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Abstract 

This work presents a study on the performance of instantaneous 

frequency (IF) estimation of single-tone sinusoidal signals, and 

IF estimation of FM signals under several types of colored noise 

(CN). For single-tone sinusoidal signals, two main estimators 

are considered: the maximum likelihood (ML) estimator using 

the Fast Fourier Transform (FFT) with interpolated peak 

estimation and the correlation method.  Four statistical models 

of colored noise are modelled and analyzed in this work 

(Gaussian, Rayleigh, impulsive and a combination of impulsive 

and Gaussian) with a study of their effect on frequency 

estimation methods in term of estimation accuracy and 

computational complexity presented. Also presented in this 

work is a study of the performance of frequency estimation 

methods under the same power and noise model. This work 

lastly presents a study on the performance of instantaneous 

frequency estimators for mono-component FM signals, 

including linear and non-linear FM signals. Peak of a specific 

Time-Frequency Distribution (TFD), the periodogram, has been 

used for IF estimation of FM signals under colored noise. 

Numerical results showed that the Quinn method is the best 

estimator as compared with other FFT interpolated peak 

estimation methods under colored noise in terms of minimum 

mean squared estimation error, especially at high signal-to-noise 

ratios. Simulation results showed also that Colored Rayleigh 

noise is destructive for signals more so than colored Gaussian 

noise and colored impulsive ï plus- Gaussian noise.  

Fourier approach can guess the frequency only in high SNR. Its 

impact on IF estimation by correlation (corr) is worse.  

Simulation results of instantaneous frequency estimators of FM 

signals using TFD showed greater accuracy than with previous 

methods. 

Keywords: freqency estimation (FE); FT; FFT; colored noise 

(CN); Correlation (Corr); DFT; MSE; LFM; QFM; TFD. 

 

 

 

INTRODUCTION  

Frequency estimation appears in a wide area of engineering 

applications, e.g. in communications, radar, sinusoidal signal 

frequency identity and resonance sensor systems [1] [2]. Noise 

is one of the main problems in signal processing and the type of 

noise (its statistical model) is a main factor that affects the 

performance of frequency estimation methods [3]. 

There are different types of noise encountered in different 

applications which can fall under several categories. For 

example in some applications noise can affect the amplitude of 

a signal which would mean itôs additive in nature, noise can also 

affect a signalôs phase or can be multiplicative [3]. Different 

models can also be used to model different noise-types such as 

the Gaussian, Poisson, impulsive, non-Gaussian models among 

others [3]. In this paper, we generate colored Gaussian noise, 

colored non-Gaussian noise, and non-Gaussian noise types, 

these will then be added to single-tone sinusoidal signals and 

FM signals. From here an attempt will be made to extract the 

actual frequencies for these noisy signals using a variety of 

frequency estimation methods.  

There are many methods for frequency estimation, but in this 

work we will be examining three methods; the Fourier 

Transform (FT) method and the Correlation (Corr) method in 

the case of single-tone signals and the Time- Frequency 

distribution (TFD) in the case of FM signals. The Mean Squared 

Error (MSE) will then be used as a measure to quantify the 

accuracy of these three frequency estimation methods. As well 

as general accuracy, this work will also endeavor to show which 

method achieves the best performance in terms of computational 

complexity as well. [1] [4] [2]. 

This paper is organized as follows: The colored noise model will 

be discussed in section II. In section III frequency estimation 

based on the Fourier Transform will be presented. In section IV 

frequency estimation based on correlation will be discussed. In 

section V IF estimation of FM signals based on time-frequency 

distributions (TFD) is presented and lastly in section VI results 

and discussion are presented. 
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COLORED NOISE MODELING  

Most of the noise modeling in communications systems is based 

on white noise, however, in addition to white noise, there is also 

colored noise which can also impact on communication systems. 

White noise contains a constant power spectral density (psd) 

through the entire frequency spectrum extending up to infinity. 

An autocorrelation performed on samples of white noise taken 

at different time instances would produce no discernible 

correlation between samples, i.e. the autocorrelation or the auto 

covariance of white noise is zero for all phase lags except for 

phase lag L=0 where the auto covariance of the white noise 

process will result in an impulse function at lag ὒ π. In the 

case where the power spectral density (PSD) of the noise is not 

uniform through the entire frequency spectrum the type of noise 

is colored noise (CN). In the case of colored noise (CN), there 

are non-zero values for autocorrelation or auto covariance at 

different time cases for the colored noise. The auto covariance 

is at a maximum for zero lag (ὒ π) and decreases 

progressively for increasing and decreasing values of lag (ὒ). 

