution and 

risk-neutral return densities (Cont and Tankov, 2004). VG 

model is the most popular Levy processes in the financial 

context, proposed firstly by Madan and Seneta in Madan 

(1990). VG model for stock price models allow for jumps, 

excess kurtosis and skewness and, as a result, are more 

suitable for modelling stock price behavior than the Black and 

Scholes model. 

Another difficulty of pricing multidimensional options come 

from the fact that there is no closed form solutions for the 

formulas. The key point in evaluating multivariate options is 

the determination of dependence between the underlying 

assets (Luciano and Semeraro, (2008). For example, when 

pricing basket options, one needs to estimate the dependence 

structure from the historical time series of asset returns and 

the risk-neutral marginals to price the option. Therefore, one 

needs to be able to separate the dependence structure from the 

margins (Cherubini et al, 2004).  

Understanding the dependence structure among multivariate 

assets is an important key to price multi-asset derivatives or 

managing risks consist of many financial assets. The standard 

approach to find the dependence in multivariate distribution is 

by assuming the distribution is multivariate normals or 

student-𝑡. This approach is chosen because those distributions 

are mathematically simple to solve. It has been argued in 

many literatures, se for example in Cherubini et al (2004) or 

in Embrechts (2003) that the use of multivariate normal 

distribution restricts the correlation between assets to be linear 

as measured by covariances. The real dependence structure 

between two random variables is often much more 

complicated. 

In this paper the limitation of the multidimensional Brownian 

motion model is extended. The assumption that the 
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dependence structures linearly correlated are extended to 

nonlinear dependence. We use copula functions discussed in 

Embrechts et al  (2003) and Nelsen (2006) to specify the 

dependence structure of underlying assets. From a practical 

standpoint, however, these models can easily become difficult 

to handle and calibrate, especially for truly multidimensional 

products like the ones traded on the markets.  The approach 

that we apply here refers to Luciano and Semeraro (2008) and 

the correlation matrix is calibrated from the time series data of 

5-dimensional baskets of Asian shares and a standard payoff 

functions for multi-asset options. 

The purposes of the paper is to study the effect of different 

choices for the dependence functions to the prices of a set of 

multi-asset equity options, and to present a case study of the 

pricing of multi-asset options. The analysis is conducted using 

5-dimensional baskets that consist of Jakarta Stock Exchange 

Composite Index (IHSG) and four other Asian Indexes, Hang 

Seng, Nikkei, KOSPI, Straits Times Index (STI) and a 

standard payoff functions for multi-asset options.  

 

CONSTRUCTION OF MULTIVARIATE VG PROCESS 

In one-dimensional problem, variance gamma model has been 

successfully to show optimal performance when modelling the 

skewness and kurtosis observed from financial time series 

data of financial market. The model for dynamic price of 

stock returns is given by 

 𝑆𝑡 = 𝑆0𝑒𝜇𝑡+𝜔𝑡+𝑋(𝑡)  

where 𝑋(𝑡) is a VG process, μ is the drift of the stock price, 

and 𝜔𝑡 is a parameter used to ensure the martingale property 

of the discounted stock price process, that is 

𝔼[𝑆𝑡] = 𝑆0𝑒−𝜇𝑡   

The parameter 𝜔𝑡 is also known as the compensation term or 

additive adjustment with a value of  

 
𝜔𝑡 = ln (

𝑡

𝜈
− 𝜃𝑡 −

𝜎2𝑡

2𝜈
)  

(1) 

The value of function (1) is chosen such that it makes the 

discounted process 𝑒−𝜇𝑡 into a martingale by adjusting it into 

the correct mean. 

