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Abstract INTRODUCTION

This work presents a study dretperformance ahstantaneous Frequency estimation appsan a wide area of engineering
frequency(IF) estimation of singldone sinusoidl signals, and applications, e.g. in communications, radar, sinusoidal signal
IF estimation oFM signals undeseveral types afolored noise frequency identity and resonance sensor sysféhi2]. Noise
(CN). For singletone sinusoidl signals, two main estimators is one of themain problemsin signal processing and the type of
are consideredhe maximum likdihood (ML) estimator using noise (its statistical model) is a main factor that affects the
the Fast Fourier Transform (FFT) with interpolated pealperformance of frequency estimation meth{gls

estimationand the correlation method-our statistical models

. . i There are differen f noi ncounteredifferen
of colored noise are modelled and analyZzedthis work ere are different types of noise encounteredliiferent

(Gaussian, Rayleigh, impulsive aad:ombination ofmpulsive applicatios which can fall under several categories. For
' ’ example in some applicationsise caraffect the amplitude of

and Gaussian) witha study of their effect on frequency _ . . e .
L . o a,signal which would meah i@dditivein nature noise can also
estimation methods in term of estimation accuracy and

. . . .af fect phaseor aam lzemudtiglicative [3]. Different
computational complexitypresented.Also presented in this . .
. L modek can also be used to model different nayges such as
work is astudy ofthe performance ofrequency estimation

. : the Gaussian, Poisson, impulsive, rRGaussiarmodelsamong

methods undethe same power andoise model. Thiswork . . .
. othess [3]. In this paper we generate colored Gaussian noise,
lastly presents a study on the performance of instantaneou

. . ccﬁored norGaussian noise, and n@uaussian noise types
frequency estimators of monocomponent FM signals, . : . S
. o . . ... thesewill then beaddd to singletone sinusoidl signalsand
including linear and nodinear FM signalsPeak of a specific

_ e . FM signals From here arattemptwill be madeto extract the
Time-Frequency Distribution (TFD), the pedogram, has been actualgfre ueries for these noiF; ignak using a variety of
usedfor IF estimation of FM signals undeolored noise. q ysig 9 y

frequency estimation methads

Numerical results showed th#te Quinn method is the best L . .
. ) . There are many methods flsequencyestimation, but in this
estimator as compared with other FFT interpolated peak ) - .
. ~work we will be examining three methals the Fourier

L . . . . “Mansform (FT)method and th&€orrelation (Corr)methodin
mean guared estimation error, especially at high sigoaloise ﬁﬁ‘e case of singletone signalsand the Time Frequency

rat_|os _S|mulat|oq results_showed also that Colored Ra3(|e'gd|stribution (TFD)in thecaseof FM signals The Mean Squared
noise is destructive for sigrsore so than colored Gaussian

. . - . . Error (MSE) will then be used as a measure to quantify the
noiseand colored impulsivé plus Gaussian noise L
accuracy of these three frequency estimation methods. As well

Fourierapproactcan guess the frequency only in high SNR. Itsas general accuracy, this work will also enaegde show which
impact onlF estimation bycorrelation(corr) is worse. method achieves the best performance in terms of computational

Simulation results of instantaneous frequency estimators of F(I‘\ﬂmplexny as well[1] [4] [2].

signals using TFD showed greater accuracy thiéim previous This paper is organizias follows: Thecolored noisenodel will
methods. be discussed irsection Il. In section Il frequency estimation
based orthe Fourier Transfornwill be presentedin section 1V
frequency estimatiobased orcorrelationwill be discussedin
section VIF estimation of FM signalbased on timdrequency
distributions (TFD)is presented and lastly section Viresults
and discussioare presented

Keywords: fregencyestimation(FE), FT; FFT; colorednoise
(CN); Correlation(Corr); DFT; MSE;, LFM; QFM; TFD.
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COLORED NOISE MODELING From the difference equation or from the transfer functina
we can executa causal FIR filterby utilizing delay elements

Most of the noise modeling in communications systerhased . o
and digital multipliers.

