
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6076

HDFS Write Operation Using Fully Connected Digraph DataNode Network

Topology

B. Purnachandra Rao

Research Scholar, Department of Computer Science &Engineering, Acharya Nagarjuna University,

Guntur, Andhra Pradesh, 522510, India.

ANU College of Engineering &Technology, NH16, Nagarjuna Nagar, Acharya Nagarjuna University,

Guntur, Andhra Pradesh 522510, India.

Orcid Id: 0000-0002-4770-2830

Dr. N. Nagamalleswara Rao

Professor, Department of Information Technology, RVR.& JC College of Engineering & Technology, Guntur,

Andhra Pradesh, 522019, India.

Abstract

Hadoop is an open source implementation of the MapReduce

Framework in the realm of distributed processing. A Hadoop

cluster is having the capability to handle large amounts of

data. To handle massive scale data, Hadoop exploits the

Hadoop Distributed File System termed as HDFS. Client will

write data to DataNodes by taking the blocks info from

NameNode . The DataNodes containing the blocks will be

connected in pipeline fashion. While writing the data if

DataNode /network fails the failed DataNode will be

removed from the pipeline. Based on the available DataNodes

in the cluster the new DataNode will be included in the

pipeline. If there are very less number of spare nodes in the

cluster users may experience an unusually high rate of

pipeline failures since it is impossible to find new DataNodes

for replacement. If network failure happend ,the data packet

cannot be reached to the target DataNode since they are

connected in pipeline fashion. If each DataNode is connected

to each other DataNode then there will not be any issue with

network failure since they have number of paths through

other DataNodes. In pipeline connectivity the copy operation

will take longertime , where as in DataNode is having direct

connection to all other DataNodes , it will take very less time

because datapacket is not required to traverse through all other

DataNodes to reach the end DataNode . In this paper we will

address the network failure issues among the DataNodes and

reducing the copy operation time to copy data packet to

DataNodes which are in pipeline by fully connected digraph

network topology. Using this topology network complexity

will be high, but we can reduce the time to copy one data

packet to all replica locations (DataNodes) and nullify the

network failure issues among the DataNodes.

Keywords: Hadoop Distributed File System (HDFS),

NameNode , DataNode, Replica, Rackawareness, Data

Packet, Data Packet Transfer Time, Pipeline, Fully Connected

Digrapgh Network Topology.

INTRODUCTION

Hadoop Distributed File System (HDFS)[1] is a distributed

file system that is developed to deploy on low cost commodity

hardware to store very large datasets reliably and has high

degree of fault tolerance and also stream those data sets at

high bandwidth for user applications to run on commodity

hardware. It is a master/slave architecture where master is

called NameNode and slaves are called DataNodes. HDFS

has many similarities with existing distributed file system, but

they are very different. A distributed file system consists of

single NameNode and multiple data nodes and provides

availability and reliability by holding multiple replicas of data.

NameNode and Datanode interactions are high while reading

or writing to file when there is a heavy work load which will

decrease the performance. The system having the NameNode

acts as the master server. NameNode maintains the metadata

pertaining to the file system, such as the file hierarchy and the

block locations for each file. It also performs file system

operations such as closing, opening and renaming files and

directories. Each storage node runs a process called a

Datanode that manages the blocks on that host, and these are

controlled by a master NameNode process running on a

separate host. To meet exponential storage demands of

Hadoop[1], MapReduce[5], Dryad[10] and HPCC(High-

Performance Computing Cluster)[12] frameworks disk based

file systems is the suitable file system.A requested task can be

completed efficiently, when the computation takes place near

the data. In case of huge datasets are involved, operation

reduces the network traffic and increases the throughput.