 

To construct a multivariate VG, we choose the most popular 

Gamma process {𝐺(𝑡), 𝑡 ≥  0} with parameters 𝜃 and 𝜅, 

which has the probability distribution function (pdf)  

 
𝑓(𝑥; 𝜃, 𝜅) =

1

𝜃−𝜅Γ(𝜅)
𝑥𝜅−1𝑒−𝑥𝜃 . (2) 

The mean and variance of the gamma process are 𝜃/𝜅 and 

𝜅𝜃2. If we suppose that 𝑋𝑡  is a process with a time increment 

𝛥𝑡, then the pdf (2) can be written as  

 
𝑓(𝑥; 𝜃Δ𝑡, 𝜅) =

1

𝜃−𝜅Δ𝑡Γ(𝜅Δ𝑡)
𝑥𝜅Δ𝑡−1𝑒−𝑥𝜃 , (3) 

and the characteristic function of (3) is given by 

𝜙(𝑥; 𝜃Δ𝑡, 𝜅) = (1 − 𝑖𝜔/𝜅)−𝜅Δ𝑡. By setting the mean rate to 𝑡, 

𝔼(𝑋𝑡) = 𝑡 and the variance to 𝜅 = 𝑡/𝜈 and 𝜃 = 1/𝜅. This 

setting remains valid when the subordinator is replaced by 

another subordinator. 

 

The multivariate price process is presented as an exponential 

of the 𝑑-dimensional VG process 𝑋𝑡. The dynamic of the 

univariate marginal are given by  

𝑆𝑖(𝑡) = 𝑆𝑖(0)𝑒𝑟𝑡−𝜔𝑖𝑡+𝑋𝑖
𝑉𝐺(𝑡) 

where 𝑋𝑖
𝑉𝐺(𝑡) is a variance gamma process defined as 

follows: 

 𝑋𝑖
𝑉𝐺(𝑡) =  𝜃𝑖𝐺(𝑡) + 𝜎𝑖𝑊𝑖(𝐺(𝑡)),    𝑖 = 1, ⋯ , 𝑑 (4) 

where the gamma process {𝐺(𝑡), 𝑡 ≥  0} or process 

{𝑋𝑉𝐺(𝑡), 𝑡 ≥  0} has parameters 𝜅 =  1/𝜈 and 𝜃 =  1/𝜈. In 

this case 𝜈 is the volatility time change. The parameter 𝜈 

represents the magnitude of jumps and the magnitude of the 

tail of the variance gamma process. The variance gamma 

process (4), has a standard Brownian diffusion, {𝑊𝑖(𝑡)} with 

diffusion 𝜎 >  0, and drift 𝜇. 

 

In vector notations (4) is presented as  

𝑋𝑉𝐺(𝑡) =  (
𝑋1(𝑡)

⋮
𝑋𝑑(𝑡)

) = (

𝜃1(𝐺(𝑡)) + 𝜎1𝑊1(𝐺(𝑡))

⋮
𝜃𝑑(𝐺(𝑡)) + 𝜎𝑑𝑊𝑑(𝐺(𝑡))

) 

where 𝑊𝑖and 𝑊𝑗 are correlated with coefficient correlation 

𝜌𝑖𝑗 . In [11], the correlation is given by  

𝜌(𝑋𝑖 , 𝑋𝑗) =
𝜇𝑖𝜇𝑗Var[𝐺(𝑡)]

Var[𝑋𝑖(𝑡)]Var[𝑋𝑗(𝑡)]
,        𝑖 ≠ 𝑗 

where μi is the mean of stock return 𝑖, given by  

𝜇𝑖 = 𝑟 + 1/𝜈 log (1 −
1

2
𝜈𝜎2 − 𝜃𝑖𝜈) 

with the interest rate 𝑟.  

 

Instead of using 𝜌 as in Kienitz  and Wetterau (2012), one 

may choose another 𝜌 for  describing the dependence 

structure between underlying assets. There many choices for 

describing the dependence structure, such as Gaussian copula 

or 𝑡 copula from elliptic copula families or Frank, Gumbel, 

Clayton, etc from archimedean families. Applying Gaussian 

copula on multi-asset VG proces for describing dependence 

structure may not realistic. This is mainly because the joint 

normal distribution does not exhibit tail dependence. 

Therefore, our goal in this paper is to build more realistic 
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models, incorporating jumps, and non-Gaussian dependence 

structure. 