As opposed to white noise, colored noise is broadband noise 

with a wide bandwidth and a non-constant PSD. There are many 

types of noise that fall under the definition of colored noise such 

as brown noise, autoregressive noise and pink noise [6]. The 

color of the noise is generally characterized by its power spectral 

density (PSD). The different color of the noise will result in 

different impacts on signals while its power spectral density 

(PSD) per unit bandwidth is proportional to ρȾὪᶿ  where θ π 

for white nose,  ᶿ ρ for pink noise and for brown noise θ ς. 

[7]. 

Finite impulse response (FIR) digital filters have impulse 

responses, Ὤὲ that contain a finite number of non-zero 

samples. In a digital system, the output of a causal FIR filter, 

ώὲ given a finite sequence ὼὲ was input into the system can 

be represented by the discrete-time convolution between Ὤὲ 

and ὼὲ:  

ώὲ Ὤὲ ὼzὲ                     ρ 

                       ὬὯὼὲ Ὧ

Ὤὼὲ Ὤὼὲ ρ Ễ

Ὤ ὼὲ ὔ ρ             ς 

where Ὤ is utilized for ὬὯ for simplicity. Taking the z-

transform of both sides will result in: 

ὣᾀ Ὤὢᾀ Ὤᾀ ὢᾀ Ễ

Ὤ ᾀ ὢᾀ                 σ 

Hence, the transfer function will be given by: 

Ὄᾀ
ὣᾀ

ὢᾀ
Ὤ Ὤᾀ Ễ

Ὤ ᾀ                            τ 

From the difference equation or from the transfer function Ὄᾀ 

we can execute a causal FIR filter by utilizing delay elements 

and digital multipliers.  

The Moving Average Filter (MA) is commonly used to smooth 

data to show general trends and behavior of a sequence. Using a 

MA filter can improve our ability to make a decision or interpret 

our data. In this work a moving average filter will be used to 

color noise simulation after filtering of Gaussian noise  [8]. 

In MATLAB, we model the colored noise using a 4th order FIR-

type filter structure. The noise-coloring FIR filter will then have 

the following transfer function: 

"Ú  ÂÏÂρϽÚ  ÂςϽÚ  ÂσϽÚ  ÂτϽÚ  

 O   ÂÏ ρȠ Âρ πȢρȠ Âς πȢχȠ Âσ πȢπυȠ Âτ πȢσȠ  

OR: " ÂÏ Âρ Âς Âσ ÂτȠ                                                      υ 

In addition, ὥ ρ is the denominator coefficient for all FIR 

filters. The width of the filter would be W=4. 

We simulated the effects of colored noise (CN) based on equation 

(5) by using: ὅὔ ὪὭὰὸὩὶὄȟὥȟώ in MATLAB , where ὄ is the 

FIR filter numerator coefficients from equation (5), ὃ is  the FIR 

filterôs denominator coefficient and ώ may be a Gaussian noise, 

Rayleigh noise, Impulsive noise or impulsive + Gaussian noise 

sequence. 

In signal processing systems, the integrity and quality of systems 

can be realized by understanding the statistical characteristics of 

the noise process associated with the system. These noise 

processes are generated by electromagnetic or electronic 

sources. Considering colored noise, there are different statistical 

models: Gaussian, Rayleigh model, and others [3]. 

 

GAUSSIAN-DISTRIBUTED MODEL  

The probability density function (pdf) of a Gaussian process 

with a variance (power) „  is given as follows [9]: 

ὴὼ
ρ

„Ѝς“
 Ὡ Ⱦ             φ 

Where ὼ is a random variable and „ is the standard deviation of 

the noise. 

We modeled and analyzed colored Gaussian noise (CGN) as 

follows: 

1. Determine the power of the AWGN (p) in dB, number of 

realizations (M) and number of samples (N). 

2.  Design the FIR-filter coefficients required to produce the 

necessary colored noise.  

3. Generate AWGN by using ώ ύὫὲ ὓȟὔȟὴ function. 

4. Pass the AWGN (y) function through the  FIR-filter by 

using ὪὭὰὸὩὶ ὄȟὥȟώ . 
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RAYLEIGH -DISTRIBUTED MODEL  

The pdf of a Rayleigh-distributed random process  is given by 

[9]: 

ὴὼ
ὼ

ὄ
Ὡ       ὼ πȟὄ ὦ       χ 

where ὦ is a real positive parameter called the Rayleigh 

parameter. This distribution has a mean and variance given by: 

ᴊ ὢ ὦ
“

ς
ȟ ὺὥὶὢ

τ “

ς
 

Hence, Rayleigh noise has a non-zero mean. The second 

moment (power) of Rayleigh noise is given by: 

ὴ ᴊ ὢ ςὄ 

Where ὴ denotes the power of the noise, hence, ὦ ὴȾς 

Note that unlike the case of Gaussian noise where its power 

equals its variance, the Rayleigh noise power is given by: 

ὴ ὄ  Ȣ Since ᴊ ὢ πȢ 

We modeled and analyzed colored Rayleigh noise (CRN) as 

follows: 

1. Determine the power of the Rayleigh noise (p) in dB, 

number of realizations (M) and number of samples (N). 