Hadoop distributed file system (HDFS) [6] has the potential to

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6077

store huge amounts of data since it is having huge number of

nodes in each cluster. Need to pay some time penalty while

retrieving or keeping the data in DataNode . There are

different components to reduce disk access latencies like

scheduling jobs on same node that consists of associated data,

in addition, information is copied to different nodes in

number ways to improve the performance in job completion

time. A fully connected network is a communication network

in which each of the nodes is connected to each other. In

graph theory it is known as a complete graph. There will be

number of alternative paths from one DataNode to each other

DataNode in the cluster which includes only replication

factor number of DataNodes in the connection process. So we

can use the number of alternative paths from one DataNode

to other DataNode incase of any failure in the existing path

between two DataNodes. Even copy operation also will take

less time since we can apply parallel copy process among the

datnodes from the starting DataNode which is connected

directly from the client to all other DataNodes which are part

of the replication factor.The new features of the proposed

method are reducing the copy operation time among the

DataNodes and providing the number of alternative paths to

reach the target DataNode in case of network failure.In the

existing process we are configuring the parameters

dfs.client.block.write.replace-datanode-on-

failure.enable,dfs.client.block.write.replace-datanode-on-

failure.policy. Once we start using the proposed architecture

we no need to change the DataNodes in case of network

failure , instead of that we can reach the DataNode using

alternative paths among the DataNodes. This paper describes

the concepts such as literature survey on the existing

mechanism using for HDFS memory operation, description

of HDFS components , the problem in the existing

architecture , proposed architecture using fully connected

digraph DataNode network topology , the implementation

and the evaluation process using the simulation results . This

paper presents the mechanism to reduce the copy operation

time to DataNodes (replication of datapackets) and to nullify

the network failure issues among the DataNodes by using

fully connected digraph network topology[4].

LITERATURE REVIEW

HDFS with Linear DataNode Connectivity

HDFS system is implemented on Linux machine. When a

client makes a request for reading some HDFS data, it first

contacts the NameNode to find out the first few blocks of the

file it wants to read. The NameNode returns the addresses of

all DataNodes that store a copy of those first few blocks,

ranking the DataNodes in order of their closeness to the client.

The client then reads the data from the DataNodes in the

preferential order presented to it. Should the first DataNode

fail during the read say because the DataNode is dead , the

client automatically connects to the next DataNode in the list

and reads the block. When the client reads the block, it also

verifies that the blocks current checksum is the same as the

original checksum calculated when the block was first stored

on disk. If the checksum differs, again the client will move to

a different DataNode in the list to read the data. The client

also informs the NameNode that it found a potentially corrupt

block and the NameNode will replicate the corrupt block to

another DataNode. A DataNode will verify checksums for all

blocks it stores every three weeks. If the read request

emanated from one of the clusters DataNodes, the first choice

of the client would be to see if that DataNode itself can satisfy

the read request, without having to go to a non-local

DataNode. As the client starts reading through the first few

blocks, it requests that the NameNode send it the locations

for the next set of data blocks. The NameNode will send the

best list of DataNodes for each data block. In Client write

operation the client will create the file and connect to the

NameNode for that namespace. The NameNode after

verifying that the file doesn't already exist and the client has

sufficient permissions to create the file, records the new file in

its metadata and sends the block name and list of DataNodes

to the client. The list of DataNodes is called a pipeline. The

pipeline specifies the DataNodes on which the clients can

place the block replicas. The file the client wants to write out

to HDFS is split into blocks and these blocks are stored on

HDFS on various DataNodes. The client connects to the first

DataNode in the pipeline and starts writing the data blocks on

that node. the first DataNode will connect to the second

DataNode in the list and forward it the data blocks as it

receives them. The second DataNode inturn connects to and

forwards the data to the next DataNode in the pipeline. When

all three (by default) replicas are completely written to the

client, an acknowledgement packet is relayed through the

pipeline of DataNode to the client, to indicate that the block

was successfully written to all nodes. The client willstart

writing the next block at this point.When all block replicas are

written, the block is committed in the edit log by the

NameNode and marked as "written." When the client

completes writing data to the file, it closes the file. This

requires that all the file's blocks have been replicated the

minimum number of times. The client may have to wait to

close the file if there are any DataNode failures in the process.