onwhite noise howeverjn addition to white noisghereis also
colored noisevhich can also impact on communication system3he Moving Average Filter (MA)s commonly usetb smooth
datato show general trends and behavior of a sequence. Using a
MA filter can improve our ability tanake a decision or interpret

our data In this work a moving average filter will be used to
lor noise simulation after filtering of Gaussian nojsg

White noise conta® a constantpower spectral density (psd)
through the entire frequency spectrum extendingoupfinity.
An autocorrelation performed on samplesatiite noisetaken
at different time instances would produce no discernib@’
correlation between samplds. the autocorrelation or the auto In MATLAB, we model the colored noise using AerderFIR-
covariance of white noise is zero for phaselags except for typefilter structure The noisecoloring FIR filterwill then have
phaselag L=0 wherethe auto covariance dhe white noise the following transfer function:

process willresult inan impulse function at lay 1 In the | . A A P A I
case wher¢he power spectral densit?$D) of the noise is not u Al Agl AU Ad) At
uniform through the entire frequency spectiilitype of noise  © AT pNAp ™NA¢ ™NAc TBT0A T TN
is colored noise (CN). Ithe case otolored noise (CN), there
are norzero values for autocorrelation or auto covariance &
different time cases for the colored noise. The auto covariangeaddition, &d p is the denominatorcoefficient for all FIR
is at a maximum for zero lag U 1) and decreases filters. The width of the filter would be W=4.

progressively for increasing and decreasing valudasgo).

R:" ATAA A AN v

We simulatedhe effects o€olored noise (CN) based on equation
As opposed tavhite noise, colored noise is broadband nois) by usingd 0  "QQd& 6o in MATLAB, whered isthe

with awide bandwidth and non-constant PSD. There are manyFIR filter numerator coefficientSom equation%), 0 is the FIR
typesof noisethat fall under the definition of colored noisech filter6 s d e n aoeffiaieat Broksmay bea Gaussian noise,

as brown noise, autoregressive noise and pink riéiseThe  Rayleigh noise, Impulsive noise or impulsive + Gaussian noise
colorof thenoise is generbl characterized by its power spectralsequace

density (PSD). The different col@f the noise will resulin
different impacs on signalswhile its power spectral density
(PSD) per unit bandwidth is proportionald@'® where® 1t

In signal processing systems, the integrity and quality of sygstem

can be realiz¢by understanding the statistical characteristics of

. . . . the noise process associated with the system. These noise

for white nose,®  p for pink noiseand for brown noisgé ¢. ; .
processes are genemtdy electromagnetic or electronic

(7. sources. Considering colored noise, there are different statistical

Finite impulse response (FIR) digital filtefsave impulse models: Gaussian, Rayleigh model, and atf@

responsg, Q¢ that contain afinite number of nofeero

samples. In a digital system, tbeatputof a causal FIR filter

W ¢ givena finite sequence ¢ was input into the system can GAUSSIAN-DISTRIBUTED MODEL

be represented by the discritee convolution betweeie The probability density function (pdff a Gaussian process

andwe : with avariance (power) is givenas follows[9]:
wWE MNE zwe p P
no —0Q 7 (0}
- . - ” MC“
QQoe 0 Wherewis arandom variable ang is the standard deviation of
Ody & Qe p E thenoise.
Q we o p q We modeled and analyzed colored Gaussian noise (CGN) as

where'Q is utilized for'QQ for simplicity. Takng the z follows:

transform of both sidewsill result in: 1. Determinethe power ofthe AWGN (p) in dB, number of
oa Qba Qa4 da B realizatons (M) andnumber of samples (N).

Q a AXod o} 2. Designthe FIRfilter coefficientsrequired to produce the

necessargolorednoise.

3. Generate AWGN by using 0 "Q&0 Ry fy function.

4. Passthe AWGN (y) function through the FIR-filter by
Q 4 1 using’QQa a Ko .

Hence, the transfer functiomill be given by:
Oua — Q "Qa E
W
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time, thereby whenb represents the time count of arrival of
impulsive noise, then 6t glistributed withthe above Poisson

RAYLEIGH -DISTRIBUTED MODEL PDE

The pdf of a Rayleighdistributed random process given by
[9]:

"Q isaGaussian process that is used to model the amplitude of
theimpulsive noise with zero mean and variance (poywerso

d) . . . . . . -
B 6 . 9= o 1B 6 X the total power of impulsive noise[is0]

where @ is a real positive parameter calléde Rayleigh € - pT

parameter. This distribution has a mean and variance gixen - , . .
We modeled andnalyzed colored impulsive noise (CIN) as

— “

" 5~ N T follows:
J® w-h OVoO®
G G 1. Determinethe power ofthe impulsive noise(p) in dB,
Hence, Rayleigh noise has a mmero mean. The second number of realization (M), number of samples ,(N)
moment (power) of Rayleigh noise is given by: Poissonparameter, and y array fothe impulsive noise

N6 o process.