2.  Design the FIR-filter coefficients required to produce the 

necessary colored noise. 

3. Compute the Rayleigh parameter (b). 

4. Generate Rayleigh noise by using the ώ

ὶὥώὰὥὲὨ ὦȟὓȟὔ  function. 

5. Pass the Rayleigh noise (y) through the FIR-filter by using 

Ὡὶ ὄȟὥȟώ . 

 

IMPULSIVE NOISE (IN)  

Impulsive noise is mostly encountered in power line 

communication (PLC) systems; it can be modelled as [10]: 

Ὥ ὦϽὫ                                                           ψ 

where ὦ is the Poisson process that is modeling the arrival time 

of the impulsive noise at instant Ὧ with parameter  ‗, which 

denotes the rate of unit per second. 

A random variable ὢ is said to be Poisson if its pdf is given by 

[9]: 

ὴὢ ὼ Ὡ  
‗

‗Ȧ
 ȟ           ὼ πȟρȟςȟȣȣ        ω 

ᴊ ὢ ‗ Ƞ ὺὥὶὢ ‗Ȣ 

Where  ὖὢ ὼ is the probability of event of  ὼ arrivals in unit 

time, thereby when ὢ represents the time count of arrival of 

impulsive noise, then itôs distributed with the above Poisson 

PDF. 

Ὣ is a Gaussian process that is used to model the amplitude of 

the impulsive noise with zero mean and variance (power) „ , so 

the total power of impulsive noise is [10]: 

ὲ
„

‗
                                    ρπ 

We modeled and analyzed colored impulsive noise (CIN) as 

follows: 

1. Determine the power of the impulsive noise (p) in dB, 

number of realization (M), number of samples (N), 

Poisson parameter ‗, and y array for the impulsive noise 

process. 

2. Design the FIR-filter coefficients required to produce the 

necessary coloured noise. 

3. Simulate arrival time with a Poisson distribution by using 

the ὴάίὖέὭίίὶὲὨ‗ function. 

4. Poisson time count (tm),  ὸά ὸά ὴάί . 

5. Generate Gaussian noise as amplitude of impulsive noise 

by using ύὫὲρȟρȟὴ function and put the result in the 

array ώ. 

6.  )Æ ÔÍ ., return to step (3).  

7. Pass the impulsive noise (y) through the FIR-filter by 

using ὪὭὰὸὩὶ ὄȟὥȟώ. 

We modeled and analyzed colored impulsive noise + Gaussian 

noise (C (IN+GN)) as follow: 

1. Adding Gaussian noise to impulsive noise (y). 

2. Passing impulsive + Gaussian noise (y) through the 

FIR-filter by using ὪὭὰὸὩὶ ὄȟὥȟώ. 

 

Frequency Estimation Based on Fourier Transform 

Method 

Let the received signal be a single-tone sinusoid as follows: 

ώὸ ὃȢÃÏÓύȢὸ ᶮ ὅὔὸ               ρρ 

Where, A is the signal amplitude, ύ  is the radian frequency of 

signal, ɲ Ï is the initial phase and ὅὔὸ is Colored Noise.  

A DFT can then be performed on this signal by using the Fast 

Fourier Transform (FFT) algorithm. The FFT algorithm is 

described below: 
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Fast Fourier Transform (FFT) and No Post-Processing (FFT 

Estimator) Based Approximate Maximum Likelihood 

Estimator 

The maximum likelihood (ML) frequency estimator can be 

given by the frequency where the peak of the Fourier transform 

occurs [11]:  

 Ὢ ὥὶὫάὥὼȿὢὪȿ Ȣ  

Where Ὢὓὒ is the estimated frequency, ὥὶὫ returns the index of 

the peaks of ὢὪ and ὢὪ is the Fourier transform of the 

single-tone signal ὼὸȢ The FFT method can be used to estimate 

the frequency of a noisy signal by locating the peaks in the 

Fourier spectrum ὢὪ for the noisy signal ώὸ. In discrete-

time this is calculated from the sampled version of signal ώὲ 

and the frequency spectrum is acquired using the DFT as 

follows: 

ὢὯ
ρ

Ѝὔ
ὼὲὩ           π Ὧ ὔ      ρς 

 

Fast Fourier Transform (FFT) and Post-Processing 

(Quadratic Interpolation) based Approximate Maximum 

Likelihood Estimator  

The actual frequency of the sinusoid may reside between DFT 

samples in some cases. Since the index of the Fourier transform 

cannot be a non-integer value, interpolation between points 

close to the peak of the DFT can improve the estimation 

accuracy. 