The client informs the NameNode that the file writing was

successfully completed. The writing of the block replicas is

done asynchronously. The client doesn't have to send the data

blocks it's writing to all the DataNodes. It just sends them to

one of the DataNodes in the list provided by the NameNode ,

and it's the responsibility of that DataNode to send the data

blocks along to the other DataNodes in the pipeline. Each

DataNode will also save a checksum of each data block it

stores. When this block is read , its checksum is verified to

ensure that the block is complete and isn't corrupt. The

NameNode creates metadata from the block reports it

receives from the DataNodes. HDFS stores the data blocks

such that the availability of one or more nodes won't cause a

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6078

data loss. Hadoop automatically replicates any lost blocks.

Data replication ensures both availability and data locality,

which helps enforce a guiding principle of Hadoop, which is

to bring processing to the data and not the other way round, as

it is in traditional database systems. The existing system is

using dfs.client.block.write.replace-datanode-on-

failure.enable,dfs.client.block.write.replace-datanode-on-

failure.policy parameters to maintain the fault tolerance even

when the DataNode /network failure while writing or reading

data from DataNodes. DFSClientwill request for data blocks

from the NameNode . Once the client gets the list of data

blocks , client will open the Out stream for write operation.

Data will be written to nearest DataNode (block) , and this

DataNode will be connected to other DataNodes (number of

DataNodes based on the replication factor) in pipeline

fashion[7-8]. If there is a DataNode /network failure issue in

the write operation (pipeline), DFSClient will remove the

failed DataNode from the pipeline and then resume write

operation with the remaining DataNodes. As a result of this

operation, the number of DataNodes in the pipeline will go

down. The feature is to add new DataNodes to the pipeline.

When the number of nodes in the cluster is (cluster size)

extremely small, example number of nodes is 3 or less, cluster

administrators may want to set the

policydfs.client.block.write.replace-datanode-on-

failure.enable to NEVER in the default configuration file

(hdfs-default.xml) or disable this feature. Otherwise, users

may face an unusually high rate of pipeline failures since it is

impossible to find new DataNodes for replacement. If we

have four nodes and a replication factor of 3, each block will

have a replica on three of the live nodes in the cluster. If a

node dies, the blocks living on the other nodes are unaffected,

but any blocks with a replica on the dead node will need a

new replica created. However, with only three live nodes,

each node will hold a replica of every block. If a second node

fails, the situation will result into under-replicated blocks and

Hadoop does not have anywhere to put the additional replicas.

Since both remaining nodes already hold a replica of each

block, their storage utilization does not increase. DataNodes

will be connected (based on the blocks from the Namespace)

using pipeline. In the existing architecture to deliver the

packet it needs to traverse through all the DataNodes to reach

the last DataNode (based on the replication factor we need to

decide last number).Refer with: Fig. 1, While writing the data

if DataNode /network fails the failed DataNode will be

removed from the pipeline. Adding the new DataNode to

pipeline will depend on the available nodes in the cluster. The

problem in the existing architecture is users may experience

an unusually high rate of pipeline failures since it is

impossible to find new DataNodes for replacement. The time

required to send the data packet and getting the

acknowledgement back to source DataNode will take longer

time since the DataNodes are connected in linear pipeline

fashion.

Figure 1: DataNode pipeline connectivity.

If we consider one millisecond is for inter rack DataNode

packet transfer and 0.75 millisecond is for intra rack

DataNode packet transfer, then (replication factor is 4,

DataNode2 and DataNode3 are in second rack, where as

DataNode1 and DataNode4 are in rack1 and rack4

respectively) 1 millisecond to reach to second DataNode ,

0.75 to reach from DataNode2 to DataNode3 and 1

millisecond from DataNode3 to DataNode4. So the total time

is 1+0.75+1 = 2.75 milliseconds. The same is applicable for

acknowledgement transfer as well.So total 5.50 milliseconds

required to complete one packet copy operation with

replication factor 4. Referwith: Table 1for the time taken

for copy operation of one packet using different replication

factors.