The question that may arise is what kind of the dependence 

structure should be chosen in order to all dependence structure 

between the underlying assets are captured? In other words, 

how should the dependence structure between the components 

of VG process 𝑋(𝑡) be modelled? To answer this question, 

ones may refer to Kienitz  and Wetterau (2012),  or Linders 

and Stassen (2016) to the modelling of the dependence 

structure between the components of the VG process X(t). 

The dependence structure between components of a 

multivariate pure jump VG process can be reduced to the VG 

measure, see Chen (2008). 

 

STATISTICAL PROPERTIES OF VG-COPULA 

As is stated in the stylized facts of financial returns that the 

dependence structure between different return series changes 

depend on the market situations. In normal situations, the 

prices of assets move in independent ways of each other, but 

they may fall together in  crisis. As reported in Danielson 

(2011) that the assumption that the multivariate normality and 

linear correlation is unlikely suitable and joint extreme 

outcome is more likely to occur. One may use exceedance 

correlation for treating the presence of nonlinear dependence 

as discussed in Bedendo et al (2010) or Canela and Padreira 

(2012). For this reason, it seems reasonable to assume that 

two asset returns are nonlinearly correlated. Hence, we use 

copulas to model non-linear dependencies. Copulas provide a 

means of separating the description of a dependence structure 

from the marginal distributions. To investigate the effects of 

different copulas, we model correlations between two jump 

diffusions using the Archimedean copulas (Gumbel copula, 

Clayton copula, Frank copula). Copula describes the 

dependence structure of random variables. Copula binds 

together the probability distributions of each random variables 

into their joint probability. Sklar’s theorem (1959), discussed 

in Nelsen (2016) provides the theoretical foundation for the 

application of copulas.  

Copula function can be obtained by the following procedure. 

Let 𝐹𝑖(𝑥, 𝑦) be the cumulative distribution function (cdf) of 

two dimensional VG process at time 𝑡 and (𝑋, 𝑌) are random 

samples with marginal VG and inverse (Quantile) functions 

(𝐹𝑋
−1 , 𝐹𝑌

−1). Let 𝐶(𝑢𝑥, 𝑢𝑦) be the VG copula function, defined 

as  

𝐶(𝑢𝑥, 𝑢𝑦) =  𝐹𝑋𝑌  (𝐹𝑋
−1(𝑢𝑥), 𝐹𝑌(𝑢𝑦)

−1 ). 

The density function of the copula is given by 

 𝜕2𝐶

𝜕𝑢𝑥𝜕𝑢𝑦

(𝑢𝑥, 𝑢𝑦) =
𝜕2𝐹

𝜕𝑥𝜕𝑦 
 
𝜕𝐹𝑋

−1

𝜕𝑢𝑥

 
𝜕𝐹𝑌

−1

𝜕𝑢𝑦

 (5) 

Equation (5) can be extended to 𝑑-dimensional case.  

The VG measure determines the frequency and size of jumps, 

either it moves down or up, of the stock prices. As the main 

interest in this case is the large moves/jumps, so the 

discussions are focused on the tail of the distribution. Now, it 

is conveniently to work with tail integral of the VG measure 

and to model dependence between jumps by a VG copula. 

Lastly, substituting the VG process in the exponential VG 

model by a 𝑑-dimensional VG process with dependence 

structure given by a VG copula to obtain a 𝑑-dimensional VG 

model.  

 

EMPIRICAL STUDIES 

In this section, we analyze the performance of the bivariate 

variance gamma model on a dataset of five names of Asian 

stock indexes, HANGSENG, NIKKEI, KOSPI, STI and JKSE 

are used to see the effect of different choices of copulas on the 

option price. The descriptive statistics of the data set of daily 

log-returns recorded during the period of 10 June 2014 to 5 

July 2016 are given in Table 1. On Figure 1, one sees the 

index values of five index which is normalized with respect to 

JKSE. The index value of NIKKEI dominates the other four 

index significantly.  