There are many different interpolation methods, below are the 

most commonly used methods for these types of problems. 

 

Quadratic Interpolation:  

In this method, quadratic curves of the form ώ ὥ ὦὼὧὼ 

are used to estimate the values of the spectrum between known 

data points within the neighborhood of the DFT peaks 

άὥὼὢὯ . These quadratic functions are determined by using 

three known samples from the data and determining a quadratic 

curve-of-best-fit between these three points as follows [12]:  

ὑ ρȟό ȿὢ ȿ 

ὑȟό ȿὢȿ 

And ὑ ρȟό ȿὢ ȿ 

Where ὑ ÁÒÇ ÍÁØ8Ë  is the location of absolute 

maximum magnitude of the DFT, so the origin frequency is  Ὂ

 , with  Ὢ being the sampling rate of the data. In this quadratic 

design, the real maximum shall be at the point: 

ώ
ὦ

ςὧ
 

Which gives the frequency interpolation: 

ό ὑ Ὠ 

Ὠ ό ό ςz ςz ό ό όϳ            ρσ 

 

Then, the estimated frequency is: 

Ὂ
όὪ

ὔ
              ρτ 

 

Barycentric method: 

The same thing as previously way by taking three points as put 

up with [13]: 

Ὠ ό ό ό ό όϳ          ρυ , 

ό ὑ  Ὠ; 

The frequency can be estimate as before using the equation (14). 

 

Quinn's First Estimator [ 14]:  

Taking the three DFT points from the previous method we can 

interpolate in the following manner: 

 ὑ ρȟό ȿὢ ȿ ὶ Ὥά      ύὭὸὬ Ὥ Ѝ ρ 

ὑȟό ȿὢȿ ὶ Ὥά 

And ὑ ρȟό ȿὢ ȿ ὶ Ὥά 

where ό is the magnitude value of ὢ , ὶ is the real part of 

point ὢ  and Ὥά  is the imaginary part of ὢ . ό Is the 

magnitude value of ὢ , ὶ is the real part of the point ὢand Ὥά  

is the imaginary part of ὢ . ό is the magnitude value of ὢ ȟ 

ὶ is the real part of point ὢ  and Ὥά  is the imaginary part of 

ὢ . 

Then we execute the next procedure: 

Ὑ ὶ ὭάȠ 

Ὓ ὶ Ȣὶ ὭάȢὭά Ὑϳ ; 

Ὕ Ὓϳ ρȢπ Ὓ Ƞ 

ὡ= ὶ Ȣὶ ὭάȢὭά Ὑϳ ; 

Ὁ ὡ ρȢπ ὡϳ ; 

If Ὓ π and ὡ π then, Ὠ Ὓ 

Else,  Ὠ ὡ; 

ό ὑ ὨȠ 

The frequency would be estimated as before using equation (14). 

 

Quinn's Second Estimator [15]:  

The same three points above stratify the following relations: 
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Ὠ ὌὛ Ὄὡ   

where Ὄὼ

Ѝ

     ρφ    

Then the interpolation is ό ὑ Ὣ; the final frequency would 

be estimated using the equation (14). 

We modelled and simulated the frequency estimation based on 

the FFT method as following: 

1.  Add colored noise (CN) to the signal ὼὸ. 

2. Find the DFT of the noisy signal. 

3.  Estimate the frequency for peak of DFT. 

4.  Apply specific interpolation methods by using peak of 

DFT and two points close to the peak of the DFT. 

5.  Compute the relative mean square error (MSE). 

6. If (No. of realization) M, return to step 2. 

7. Calculate the average estimated frequency and 

frequency MSE. 

 

FREQUENCY ESTIMATION BASED ON 

CORRELATION METHOD  

The correlation method for frequency estimation can be 

implemented by taking the signal given in equation (11) and 

using autocorrelation on this signal with specified lags [16] [17] 

[18]. The correlation method is based on the model of the signal 

in equation (11), hence the estimate of the frequency is acquired 

by the information of one or more estimated entries of the 

autocorrelation for the periodic discrete power signal Ὑά } in 

the form: 

Ὑ ά
ρ

ὔ ά
ώὲ ώzὲ ά            ρχ 

Where N is the signal period. Note that Ὑ ά Ὑ άȢ  And 

hence is an even function [8] [19]. 