Table 1: Packet Transfer time with different replicationfactors

Replication Factor Packet Transfer(ms)

3 3.5

4 5.5

5 7.5

6 9.5

7 11.5

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6079

The time is growing up while increasing the replication factor,

because the DataNodes will be connected in pipeline

fashion[3] (one DataNode to another till the last DataNode

and the number of DataNodes in the pipeline depends on the

replication factor). For files which are frequently accessed or

critical, setting the replication factor improves their tolerance

against faults and increases the read bandwidth. In the existing

system we are using the parameter

dfs.client.block.write.replace-datanode-on-failure.enable[3]

to replace the DataNode in case of DataNode /network

failure. If the number of spare nodes are less or unavailable ,

then we need to set the parameter to NEVER so that we can

externally informing to file system that , there will not be any

node replacement in case of any network/node failure. This is

having the limitation on number of DataNodes available in the

cluster. Refer with: Graph 1 for the time status while

increasing the replication factor.

Graph 1: ReplicationFactor Vs PacketTransfer time

NameNode

NameNode is the centrepiece of Hadoop Distributed File

System. NameNode is also known as the Master. NameNode

only stores the metadata of HDFS – such as the file hierarchy

and the block locations for each file. NameNode does not

store the actual data or the dataset where as the data will be

stored in DataNodes. NameNode is usually configured with a

lot of memory (RAM). NameNode knows the list of the

blocks and its location for any given file in HDFS. It is easy

for NameNode to construct the file from blocks since it is

having knowledge on blocks and locations. NameNode is

having namespace consists of files and directories . Inodes

will be used here to represent the files and directories. Inode is

having the file permissions , modification and access time ,

disk space and namespace info.The file content is devided into

blocks (typically 128MB) each block of file is independently

replicated at multiple DataNodes. NameNode is having the

info related to mapping of file blocks to DataNodes. When a

client makes a request for reading some HDFS data, it first

contacts the NameNode to findout the locations of the first

few blocks of file it wants to read. Whereas in write operation

the set of DataNodes to host the block replicas will be allotted

by NameNode to client upon the request from the client. In

the next phase the write operation to DataNodes in pipeline

fashion[7-8] will be performed by client . The file the client

wants to write out to HDFS is split into blocks and these

blocks are stored on HDFS on various DataNodes. The client

connects to the first DataNode in the pipeline and starts

writing the data blocks on that node.

DataNode

In a Hadoop cluster, which consists of multiple nodes, one or

more of the nodes will act as a master nodes[13]. The master

nodes run key Hadoop services such as the NameNode and

the Resource manager. The rest of the servers in a Hadoop

cluster are worker nodes, commonly referred to as DataNodes.

It's these nodes that actually store the data blocks. The

DataNode performs the functions (based on the directives

sent by the NameNode) like providing the block storage by

storing blocks on the local file system, fulfilling the

read/write requests from the clients who want to work with

the data stored on the DataNodes, creating and deleting

datablocks, replicating data across the cluster, keeping in

touch with NameNode by sending periodic block reports and

heartbeats. A heartbeat confirms the DataNode is alive and

healthy ,and a block report shows the blocks being managed

by the DataNode. The file in a file system will be partitioned

into one or more segments and/or stored in individual data

nodes. These are called as blocks. The default block size is

128MB, but it can be increased using HDFS configuration.