. . - — Design the FIFilter coefficientsrequired to produce the

Wheren denots the power othenoise, henceyp NA¢ g . d P
necessary coloured noise.

Note that unlike the case of Gaussian noise witsreower 3

. ) , ; o Simulate arrival time witla Poisson distribution by using
equals its variance, the Rayleigh noise powejiven by

then a i 0 £ 'Qi i_i fangion.
n 0——8Sinces & T8 4. Poissontime count (fmo & o & n &
We modeled and analyzed colored Rayleigh noise (CRN) &s Generate Gaussian noise as amplitude of impulsive noise
follows: by using0 "Qépfpfry function and put the result ithe
1. Determinethe power of the Rayleigh noise (p) in dB, arraya
number of realizédns (M) andnumber of samples (N). 6. ) @ .,returntostep (3).
2. Design the FIRilter coefficients required to produce the7. Passthe impulsive noise(y) through theFIR-filter by
necessargolorednoise. using’ Q' Qa @ Ko .
3. Computethe Rayleigh parameter (b). We modeled andnalyzed colored impulsive noise + Gaussian

4. Generate Rayleigh noise by usingthe ® noise (C (IN+GN)) as follow:

i Owa @@ function. 1. Adding Gaussian noise to impulsive noise (y).
5. PasgheRayleigh noise (yjhroughthe FIR-filter by using 2. Passing impulsive + Gaussian noise flyjough the
Qi 6o . FIR-filter by using'Q"Qé& @ Kifico .
IMPULSIVE NOISE (IN) Frequency Estimation Based on Fourier Transform
. . . . ; Method
Impulsive noise is mostly encountereth power line
communication (PLC) systesnit can be modéd as[10]: Let thereceivedsignal be a singkone sinusoid as follows:
N ®IQ U] wo O6&ATO® » 600 pp

where® isthePoisson process that is modeling the arrival timé&/here, A is the signal amplitude, is theradianfrequency of
of the impulsive noise at instariQwith parameter_, which signal,h | is the initial phase andl 0 0 is Colored Noise.

denots the rate of unit per second. A DFT can then be performed on this sigbhgl usingthe Fast

A random variableév is said to be Poisson if its pdf is given byFourier Transform (FFT)algorithm The FFT algorithmis
[9]: describedelow:

N o 0 SE o mhRkBs o
JO _Nob _8

WhereD &  is the probability of event ofoarrivals in unit
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Fast Fourier Transform (FFT) and No PostProcessing (FFT Which gives the frequency interpolation:
Estimator) Based Approximate Maximum Likelihood 6 o 0
Estimator

. , L s g . .
The maximum likelihood (ML) frequency estimator can be @ o ojJgrcro 0 0 po
given by the frequency where the peak of the Fourier transform

occurs{11]: Then,theestimated frequency is:
Q Qi ©oed Qs 8 o 00
Where"Q0 lstheestimated frequency i r&urrsthe index of 0 pT

the peals of @ "Q and & "Q is the Fourier transform of the

singletone signato 0 8The FFTmethodcan be used testimate

the frequencyof a noisy signaby locating the peak in the Barycentric method:

Fourier spectrun® "Q for the noisy signab 0 . In discrete  The same thing as previously way by taking three paistsut
time this iscalculated fran the samm@d versiorof signalw & up with [13]:

and the frequency spectrum is acquired using Dif as

follows: Q o o0jo6 o o pu,
0 6 v Q
®Q VI_U weEQ m Qo PG The frequency can be estimate as before using the equatjon (1