From equation (17), we get the estimate of the frequency Ὢ for 

the sinusoid signal from the phase of the signal. Based on the 

minimal order linear predictor [20], which is a specific state of 

the Pisarenko harmonic decomposer frequency estimator [16], 

and averting the state of zero lag (ά  π) to remove the effect 

of noise, the frequency can be estimated as follows: 

άȢὡ ὴὬὥίὩὙ ά  άέὨ ς“       ρψ 

άȢὡ ὴὬὥίὩὙ ά ς“ὯȢ            ρω 

The condition of Ὧ is π Ὧ ά  and Ὧ most be integer. 

When the first autocorrelation sample at non-zero lag ά ρ is 

applied to equation (19) with Ὧ π the first frequency estimate 

will be produced in the form:  

ὡ ὴὬὥίὩὙ ρ         ςπ 

This  linear predictor can be improved by using different 

correlation lags [23] [22] [21]. It was shown that the estimator 

based on a single correlation coefficient could be made more 

efficient. [13]. 

A drawback with this estimator is the obscurity of the frequency 

estimate [24], [18]. It was shown in [25] that the frequency 

obscurity can be solved using two correlations with 

comparatively prime correlation lags; this was also backed up in 

the works  [16], [17]. 

We modelled and simulated the frequency estimation based on 

the correlation method as follows: 

1.  Add colored noise (CN) to the signal ὼὸ. 

2.  Find associated analytic noisy signal by using the 

Hilbert transform. 

3.  Find the autocorrelation by using the ὼὧέὶὶ function. 

4.  Compute the frequency estimation from phase law for 

one correlation coefficient. 

5.  Compute relative mean square error (MSE). 

6.  If (No. of realization) M, return to step 2. 

7.  Calculate the average estimated frequency and 

frequency MSE. 

 

IF Estimation of FM Signal Based on  Time-Frequency 

Distributions (TFDs) 

Non-stationary signals with time-varying frequency content 

(such as frequency modulated (FM) signals and biomedical 

signals) cannot be analyzed as effectively using the Fourier 

transform (FT) as the FT cannot detect the time-varying features 

of the signal. This is due to the time-averaging process (time-

integration) used in the FT. 

Time-frequency distributions (TFD) are double transforms from 

the time-domain into the time-frequency domain representing 

the Fourier transform of the instantaneous autocorrelation of the 

analytic signal. The simplest formula for time -frequency 

distribution (TFD) is a windowed frequency distribution called 

the short-time Fourier transform (STFT) [8]:  

Ð ÔȟÆ ÚʇÈʇ ÔÅ Ὠ‗   

&4
ᴼ
ᾀ‗Ὤ‗ ὸ                       ςρ 

      Where ᾀ‗ is the analytic signal, Ὤ‗ ὸ is a time 

window, ‗ is the dimension of window, ὸ is time index and Ὢ is 

frequency index. By solving the optimized problem in equation 

(22), the instantaneous frequency (IF) can be estimated as 

mentioned in [29], [26] [27] [28]: 
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Ὢ ὸ ÁÒÇάὥὼὴ ὸȟὪ ȟ     π Ὢ
Ὢ

ς
         ςς 

TFD is a better representation for  non-stationary signals 

because it shows the distribution of signal energy over a two-

dimensional domain; the time -frequency space. 

In this study, the periodogram (which is the ȿ ὛὝὊὝȿ) is use to 

estimate the IF of linear frequency modulated (LFM) and 

quadratic frequency modulated (QFM) signals.  

We modelled and simulated the IF estimation based on the TFD 

method as follows: 

1.  Add colored noise (CN) to the FM signal. 

2.  Find associated analytic signal of FM by using the Hilbert 

transform. 

3.  Apply the TFD spectrum using optimal window and peak 

detection. 

4.  Compute relative mean squared error (MSE). 

5.  If (No. of realization) M, return to step 2. 

6.  Calculate the average estimated IF and frequency MSE. 

 

SIMULATION RESULTS  

For the experiments performed in this paper a single-tone noisy 

sinusoidal signal, similar to that given in equation 11 was 

simulated in MATLAB. This sinusoid had the following form: 

ώὸ ÃÏÓτφ“ὸρ ὅὔὸ 

 The simulated signal had a total time length ὒ ςπί, the 

sampling interval used was Ὕί πϽππυί and the number of 

samples is given by ὔ ὒȾὝί. The power, ὴ  of this signal 

can be computed from:  

ὴ
ὃ

ς
                        ςσ 

Three filters were then designed with  lengths ὡ υȟὡ

ςπȟὡ υπ. In this simulation SNR ranged from    -50 to 50 dB. 

Monte Carlo simulations  were performed with ὓ υπ 

realizations. 

The signal-to-noise ratio (SNR) in the presence of AWGN is 

defined as follows: 

ὛὔὙ
ὴ

ὴ
                    ςτ 

Where ὴ is the power of the AWGN Which can be calculated 

from: 

ὴ
ὴ

ὛὔὙ
                  ςυ 

This noise was then processed as described in section II to 

generate colored Gaussian noise (CGN)  with the result of this 

added to the signal ώὸ to produce the noisy signal.  

