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Abstract 

This paper discussed on how alternative method for 

exponential growth modeling as a technique for 

regression analysis through SAS algorithm can be 

applied to the Biostatistics field. This alternative method 

is a combination of two major techniques which is 

include bootstrapping and fuzzy regression for 

exponential growth model. 

Keywords: Bootstrap, exponential growth and fuzzy 

regression. 

 

INTRODUCTION TO ALGORITM USING SAS 

LANGUAGE 

This research paper provides an illustration and also 

algorithm for the exponential growth modeling using 

bacteria growth dataset. For the case of nonlinear 

regression, we have to transform the equation from non-

linear into a linear form. Multiple linear regressions 

kk xxxY   22110  are an extension of 

simple linear regression and had been used widely in 

medical research.  We used this technique in order to get 

a better result. The random error term is added to make 

the model probabilistic rather than deterministic. The 

value of the coefficient i  determines the contribution 

of the independent variables ix , and  0  
is the y-

intercept (Diem Ngo & La Puente, 2012). A fuzzy 

regression model can be written as

kk xZxZxZZY  22110 , here the 

explanation variables  sxi '  
are assumed to be precise. 

However, according to the equation above, response 

variable Y is not crisp but is instead fuzzy in nature. That 

means the parameters are also fuzzy in nature. Our aim 

is to estimate these parameters. In further discussion, 

sZi ' are assumes symmetric fuzzy numbers which can 

be presented by interval. For example, iZ  can be 

express as fuzzy set given by  wci aaZ 11 ,  where

ica  is centre and iwa is radius or vagueness associated. 

Fuzzy set above reflects the confidence in the regression 

coefficients around ica  in terms of symmetric triangular 

memberships function. Application of this method 

should be given more attention when the underlying 

phenomenon is fuzzy which means that the response 

variable is fuzzy. So, the relationship is also considered 

to be fuzzy. This  wci aaZ 11 ,  can be written as 

 RL aaZ 111 , with wcL aaa 111 
 
and wcR aaa 111  . 

In fuzzy regression methodology, parameters are 

estimated by minimizing total vagueness in the model. 

kjkjjj xZxZxZZy  22110 .  

Using  wci aaZ 11 ,  we can write  wcj aay 00 ,

 jwc xaa 111 ,  jwjcnjnwnc aaxaa ,, . Thus 

this can be written as  jccjc xaay 110  njncxa
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then it can be written straightly as

njnwjwwjw xaxaay  110
 .

 
As jwy

 
represent 

radius and so cannot be negative, therefore on the right-

hand side of equation njnwjwwjw xaxaay  110

, absolute values of ijx are taken. Suppose there m data 

point, each comprising   rowna 1
 
vector.  

Then parameters iZ
 
are estimated by minimizing the 

quantity, which is total vagueness of the model-data set 

combination, subject to the constraint that each data 

point must fall within estimated value of response 

variable.  

This can be visualized as the following linear 

programming problem, minimized 
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and 0iwa . Simple procedure is commonly used to 

solve the linear programming problem. (Kacprzyk and 

Fedrizzi, 1992). Data of this study is a sample which 

composed of two variables.  

 

1.1 Algorithm for Exponential Growth  

Exponential growth formula is given by bXAeY  . The 

first step which is necessary is to transform the growth 

formula into a linear form. After transforming the 

formula we obtained the following equation 

(i)bx)Aln(

)eln()Aln()Aeln(Yln bXbX




     

                 

Exponential decay formula is given by bXAeY  . After 

transforming the formula we obtained the following 

equation 

(ii)bx)Aln(

)eln()Aln()Aeln(Yln bXbX



 

 

 We can estimate the parameter A and parameter b 
through the algorithm below: 

title "Exponential Equation"; 

ods graphics / imagename = "Exponential Equation"; 

proc nlin data=boot1 plots=fit; 

parameters S0=1 b=0; 

model y = S0 * exp(b*x); 

ods output EstSummary=summExp; 

run; 

 

We divide these analyses into Part I and Part II. The aim 

of the section is to estimate the value of  S0 and b. 