. _ Quinn's First Estimator [ 14):
Fast Fourier Transform (FFT) and PostProcessing

(Quadratic Interpolation) based Approximate Maximum  Taking thethree DFT points fronthe previousmethod we can

Likelihood Estimator interpolate in the following manner
The actual frequency of the sinusoid may reside between DFT 0 pld & s i Q4 0Q U p
samplesn some casesince the index adheFourier transform e N . v~ 1
cannot be a neimteger valug interpolation between points O W Qa
close to the peak of the DFT camprove the estimation And 0 pld L s I Qa
aceuracy. where6 is the magnitude value ¢ , 1 isthereal part of
There aremanydifferent interpolation methods, below are thepoint & and“@ is the imaginary part ofd .06 Is the
mostcommonlyused method®r these types of problems magnitude value ab ,i isthereal part othepointé and'@
is theimaginary part ofd . ¢ is the magnitude value ofd h
i isthereal part of pointd and@ istheimaginary part of
Quadratic Interpolation: )

In this method, quadraticurves of the fornw ¢ @& G  Then we executthe next procedure:

areused to estimte the values of the spectrum between known

data pointswithin the neighborhood of the DFT peak Y | 'Qaf

G & Q . These quadratic functions are determinedsigg vy i 4 "Q4&8Qd iY:

threeknownsamplegrom the data and determining a quadratic o .

curveof-bestfit between thes three pointss follows[12): Yiopst YN

0 phd = s w=1 9 Qa8Qa Y,
ol s

And U phb E s

Where 0 AOCA®@E is the location of absolute EIS&Q ©;

maximum magnitude aheDFT, sotheorigin frequency iSO 6 0 M

O wj p8dt w ;
If Y mandw 1 then,Q 7Y

—, with "Qbeingthe samphg rateof the dataln this quadratic Thefrequency would be estimatas before using equationd)l
design, the real maximum shall be at the point:

w

m Quinn's Second Estimator [L5]:

The same three points above stratify the followilgtions
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Q

where'O @

po

Then theinterpolation iss 0 "Qthefinal frequency would
be estimate using the equation 4).

We modelled and simulatetie frequency estimation based on
the FFT method as following:

1. Add colored noise (CN) to the sigralo .

2. Find the DFT of thenoisy sigral.

3. Estimae the frequency for peak of DFT.

4, Apply specific interpolabn method by using peak of

DFT and two poirg close tothe peak ofthe DFT.

5. Comput therelative mean square error (MSE).
6. If (No. of realization) M, return to step 2.
4,
7. Calculate the average estimated frequency andonecorr

frequency MSE.

FREQUENCY ESTIMATION
CORRELATION METHOD

BASED ON

The correlation method for frequency estimatiaran be
implementedby taking the signal given in equation {1) and
usingautocorrelatioron this signalvith specified lags 16] [17]
[18]. The correlation method based orthe model of the signal

® NHiwp ¢
This linear predictor can bémproved by using different
correlation lag[23] [22] [2]]. It was show that the estimator
based on a single correlation coeffitiecould be made more

efficient.[13].

A drawback with tis estimator is the obscuritf the frequency
estimate[24], [18]. It was shown in [25] that the frequency
obscurity can be solved using two correlations with
comparatively prime correlation lags; thvas also backed up in
the works[16], [17].

We modelled and simulatete frequency estimation based on
thecorrelation method as follcsv

Add colored noise (CN) to the sigralo .

2. Find associat analytic noisy signaby usingthe

Hilbert transform
3. Find theautocorrelation by usinthe ¢ & & furiction.

Compue thefrequency estimation from phase law for
elation coefficient.

5. Compue relative mean square error (MSE).
6. If (No. of realization) M, return to step 2.
7. Calculate the average estimated frequency and

frequency MSE

IF Estimation of FM Signal Based on Time-Frequency
Distributions (TFDs)

in equation {1), henceheestimate of the frequency is acquired

by the information of one or more estimated iestiof the
autocorrelation fotheperiodic discrete power signa¥ & }in
the form:

a

Y Ot z0e

a G P X

Where N is the signal period. Note that & Y & 8And

hence is an even functi¢8] [19].