The signal-to-noise ratio (SNR) in the presence of Rayleigh 

noise is defined as follows: 

ὛὔὙ
ὴ

ὴὶ
                    ςφ 

Where ὴὶ is the power of the Rayleigh noise. The power of 

Rayleigh noise can then be calculated from: 

ὴὶ
ὴ

ὛὔὙ
                                 ςχ 

Again this was converted to colored noise (CN) as per section II 

and added to the signal.  

Lastly the signal-to-noise ratio (SNR) in the presence of colored 

impulsive + Gaussian noise is defined as follow: 

ὛὔὙ
ὴ

ὴὴ ὴὫ
                     ςψ 

We can calculate impulsive - to - Gaussian power ratio as 

follows: 

ὶ
ὴὴ

ὴὫ
                                       ςω 

In the same manner as previously this noise was also converted 

to colored noise and added to ώὸ.  

We can use the FFT algorithm to compute the frequency 

estimation for the sinusoidal signal with added colored noise 

(CN) By applying the FT on the noisy signal in equation (11) 

and then taking the peak (max) of the ȿὊὝȿ. 

We used max-FFT, quadratic, Barycentric, Quinn first and 

Quinn second frequency reparations as explained in section III. 

Finally, we computed the Mean Squared-Error (MSE) for each 

SNR as follows: 

ὩὪ ȿ Ὂ Ὢ Ὢȿϳ                             σπ 

Where Ὂ is the estimated frequency and Ὢ is the actual 

frequency. 

We also used the correlation method as the second method of 

frequency estimation. This was performed by computing just one 

correlation coefficient of the signal and not all correlation 

coefficients to obtain an estimate of the frequency. We obtained 

the analytic noisy ᾀὸ related to the actual signal ὼὸ before 

estimation from using the Hilbert Transformation (HT), this 

transformation will not affect the frequency estimation. 

Taking just the positive part from signal spectrum ὢὪ and 

deleting the negative part results in: 

ᾀὸ ὼὸ ὮȢὌὼὸ                    σρ 

Ὄὼὸ
ρ

“ὸ
ὸzὼὸ                    σς 

Where, z ὸ is time convolution and Ὄ is the ὌὝ. [26] 

Hence: 

ὤὪ ὢὪ ρ ὮȢίὫὲὪ ὢὪ ρ ίὫὲὪ  
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ḈὤὪ                        
             

 

After frequency estimation by using the correlation method, we 

computed the Mean Squared-Error (MSE) for each SNR from 

equation (30). 

Finally we draw a mid-time IF estimation for each SNR in figure 

(33) and calculated the relative mean-square error (MSE) of the 

IF estimation at mid-time of the QFM signal for each SNR, this 

is shown in figure (34) for different lengths (W) of the filter. 

Figure (1) shows colored Gaussian noise (CGN) when a window 

of length W=5 is used to filter a Gaussian noise segment of 

length N=1000 samples, M=1, and  ὴ πȢρ. 

Figure (2) shows the autocorrelation for colored Gaussian noise 

(CGN). 

Figure (3) shows colored Rayleigh noise (CRN) when filtered 

with a filter of length W=5  when N=100000, M=1 and p=-3. 

Figure (4) shows the autocorrelation for colored Rayleigh noise 

(CRN). 

Figure (5) shows colored impulsive noise (CIN) when filtered 

with a filter of length W=5  with  ὴὴ σ and ‗ σπ. 

Figure (6) Autocorrelation for colored impulsive noise (CIN). 

Figure (7) shows colored impulsive +Gaussian noise (C 

(IN+GN)) when length of filter (B) is W=5 and a=1, by passing 

filter (B) on impulsive +Gaussian noise when ὴ ςυ. 

Figure (8) Autocorrelation for colored impulsive + Gaussian 

noise (C (IN+GN)). 

Figures (9), (10) and (11) Show frequency estimation for signal 

in equation (11) under CGN with different length of filter (ὡ) 

versus SNR using FT peak and three interpolators: Barycentric, 

quadratic, and Quinn respectively. 

Figures (12), (13) and (14) Show frequency estimation for signal 

in equation (11) under CRN with different length of filter (ὡ) 

versus SNR using FT peak and three interpolators: Barycentric, 

quadratic, and Quinn respectively. 

Figures (15), (16) and (17) Show frequency estimation for signal 

in equation (11) under C (IN+GN) with different length of filter 

(ὡ) versus SNR using FT peak and three interpolators: 

Barycentric, quadratic, and Quinn respectively when M=5 and 

ὶ πȢς. 