NameNode will be having handshake at startup with all

DataNodes. In the handshaking process the namespace ID and

software version of DataNode will be verified. In the

successful case of matching, the communication will start

with DataNode . In the case of mismatch DataNode will

automatically shuts down. DataNodes are not connected

directly to the NameNode but communicate with them as the

need occurs. When the DataNode is started (or restarted), it

registers with the NameNode to let it know that it's available

to handle HDFS read and write operations.A recently initiated

DataNode with no namespace ID can join the cluster and it

will get the group's (cluster) namespace ID. Each DataNode

persistently saves its unique storage ID, which help to

recognize the DataNode after restarting it with different port

3.5

5.5

7.5

9.5

11.5

0

5

10

3 4 5 6 7

Transfer

Time(ms)

Replication Factor

DataPacket Pipeline Transfer

Time

Packet Transfer(ms)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6080

or IP address. All DataNodes periodically(every three seconds

by default) send a heartbeat containing statistical usage

information for that DataNode to the NameNode . This

heartbeat lets the NameNode that it can send commands such

as block replication or deletion to the DataNodes. If the

NameNode does not receive a heartbeat for a long time, it

requests an immediate block report from the DataNode. If the

NameNode does not recognize the DataNode, either because

the NameNode has restarted , or because the network

connection with the DataNode has timed out, it asks the

DataNode to register again.

If a DataNode fails to send its periodic heartbeat even after a

long time (such as ten minutes), the NameNode will mark

that DataNode as dead and issues commands to other

DataNodes to replicate the data stored on the dead DataNode,

to makeup the replication factor of the blocks to the

configured number of replicas. NameNode sends instructions

to DataNodes as acknowledgement to heartbeat. Refer

with:Fig.2 for HDFS Architecture.

Figure 2: HDFS Write Operation

Rackawareness

Hadoop components are rack-aware. Usually Hadoop clusters

of more than 30 to 40 nodes are configured in multiple racks.

Communication between two DataNodes on the same rack is

efficient than the same between two nodes on the separate

racks. In large clusters of Hadoop, in order to improve

network traffic while reading or writing HDFS, NameNode

chooses DataNodes which are on the same rack or nearby

rack to read or write request. NameNode achieves this rack

information by maintaining rack ids of each DataNode . This

concept of choosing DataNodes based on racks information is

called Rack awareness in Hadoop. Replica placement via

Rackawareness is a simple policy [2] to place replicas across

racks.This stops loosing data when an entire rack fails and

allows to make use of bandwith from multiple racks while

reading a file. On multiple rack cluster, block replications are

maintained with a policy that no more than one replica is

placed on one DataNode and no more than two replicas are

placed in the same rack with a constraint that number of racks

used for block replication should be always less than total

number of replicas.

When a new block is created, the first replica is placed on the

local DataNode, the second one is placed at a different rack ,

the third one is on a different DataNode at the local rack.

When re-replicating a block, if there is only one replica, place

the second one on a different rack. When the number of

existing replicas are two, if the two replicas are on the same

rack , place the third one on a separate rack. For reading, the

NameNode first checks if the clients computer is located on

the cluster. If yes, block locations are returned from the

closed DataNodes to the client. This policy minimizes the

write cost while maximizing the read speed. This provides

data availability in the event of a network switch failure or

partition within the cluster.

HDFS Write Operation

An HDFS cluster is comprised of a NameNode and one or

more DataNodes. In this section, we have given a

comprehensive analysis about how a client communicates

with the NameNode and DataNodes when uploading data to

HDFS[7-11].

File creation into the file system’s namespace:

The client first makes a create() HDFS call, which results in a

ClientProtocol RPC being invoked to create a new file on the

NameNode . Before the creation of the file in the namespace,

the NameNode conducts several checks, e.g., whether the file

already exists, whether the user has the right to create the file,

and whether safe mode is disabled. If all these checks pass,

the NameNode would create the corresponding file in the file

system’s namespace; otherwise it would throw an exception.

Packets forming from data and inserting into a data queue:

To write data to HDFS, client applications consider the data

file as a standard output stream. This data stream is

fragmented into blocks, each of which has a default size of

64MB. In turn, each block is split into 64KB packets by

default when being transmitted onto the network. When the

client writes a new block, a DataStreamer thread would send

an addBlock() call to the NameNode to ask for a new block

ID and the DataNode IDs to store the block. After the

corresponding packets are generated, the client sends these

packets to a FIFO queue and then to the DataNodes.