 

 

Figure 1: Relative Daily Closing Index with Respect to JKSE 

recorded from 10 June 2014 to 5 July 2016 

 

Table 1:  Log-return Descriptive Statistics 

 NIKKEI STI HSENG JKSE KOSPI 

Mean 0.0084 -0.0314 -0.0222 0.0052 -0.0021 

Std. Dev. 1.4760 0.8173 1.2111 0.9187 0.7551 

Skewness -0.2096 -0.2281 -0.2297 -0.3790 -0.2348 

Kurtosis 7.7036 5.5480 5.4154 5.9155 4.7888 

JB Test 1 1 1 1 1 

# of Obs 526 526 526 526 526 
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Figure 2, shows the scatter plots of the daily returns of the 

stocks JKSE-NIKKEI, JKSE-STI, JKSE-HANGSENG, and 

JKSE-KOSPI. These plots show a dependence structure 

between the assets and one can see that JKSE and KOSPI are 

highly correlated compare to between JKSE and NIKKEI or 

HANGSENG. This is in accordance with the correlation 

presented in Table III) which shows that JKSE is more 

correlated to KOSPI than to NIKKEI. As shown in Table 1, 

NIKKEI has the fattest tails than the other four indices. Table 

1 also shows that none of the indices are distributed like a 

Gaussian distribution but KOSPI seems like to have normal 

distribution. Overall, it can be seen from the JB test that all 

daily log-returns of indices are not normally distributed.  

 

Figure 2:  Scatterplot of daily returns. 

 

The four moments of the characteristic functions are as 

follows: 

 

𝜎 =  √
𝑉

𝑡
,    𝜈 = (

𝐾

3
− 1) 𝑡,   𝜃 =

𝑆𝜎𝑡 

3𝜈
 (6) 

where 𝑉 is variance, 𝑆 is skewness, and 𝐾 is kurtosis. The 

initial guess for the parameters is given by Equation (6). The 

following results are the estimated Variance Gamma 

parameters for the five indices, shown in Table 2. 

 

Table 2: Variance Gamma Estimation for The Five Indices 

 𝜃 𝜈̂ 𝜎̂ 𝜇̂ 

NIKKEI 0.0084 -0.0314 -0.0222 0.0052 

STI 1.4760 0.8173 1.2111 0.9187 

HSENG -0.2096 -0.2281 -0.2297 -0.3790 

JKSE 7.7036 5.5480 5.4154 5.9155 

KOSPI 1 1 1 1 

The copulas parameters in this paper are estimated by using 

copulafit() function on Matlab. The results are presented in 

Table 3 and 4. Table 3 represents the estimated parameters for 

the Archimedean copulas whereas Table 4 represents the 

estimated parameters for elliptical Copulas. The results show 

that the coefficient of dependence among indices are below 

0.5, except for STI vs HSENG which is 0.7538 (see Table 3). 

This indicates that in general they are not strongly dependence 

to each other. 

 

Table 3:  Estimated Parameters on Pairs with Dependence 

Structure given by Clayton Copula 

Index NIKKEI STI HSENG JKSE KOSPI 

NIKKEI 1 0.2407 0.2534 0.1753 0.4020 

STI  1 0.7538 0.1210 0.4928 

HSENG   1 0.0827 0.4337 

JKSE    1 0.1824 

KOSPI     1 

 

Table 4: Estimated Parameters on Pairs with Dependence 

Structure  given by Gaussian Copula 

Index NIKKEI STI HSENG JKSE KOSPI 

NIKKEI 1 0.1594 0.2211 0.1283 0.2778 

STI  1 0.4437 0.0819 0.3157 

HSENG   1 0.0827 0.4337 

JKSE    1 0.1824 

KOSPI     1 

 

Table 5: Multi-asset option price with depedence structure 

given by Clayton Copula 

Indices Basket Spread WorstOfCall BestOfCall 

JKSE-NIKKEI 0.1546 0.0843 0.1124 0.1967 

JKSE-STI 0.1390 0.0531 0.1124 0.1655 

JKSE-HSENG 0.1453 0.0658 0.1124 0.1782 

JKSE-KOSPI 0.1428 0.0607 0.1124 0.1731 

 