Figures (18), (19), (20) show the estimated frequency versus 

SNR using correlation method for CGN, CRN, and C (IN+GN) 

models respectively. 

 

 A noisy LFM signal, was simulated with CGN added to it, this 

signal had the following form: 

ώὸ ὃ ÓzÉÎɲ 

Where A is the amplitude, which for these experiments was set 

to ὃ ρ ὺέὰὸ and ɲ  is the angle function for the LFM signal 

which can be used to calculate the instantaneous frequency of 

our signal: 

ύ ὸ
ᶮ
,  and ύ ὸ ς“ Ὢὸ radians/sec 

This means that the instantaneous frequency in Hertz can be 

given by:  

Ὢὸ
ρ

ς“

Ὠɲ

Ὠὸ
  

Which leads us to setting the angle function to:  

ᶮ Ὢ ὸz ᶻ ᶻς“  

Where  πȢυ is the modulation index and Ὢ ςσ Ὄᾀ. 

This results in the final LFM function given in equation 33: 

ώὸ ὃÓÉÎὪ ὸz ᶻ
ὸ

ς
ᶻς“ ὅὔὸ         σσ 

The simulation of this signal was generated to have a time length 

of  ὒ ρπί, a sampling interval Ὕ πȢπρί, Ὢ ρπ Ὄᾀ, and a 

total number of samples of ὔ  .  

 

Monte Carlo simulations were again performed with ὓ=20 

realizations. We used a Hilbert transformation (HT) to obtain 

the analytic signal ᾀὸ associated with the original signal ὼὸ 

before estimation, to avoid aliasing by using equations (31) and 

(32). We estimated the IF by taking the peak (max) of the TFD. 

Figure (25) shows the contour plot of the TFD for the noisy LFM 

signal with the theoretical computed IF of a noiseless FM signal 

(given by the dotted line).  

Finally we draw a mid-time IF estimation for each SNR in figure 

(26) and calculated the relative mean-square error (MSE) of the 

IF estimation at mid-time of the LFM signal for each SNR. This 

is shown in figure (27) for different values of filter length (W). 

For QFM signals we modulated and simulated QFM signals 

with CGN using MATLAB in the same way as with the LFM 

signal. The simulated signal had time length ὒ ρπί, a 

sampling interval Ὕ πȢπρί, Ὢ ρπ Ὄᾀ, and a total number of 

samples ὔ  . The signal amplitude was ὃ ρ ὺέὰὸȟ and the 

LFM equation ὼ ὃ ÓzÉÎɲ. Where ɲ  is the phase ύὸ
ᶮ
, 

and ύὸ ς“ Ὢὸȟ that mean Ὢὸ
ᶮ
 ȟ that lead us to 

ᶮ Ὢ ὸz ᶻ ᶻ ᶻς“, where  slope parameter 

of QFM signal (linear modulation index) was simulated as =3 

, and  the quadratic modulation index of signal was simulated 

as = ī0Ā2 and Ὢ ςσ Ὄᾀ. Quadratic frequency modulation 

(QFM) signal with colored noise is simulate as follows 
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ώὸ ὃÓÉÎὪ ὸz ᶻ
ὸ

ς
ᶻ
ὸ

σ
ᶻς“

ὅὔὸ       στ 

Monte Carlo simulations were again performed with ὓ=20 

realizations. We used the Hilbert transformation (HT) to obtain 

the analytic signal ᾀὸ associated with the original signal ὼὸ 

before estimation, to avoid aliasing by using equations (31) and 

(32). We estimated the IF by taking the peak (max) of the TFD. 

Figure (32) shows the contour plot of the TFD for the noisy 

QFM signal with the theoretical computed IF of noiseless FM 

signal shown as the dotted line.  

 

CONCLUSIONS 

Single Tone Sinusoidal Signals  

From the results of the simulations performed in MATLAB to 

implement the two different frequency estimation methods on a 

single-tone sinusoid in the presence of colored noise (CN) we 

found the following: 

ü The Fourier Transform (FT) method has better 

performance than the correlation method (Corr) for frequency 

estimation, this is because the FT can work with low SNRs (as 

low as -20 dB), while the lowest SNR for the correlation method 

is (15dB), hence there is about (-20dB to 15dB) difference 

between the two methods in the presence of AWGN and 

impulsive + Gaussian noise. In the case of Rayleigh noise the 

FT method worked with high SNRs (as high as 3dB), while the 

lowest SNR for the correlation method is (15dB), hence there is 

about (3dB to 15dB) difference between the two methods. The 

FT method was also found to be slow in comparison with the 

correlation method and the FT method is more computationally 

expensive compared to the (Corr) method, so the correlation 

method could be used in simpler electrical circuits. The FT 

needed the complete signal and estimates the frequency from the 

peak of the FT however Corr can use one correlation coefficient 

to estimate the frequency. Overall the FT method is best for all 

types of colored noise compared to the Corr method. 