Packets to DataNodes:

DataStreamer uses the DataNode IDs to build a pipeline

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6081

between the client and these DataNodes, streams the packets

to the first DataNode in the pipeline one by one, and stores

these packets into another queue called ACK queue in case

some DataNodes require retransmitting due to packet loss.

When the first DataNode receives a packet, it verifies the

packet’s checksum, stores the packet, and transfers it to the

next DataNode in the pipeline. This procedure will repeat

until the packet reaches the last DataNode at the end of the

pipeline.

Sending acknowledgement (ACK) to the client:

When the last DataNode obtains the packet, it would send an

ACK through the pipeline in a reverse order. The client has a

thread called PacketResponder that is responsible for

receiving response ACKs. If the PacketResponder thread

receives a packet ACK from all DataNodes, it removes this

packet from the ACK queue.

Close the output stream:

When the client has flushed all data into the output stream, it

calls close() on the stream, and waits for all packets’ ACKs.

Completing file write:

When all packets’ ACKs are received by the PacketResponder

thread, it wakes up the client. The client would send a

complete signal to the NameNode to complete this file write

operation. Refer with: Fig.3 for HDFS write operation.

Figure 3: HDFS Write Operation

As per the namespace DN1,DN2,DN3 and DN4 are connected

in a pipeline fashion. Once the packet has been written to

DN2 by FSDataOutputStream, then it will be transferred to

DN3 by DN2 , DN3 to DN4 and DN4 to DN1.

Acknowledgement will be transferred back from DN1 to DN4

, DN4 to DN3, DN3 to DN2.The solid lines from DN2 -

>DN3->DN4->DN1 in the figure is showing data packet

transfer and dotted lines from DN1->DN4->DN3->DN2 is

showing acknowledgement. Using the configuration (hdfs-

site.xml) we can set the replication factor of a file. By default

the replication factor is three. Here we are taking the

replication factor as four. DN1 is in rack1, DN2 and DN3 are

in rack2 and DN4 is in rack3. As discussed assume that one

millisecond is for inter rack DataNode packet transfer and

0.75 millisecond is for intra rack DataNode packet transfer,

then (replication factor is 4, DataNode2 and DataNode3 are in

second rack, where as DataNode1 and DataNode4 are in rack1

and rack4 respectively) 1 millisecond to reach to second

DataNode , 0.75 to reach from DataNode2 to DataNode3 and

1 millisecond from DataNode3 to DataNode4. So the total

time is 1+0.75+1 = 2.75 milliseconds. The same is applicable

for acknowledgement transfer as well. So total 5.50

milliseconds required to complete one packet copy operation

with replication factor 4. We can reduce this time using fully

connected network topology among the DataNodes.

PROPOSAL METHOD

Problem Statement

DataNodes are connected (based on the blocks from the

Namespace) using pipeline. While writing the data if

DataNode /network fails, the failed DataNode will be

removed from the pipeline. Based on the available DataNodes

in the cluster the new DataNode will be included in the

pipeline. If there are very less number of spare nodes in the

cluster users may experience an unusually high rate of

pipeline failures since it is impossible to find new DataNodes

for replacement. If network failure happend , the data packet

cannot be reached to the target DataNode since they are

connected in pipeline fashion. In pipeline connectivity the

copy operation will take longer time ,since it needs to traverse

through all the DataNodes connected in pipeline till the last

DataNode . The problem in the existing architecture is users

may experience an unusually high rate of pipeline failures

since it is impossible to find new DataNodes for replacement

and the copy operation is taking longer time since the

DataNodes are connected in pipeline fashion.

Proposal

We can connect the DataNodes using fully connected digraph

network topology[4] , where each DataNode is connected to

every other DataNode as per the list from the NameNode .