From equationX7), we getthe estimate of the frequenc@ for
the sinusoid signal from the phase thk signal. Based on the
minimal order linear predicto2)], which is a specific state of
the Pisarenko harmonic decomposer frequency estirfibhr
and averting the state of zdeg @ 1) to remove the effect
of noise, the frequecy can be estimadeas follows:

ae " Py
¢ B P W

G8& NI W &

G8& NI W &

The condition ofQist  Q & andQmost be integer.

When he first autocaelation sample at nerero lagh  pis
applied toequation {9) with 'Q mtthefirst frequency estimate
will be produced in the form:

Non-stationary signals with timearying frequency content
(such asfrequency modulated (FM) signals and biomedical
signals) cannot beanalyzedas effectively usinghe Fourier
transform (FT)as the Ficannot detect the timearying features

of the signal This isdue to the timeveraging process (time
integration)usedin the FT.

Time-frequency distributions (TFDjredouble transformfrom

the timedomain into the timdrequency domain representing
the Fourier transform of the instantaneous autocorrelation of the
analytic signal. The simplest formularftime -frequency
distribution (TFD) isa windowed frequency distribution called
theshorttime Fourier transform (STFTJ]:

D & Ul 1 OA Q_
&44_"_ 0 P
Where a _ is the analytic signallQ_ o is a time

window, _is thedimension of windowpis time index andQis
frequency indexBy solving the optimizel problem in equation
(22), the instantaneous frequency (IF) can be estinake
mentioned if29], [26] [27] [29]:
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TFD is a better representation fornonstationary signal
because it shows the distribution of signal energy aewvero-
dimensional domairthe time-frequency space.

Mo AOCom HAQ h m Q S

In this study, the periodogram (whichtie s"Y"Y"@)¥s use to
estimate the IF of lineafrequency modulad (LFM) ard
quadratidrequency modul&d (QFM) signals.

We modelled and simulatedeIF estimation based che TFD
method as follow:

1.
2.

Add colored noise (CN) to the FM signal.

Find assodited analytic signal of FM by usinthe Hilbert
transform.

w

Apply the TFD spectrum using optimal window and pea
detection.

e

Compue relative mean squadeerror (MSE).

o

If (No. of realization) M, return to step 2.

o

Calculatetheaverage estimated IF and frequency MSE.

SIMULATION RESULTS

Forthe experiments performed in this papsairggletone noisy
sinusoidl signal, similar to that given in equation 11 wa
simulated in MATLAB. This sinusoid had the following form:
w0 ATOhpop 600
The simulated signal kaa total time lengtld ¢ 1, the
sampling intervalused was'Yi 1Ot mivand the number of
samples is given by  0X'Yi. The powerfy of this signal
can be computefrom:
5

C
Three filtes were then designed witHengtts @

n Go

vh

¢ fto v mn this simulatiorBNRrangedrom -50 to 50dB.
Monte Carlo simulations were performed with v 1
realizations.

s. http://www.ripublication.com

The signalto-noise ratio (SNR) in the presence Rayleigh
noiseis definal as follows:

YO 'Y n S

n

cCo

Wheren iis the power ofthe Rayleigh noiseThe power of
Rayleigh nois&an then be calculatdcbm:

N
Y6 Y

Again this was converted twlored noise (CN) gser section I
and added to the signal

ni ¢ X

Lastly the signaifto-noise ratio (SNR) in the presence of colored
impulsive + Gaussian noise is defiles follow:

_n
’ AR 0
We can calculate impulsive to - Galssian power ratio as
follows:

YO 'Y Y

i h

l n 0

¢ w
In the same manner as previously this noise was also converted
to colored noise and addeddo .

We can use the FFT algorithm to compube frequency
estimation forthe sinusoidl signal with addedcolored noise
éCN) By applying the FT on thenoisy sgnal in equation 11)
andthentaking the peak (max) ahesSOY

We used ma¥FT, quadratic,Barycentric, Quinn first and
Quinn second frequency reparations as explaimeegction IIl
Finally, we computd the Mean SquareBrror (MSE) for each
SNR as follows:

QQs 0O QjQs oT
Where "O is the estimated frequency aniis the actual
frequency.