ü It was found that Colored Noise (CN) had a more 

damaging effect on signals, where the frequency estimation (FE) 

could not be estimated at lower SNRs. The larger the value of 

frequency ύ, the worse the performance for the FT method, still 

this effect was even more noticeable for the corr method which 

performed even worse again. 

 

The FT method was also affected by the use of different 

interpolation methods. We can compare between their 

performance in terms of mean square error (MSE) and 

computational complexity as following: 

ü The frequency estimated by the Quinn Estimator was 

very close to the existing frequency so it had the lowest MSE 

error for each of the colored noise types examined. 

ü Max- FFT cannot obtain a frequency estimation that 

close with a small number of points, this method also had greater 

computational complexity than the other interpolation method 

examined. 

 

LFM and QFM signals 

Time-frequency analysis has been used to estimate the IF law 

for linear frequency-modulated (LFM), and quadratic FM 

(QFM) signals with a Gaussian model for colored noise. From 

the results we noted that the problem of noise is less serious if 

we use TFD since TFD is 2D not 1D; hence TFD spreads noise 

on a plane not on a line, making it less dense. 
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Figure (1): Colored Gaussian noise (CGN) when ὡ υ. 

 

Figure (2): Autocorrelation of colored Gaussian noise (CGN) 

when ὡ υ. 
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Figure (3): Colored Rayleigh noise (CRN) when ὡ υ. 

 

 

 

Figure (4): Autocorrelation of colored Rayleigh noise (CRN) 

when  ὡ υ. 

 

Figure (5): Colored Impulsive noise (CIN) when ὡ υ. 

 

Figure (6): Autocorrelation of colored impulsive noise (CIN) 

when ὡ υ 

 

Figure (7): Colored impulsive + Gaussian noise (C (IN+GN)) 

when ὡ υ. 

 

Figure (8): Autocorrelation of colored impulsive + Gaussian 

noise (C (IN+GN)) when ὡ υ. 
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Figure (9): frequency estimation versus SNR using FT peak 

and Barycentric interpolators for CGN for different ὡ . 

 

Figure (10): frequency estimation versus SNR using FT peak 

and quadratic interpolators for CGN for different ὡ. 

 

Figure (11): frequency estimation versus SNR using FT peak 

and Quinn interpolator for CGN for different ὡ. 

 

Figure (12): frequency estimation versus SNR using FT peak 

and Barycentric interpolators for CRN for different ὡ 

 

Figure (13): frequency estimation versus SNR using FT peak 

and quadratic interpolators for CRN for different ὡ. 

 

Figure (14): frequency estimation versus SNR using FT peak 

and Quinn interpolators for CRN for different ὡ. 
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Figure (15): frequency estimation versus SNR using FT peak 

and Barycentric interpolators for C (IN+GN) for different ὡ 

 

Figure (16): frequency estimation versus SNR using FT peak 

and quadratic interpolators for C (IN+GN) for different ὡ. 

 

Figure (17): frequency estimation versus SNR using FT peak 

and Quinn interpolators for C (IN+GN) for different ὡ. 

 

Figure (18): frequency estimation versus SNR using 

autocorrelation method for CGN for different ὡ. 

 

 

Figure (19): frequency estimation versus SNR using 

autocorrelation method for CRN for different ὡ. 

 

 

Figure (20): frequency estimation versus SNR using 

autocorrelation method for C (IN+GN) for different ὡ. 
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Figure (21)(A): Time versus LFM signal, (B) Time versus 

AWGN, and (C) Time versus noisy signal (y) 

 

Figure (22)(A): IF versus LFM signal, (B) IF versus AWGN, 

and (C) IF versus noisy signal (y) 

 

 

Figure (23)3D: Spectrogram plot of noiseless LFM signal. 

 

Figure (24): TFD slice at time index n=10. 

 

 

Figure (25): Contour plot of the TFD of noisy LFM signal. 

 

 

Figure (26): Mid-time IF estimation of LFM signal versus 

SNRs with different W. 
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Figure (27): MSE of IF estimation at mid-time of LFM signal 

versus SNRs with different W. 

 

Figure (28)(A): Time versus QFM signal, (B) Time versus 

AWGN, and (C) Time versus noisy signal (y) 

Figure (29)(A): IF versus QFM signal, (B) IF versus AWGN, 

and (C) IF versus noisy signal (y) 

 

Figure (30)3D: Spectrogram plot of noiseless QFM signal. 

 

 

Figure (31): TFD slice at time index n=10. 

 

 

Figure (32): Contour plot of the TFD of noisy QFM signal. 