HDFS

Client

NameNode

MetaData:

Data blocks

and Datanode

info

FSOutputSt

ream

DN1

DN4

DN3

DN2

Output

FileHDFS

Write API

Ack

Ack Ack

DataPacket

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6082

We can have number of alternative paths in case of network

failure in the current part and we can improvethe write

operation performance by decreasing the operation time using

the new architecture. DFSClient will request for data blocks

from the NameNode . Once the client gets the list of data

blocks , client will open the Out stream for write operation.

Data will be written to nearest DataNode (block) , and this

DataNode will be connected to other DataNodes (number of

DataNodes based on the replication factor) in pipeline fashion.

If there is a network failure in the write pipeline, the operation

cannot be completed . To avoid this connectivity issues , we

can use the DataNodes using fully connected digraph network

topology[4] , where each DataNode is connected to every

other DataNode as per the list from the NameNode . Total

number of edges are n(n-1) if there are n DataNodes in the

pipeline. Each DataNode is having n-1 outgoing edges to

connect to n-1 DataNodes.The existing architecture each

DataNode is having 2(n-1) edges where as n-1 edges for

datapacket copy operation and the other n-1 for

acknowledgement. Solid lines are datapacket transfer

operation and dotted lines for acknowledgement operation.

Here the dotted lines mentioned with double direction.

Figure 4: DataNodes with fully connected digraph network

topology

Refer with: Fig 4. for proposed architecture. Replication

factor is the number of copies the data block will be copied in

cluster. The replication factor 4 has been used here, so the

data is available in four DataNodes. The cluster is having

three racks Rack1, Rack2 and Rack3 and each rack is having

6 DataNodes. DN1, DN2, DN3, DN4, DN5 and DN6 are

represented as 1, 2, 3, 4, 5 and 6 respectively. The

representation is same for each rack. As shown in the figure

the data packet (using distinct colors to distinguish data

packets) is stored into DN4 in Rack1 , DN1 and DN2 in

Rack2 followed by DN4 in Rack3(Replicationfactor is 4).

Here single direction lines are for datapacket transfer

operation and bidirectional dotted lines for acknowledgement

operation. DataNode DN4 in Rack1 is connected to three

DataNodes DN1(Rack2),DN2(Rack2) and DN4(Rack3). Once

the client writes data packet to DataNode DN4 in Rack1 this

will get copied to all other DataNodes in the list DN1 in

Rack2, DN2 in Rack2 and DN4 in Rack3 simultaneously. The

acknowledgement packet will be transferred back to DN4 in

Rack1 from all other DataNodes simultaneously. Since this is

parallel operation both in forward (sending packet) and

backward (acknowledgement) direction , the time required to

complete one packet copy operation is just twice the time

required for inter rack packet copy operation , and if there is

intra rack DataNode is available in the replication list then the

total time will be lesser than the time which we have counted

in inter rack packet transfer. If there is any network failure

while copy operation is in progress we can reach the

destination DataNode using number of alternative paths, i.e,if

the replication factor is 3 we can have one alternate path, if it

is 4 we can have 4 alternative paths , for 5there will be 15

alternate paths and for replication factor 6 we can have 40

alternate paths. The complexity of network implementation[9]

is high compared to existing architecture but we can nullify

the network issues and we can decrease the time required to

write the datapacket.

In the existing system we are using the parameter

dfs.client.block.write.replace-datanode-on-failure.enable [3]