We also usedthe correlation methods the second method of
frequency estimatiori.his was performed bsompuing justone
correlation coefficient of the signal and not all correlation
coefficients to obtain an estimate of the frequency.oidained
the analytic noisyt 0 relatedto the actual signado & before

The signalto-noise ratio (SNR) in the presence of AWGN isestimation from usinghe Hilbert Transformation (HT) this

defined as follows:

I

YO Y — CT
n

Wheren is the power ofthe AWGN Which can becalculatel

from:

n_

YO Y

This noise was then processed as described in section |

generatecolored Gaussian noise (CGNyith the result of this

added to the signab 0 to produce theaisy signal.

n [

transformatiorwill not affect the frequency estimation.

Taking just the positive part from signal spectrud "Q and
deletng the negative paresults in:

G0 wo @owo op
Owo “—OZ oOwo 0 C
IV\t/cr)1ere,z 0is time convolution an@is the'0"Y[26]

Hence:

OQ O©Qp 0d QQ OdQp i Q&
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cHQ tod pUL € @mn is the angle function for the LFM signal

which can be used to calculate the instantaneous frequency of
After frequency estimation by usirtije correlation method, we gy signal:

computel the Mean Squaredrror (MSE) for each SNR from .
equation 80). 0 06 — andd 0 ¢* Q0 radians/sec

Finally we drawamid-time IF estimation for each SNRfigure  This means that the instantaneous frequency in Hertz can be
(33) and calculatetherelative mearsquare error (MSE) dhe  given by:

IF estimation at midime of the QFM signal for each SNRis o
is shown in figure (34) for differentengths(W) of thefilter. "00 ﬂa‘
¢“ Qo
Figure (1) shows colored Gaussian noise (CGN) veheimdow . . . ]
of lengthW=5 is used to filter &Gaussian noisesegment of Which leads us to setting the angle function to:

lengthN=1000samplesM=1, andr}  T§. n Qzo | z— z ¢

Figure (2)shows the atocorrelation for colored Gaussian nois . I N 2
(CGN). EiNhere| T® is the modulation index ari®2 ¢ dOQ

Figure (3) shows colored Rayleigh noise (CRN) wiittared This results in the final LFM function given in equation 33:

with a filter oflength W=5 when N=100000, M=1 and-8= . .t e o} v

wo o0O0OEIQzo | z— z ¢* ouvo g0
Figure (4)shows the atocorrelation for colored Rayleigh noise G
(CRN). The simulaibn of thissignalwasgenerated to hawtime length
Figure (5) showsolored impulsive noise (CIN) wheiitered ©0f 0 p i asampling intervalY T8t p,"Q p 1Ogand a
with a filter oflength W=5with 1] 1 gand_ om totalnumber of samplesf0  —.

Figure (6) Autocorrelation for colored impulsive noise (CIN).

Figure (7) shows colored impulsive +Gaussian noise (fzonte Carlo simulations weragain performed withd =20
(IN+GN)) when length of filter (B) is W5 and a=1, by passing (g ajizations. We used Hilbert transformation (HT) tabtain

filter (B) on impulsive +Gaussian noise whgn ¢ u the analytic signalt 6 associated with the original signalo
Figure (8) Autocorrelation for colored impulsive + GaussiaRefore estimation, to avoid aliasing by using equations (31) and
noise (C (IN+GN)). (32). We estimated the IF by tadg the peak (max) of the TFD.

. d have . ion . | Figure (25) show the contour plot of the TFRor thenoisy LFM
Figures (9), (10) and (11) S quency estimation for signa signal with the theoretical computed IFaxfoiseless FM signal

in equation { YLunder CGN with diffeent length of filter @) (given by thedotted ling
versus SNR using FT peak and three interpolators: Barycentric,
quadratic, and Quinn respectively Finally we drawamid-time IF estimation for each SNRfigure

i o . (26) and calculatetherelative mearsquare error (MB) ofthe
Figures (12), (13) and (14) Shdvequency estimation for signal | ogtimation at midime of the LFM signal for each SNRhis

in equation { )..under CRN with differgnt length of filterx() is shown in figure @7) for differentvalues of filter lengtifw).
versus SNR using FT peak and three interpolators: Barycentric,
quadratic, and Quinn respectively For QFM signad we modulated and simulated QFM signal

with CGN using MATLAB in the samewvay aswith the LFM
signal The simulated signal katime lengthd p 11, a
sampling intervalY 18t p,"Q p 180§ and aotalnumber of