Second Part of this analysis is to use the value of Ln 

(S0), (it is the ac value) and b (it is the b value). So we 

put the obtained value into the algorithm in the Part II. 

Then, the algorithm straightly processes the results. 

Data Collection 

Performing Linear 

Regression after 

Transforming the 

Equation into  a Linear 

Form

End Process

Alternative Method for

Exponential Growth 

Regression modeling 

Procedure

Interpret The Output 

Writing Full Stage of 

Algorithm by Adding 

Fuzzy Method to the  

Exponential Growth  

Regression Modeling  

Adding

 Bootstrapping 

Algorithm to the  

Method

  

Figure 1: Flow Chart of an Alternative Exponential 

Modeling 
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PART I: EXPONENTIAL GROWTH 

/*Building Basic Algorithm to the Exponential Growth 

Method*/ 

 

data bacteria; 

input x y; 

datalines; 

22 7.33 

2 7.33 

3 9.86 

4 9.68 

4 9.68 

13 7.32 

13 7.32 

15 6.81 

2 7.33 

2 7.33 

4 9.68 

4 9.68 

9 8.52 

9 8.52 

9 8.52 

13 7.32 

; 

run; 

 

/* PART ONE OF THE ANALYSIS*/  

ods rtf file='robdunc0.rtf' style=journal; 

 

title "Performing bootstrap with case resampling"; 

proc surveyselect data=bacteria out=boot1 method=urs 

samprate=1 outhits rep=2; 

run; 

 

 

 

/* Print Out the Data*/  

proc print data= boot1; 

run; 

 

title "Exponential Equation"; 

ods graphics / imagename = "Exponential Equation"; 

proc nlin data=boot1 plots=fit; 

parameters S0=1 b=0; 

model y = S0 * exp(b*x); 

ods output EstSummary=summExp; 

run; 

 

PART II: EXPONENTIAL GROWTH 

 

/* PART TWO OF THIS ANALYSIS*/ 

/* Method of fuzzy least squares (FLS) to the above data 

*/  

 

proc nlp;  

min Y; 

decvar ar br ac bc; 

bounds ar>=0, br>=0, ac= 9.4201, bc= -0.0154;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+3*bc-ar-3*br<=9.86;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+15*bc-ar-15*br<=6.81;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+9*bc-ar-9*br<=8.52;  
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lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+3*bc+ar+3*br>=9.86;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+15*bc+ar+15*br>=6.81;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+13*bc+ar+13*br>=7.32;  

Y=16*ar+108*br; 

run; 

ods rtf close; 

Table 1: Parameter coefficient Estimates (Exponential 

Growth) 

Optimization Results 

Parameter Estimates 

N Parameter Estimate Gradient 

Objective 

Function 

Active 

Bound 

Constraint 

1 Ar 2.010100 16.000000  

2 Br 0.024600 108.000000  

3 Ac 9.420100 0 Equal BC 

4 Bc -0.015400 0 Equal BC 

 

LN (Bacteria Reading) = 9.420100 - 0.015400 x    (iii)               

  Standard Errors            (2.01010)     (0.02460) 

Substituting the values of parameter estimates in model 

(see Table 1) we obtained the fuzzy least square 

regression for exponential growth equation. Fuzzy least 

square regression for exponential decay equation. 

Table 2: Parameter coefficient Estimates  

(Exponential Decay) 

Optimization Results 

Parameter Estimates 

N Parameter Estimate Gradient 

Objective 

Function 

Active 

Bound 

Constraint 

1 Ar 2.010100 16.000000  

2 Br 0.055400 108.000000  

3 Ac 9.420100 0 Equal BC 

4 Bc 0.015400 0 Equal BC 
 

Second write the equation as follows: 

LN (Bacteria Reading) = 9.420100 + 0.015400 x     (iv)  

  Standard Errors           (2.01010)     (0.055400) 

 

SUMMARY AND DISCUSSION 

This paper gives the explanation for an alternative 

programming method of bootstrap approach to 

(exponential growth and decay modeling) nonlinear 

regression procedure using SAS software. The aim for 

the algorithm building is to provide the researcher with 

the alternative programming of a data analysis. This 

method can be applied for the small sample size data 

especially where the data is very difficult to collect.  
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