Table 6:  Multi-asset option price with depedence structure 

given by Gaussian Copula 

Indices Basket Spread WorstOfCall BestOfCall 

JKSE-NIKKEI 0.2036 0.1037 0.1517 0.2554 

JKSE-STI 0.1865 0.0696 0.1517 0.2213 

JKSE-HSENG 0.1938 0.0842 0.1517 0.2359 

JKSE-KOSPI 0.1903 0.0772 0.1517 0.2289 
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CONCLUSION 

The aim of this paper is to discuss the influence of the 

different copula choices on the price of options where the 

underlying assets consist of more than one asset. Our results 

show that the different choices of dependence structure do not 

give significantly different of option prices. In this paper, the 

use of two copulas is reported, we do not report the results for 

𝑡, Frank, Gumbel copulas. The influence of 𝑡, Frank, Gumbel 

copulas is not significant on the price of the options, results 

are summarized in Table 5 and Table 6. In general, the use of 

Clayton Copula gives a lower price of all options (Basket, 

Spread, WorstofCall, and BestOfCall) than Gaussian Copula. 

This is explained by the fact that the Clayton Copula is able to 

capture a better dependence in the negative tail than in the 

positive tail of distribution functions. 

 

REFERENCES 

[1] Bedendo, M., F. Campolongo, E. Joossens, and E. 

Saita, (2010). Pricing multiasset equity options: How 

relevant is the dependence function,Journal of 

Banking & Finance, vol. 34, pp. 788-801.  

[2] Canela M. A. and Padreira E.,(2012), Modelling 

Dependence in Latin American Markets Using 

Copula Functions, Journal of Emerging Market 

Finance, vol. 11, no. 3, pp. 231-270. 

[3] Carr, P., Madan, D., and Chang E., (1998). The 

variance Gamma process and option pricing, 

European Finance Review, vol. 2, pp. 79-105. 

[4] Cherubini, U., E. Luciano, and W. Vecchiato (2004), 

Copula Methods in Finance. John Wiley & Sons, 

New York.  

[5] Chen, Q. (2008), Dependence Structure in Levy 

Process and Its Application in Finance, Dissertation 

submitted to the Faculty of the Graduate School of 

the University of Maryland, College Park. 

[6] Cont R. and P. Tankov, (2004), Financial Modelling 

with Jump. London: Chapman and Hall-CRC Press. 

[7] Danielsson, J., (2011), Finacial Risk Forecasting: 

The Theory and Practice of Forecasting Market Risk 

with Implementation in R and Matlab, John Wiley 

and Sons. 

[8] Embrechts, P., Lindskog, F. and McNeil, A. (2003), 

Modelling Dependence with Copulas and 

Applications to Risk Management, in Handbook of 

Heavy Tailed Distribution in Finance, S. Rachev, 

Ed.: Elsevier. 

[9] Esposito, F. P. (2012), Multidimensional Black-

Scholes options, Munich Personal RePEc Archive, 

Munich, MPRA Paper No. 42821 

[10] Geman H., D. B. Madan, and M. Yor, (2001), Time 

changes for Levy processes, Math. Finance, vol. 11, 

pp. 79-96. 

[11] Kienitz, J. and Wetterau, D. (2012), Financial 

Modelling: Theory, Implementation and Practice 

with MATLAB Source.: John Wiley & Sons. 

[12] Linders, D. & B. Stassen, (2016), The multivariate 

Variance Gamma model: basket option pricing and 

calibration. Quantitative Finance, Vol. 16, No. 4, 

555572. 

[13] Luciano, E. and Semeraro, P. (2008), Multivariate 

Variance Gamma and Gaussian dependence: a study 

with copulas, Collegio Carlo Alberto, Working Paper 

No. 96. 

[14] Madan, D. B. and Seneta E.,(1990), The Variance 

Gamma model for share market returns, Journal of 

Business, vol. 63, no. 4, pp. 511-524. 

[15] Nelsen, B. R. (2006), An Introduction to Copulas. 

New York: Springer Series in Statistics. 

[16] Schoutens,  W. (2003). Levy Processes in Finance. 

New York: Wiley.  