Figures (15), (16) and (17) Shdmequency estimation for signal
in equation { Yunder C (IN+GN) with different length of filter
(w) versus SNR using FT peaknd three interpolators:

Barycentric, quadratic, and Quinn respectively when M=5 arﬁ?mplesn — - The signal amplitudeas o pU £ taxd the
i TR, LFM equationd &z O Efl . Where? is the phasé 0  —,
Figures (18), (19), (20) show the estimated frequency versgfdo 6 ¢* "Qo fthat meamQo  ——hthat lead us to
SNR using correlation method for CGN, CRN, and C (IN+GN) .

models respectively. n Qzo | z— | z— z ¢" ,wherg slope parameter

of QFM signal (linear modulation index) was simulated a8

, andf the quadratic modulation index of signal was simulated
A noisy LFM signal wassimulated with CGNadded to it, this asf = T @nll’™® ¢ dOa Quadratic frequency modulation
signal had the following form: (QFM) signal with colored noise is simulate as follows

wo 6zOEM

Where A is the amplitude, which for these experiments was set
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L . e o} u Max- FFT cannot obtaira frequencyestimation that
wo O0O0OEIQz0 | z2— [ 2z2— z (" ; ; ;
C o closewith asmall number of poisst this method also hagteater
500 o1 computatioml complexity thanthe other interpolation method
examined

Monte Carlo simulations weragain performed withd =20

realizations. We usetthe Hilbert transfomation (HT) toobtain

the analytic signaf 0 associated with the original sigmald | FM and QFM signals

before estimation, to avoid aliasing by using equations (31) and . )

(32). We estimated the IF by falg the peak (max) of the TFD. |ime-frequency analysis has been used to estithatér law
Figure (32) show thecontour plot of the TFDor the noisy O linear frequencymodulated (LFM), and quadratic FM

QFM signal with the theoretical computed IF of noiseless FRFM) signals witha Gaussian model for c'olor.ed noise. 'Fron?
signalshown as thelotted line. theresults we nted that the problem of noise is less serious if

we use TFD since TFD is 2D not 1D; hence TFD spreads noise
onaplane nobn aline, making it less dense.
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Autocorrelation of Colored IN, W=5
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FT. est. freq. vs. SNR; colored Rayleigh noise
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Figure (9): frequency estimatiomersus SNR using FT peak Figure (12): frequency estimation versus SNR using FT peak
and Barycentric interpolators for CRN for differemt

and Barycentric interpolators for CGN for differemt.
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Figure (10): frequency estimation versus SNR using FT peak Figure (13): frequency estimation versus SNR using FT peak
and quadratic interpolatefor CGN for differentw . and guadratic interpolatofsr CRN for different .
FT. est. freq. vs. SNR; colored Rayleigh noise
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Corr. est. freq. vs. SNR; colored noise
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4 TFD Slice at time index n= 10
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Figure (21)(A): Time versus LFM signal, (B) Time versus Figure (24): TFD slice at time index n=10.
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Figure (22)(A): IF versus LFM signal, (B) IF versus AWGN,

and (C) IF versus noisy signal () Figure (25): Contour plot of the TFD of noisy LFM signal.

Mid-time IF Estimation, Realizations M = 20
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Figure (26): Mid-time IF estimation of LFM signal versus

Figure (23)3D: Spectrogram plot of noiseless LFM signal. SNRs with different W.
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MSE for Mid-time IF Estimation, Realizations M = 20
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Figure (27): MSE of IF estimation at mitime of LFM signal Figure (30)3D: Spectrogram plot of noiseless QFM signal.
versus SNRs with different W.
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Figure (28)(A): Time versus QFM signal, (B) Time versus

AWGN. and (C) Time versus noisy signal (y) Figure (31): TFD slice at time index n=10.

Figure (29)(A): IF versus QFM signal, (B) IF versus AWGN,
and(C) IF versus noisy signal (y) Figure (32): Contour plot of the TFD of noisy QFM signal.
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