to replace the DataNode in case of DataNode /network

failure. We need to set this parameter to NEVER in case of

cluster size is very small like having three DataNodes. If the

number of DataNodes are three then in case of network failure

there will be any choice to replace , instead of that we need to

face the consequences of failure. Need to set as true in case of

having more number of nodes in the cluster so that we can

replace with new DataNode . In the proposed architecture in

case of network failure we no need to depend on the

replacement of the DataNode with new DataNode , instead

of that we can reach the target DataNode using the shortest

path from the remaining paths.We can find the shortest path

from single source DataNode to all other DataNodes using

Dijkstras shortest path algorithm[9]. Consider replication

factor is the number of vertices V and E the number of edges

then the total complexity to get the shortest path to all

4

5

Rack1 Rack2 Rack3

3

2

1 4

6

1

3

2

4 1

5

6 3 6

5 2

Network Switch

1

OutPut

Stream

Hdfs

Client

4

5
ack

ack

ack ack

info
info

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6083

DataNodes from single source is O(E Log V) and there will be

number of unused paths in each copy operation , these are the

two extra complexities which we need to face to nullify the

network failure issues. Please find the pseudo code for

Dijkstra's Algorithm.

Foreach node set distance[node]=HIGH

TraversedNodes=empty

UnTraversedNodes=empty

AddstartNodetoUnTraversedNodes

distance[startNode]=0

while(UnTraversedNodes is not empty){

assessmentNode=findShortDistanceNode(UnTraversedNodes)

remove assessmentNode fromUnTraversedNodes

add assessmentNode to TraversedNodes

assessedNeighbours(assessmentNode)

}

findShortDistanceNode(UnTraversedNodes){

find the node with the minimum distance in

UnTraversedNodes and return it.

}

assessedNeighbours(assessmentNode){

For Each target node which can be reached via

and edge from assessmentNode

AND which is not in TraversedNodes{

edgeDistance=getDistance(edge(assessmentNode,

targetNode)){

newDistance=distance[assessmentNode]+edgeDistance

if(distance[targetNode] >newDistance){

distance[targetNode] = newDistance

add targetNode to UnTraversedNodes}}}}

Dijkstra algorithm partitions all nodes into two distinct sets:

untraversedNodes and traversedNodes. Initially all nodes are

in the untraversedNodessets, e.g. they must be still evaluated.

A node is moved to the traversedNodesset if a shortest path

from the source to this node has been found. Initially

thedistance of each node to the source is set to a very high

value. First only the source is in the set of untraversedNodes.

The algorithms runs until the unsettledNodesnumber becomes

zero. In each iteration it selects the node with the lowest

distance from the source out of the untraversedNodes. It reads

all edges which are outgoing from the source and evaluates

for each destination node, using the edges which are not yet

settled, if the distance which is already calculated from the

source to this node can be reduced while using the selected

edge. If this is going to happen then the distance is updated

and the node is added to the nodes which need evaluation.

This is how can have number of alternative paths so that users

will escape from experiencing an unusually high rate of

pipeline failures.

Figure 5: Input Graph

Here I am considering the weights as real numbers just to

explain the Dijkstras algorithm instead of taking one

millisecond and 0.75 millisecond. Please Refer with: Fig 5.

Figure 6: Input Graph

Node being considered: 1

Nodes Not yet finalized: {2,3,4,5}

Distances={INF,INF,INF,INF,INF}

Please Refer with: Fig 6. In this we are considering node 1.

The remaining we are not considering. So the distances are

INFINITE.

1

3 5

4 2

2

5

10

2 3

1

6 9

7

1

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6084

Figure 7: Input Graph

Node being considered:3

 Nodes Not yet finalized: {2,4,5}

 Distances={0,10,4,INF,INF

Please Refer with: Fig 7. Here considering node 3 after 1.We

will we take the minimum i.e, 3 and proceed.

Figure 8: Input Graph

Please Refer with: Fig 8 for the status of nodes and distances

while considering node 5. Nodes Not yet finalized: {2,4}

Distances={0,8,5,14,7}

Distance[2]=Distance[3]+wt(3,2)=8

Distance[4]=Distance[3]+wt(3,4)=14

Distance[5]=Distance[3]+wt(3,5)=7

we will consider minimum node i.e, 5 and

proceed.

Figure.9: Input Graph

Please Refer with: Fig 9 for the status of nodes and distances

while considering node 2.

 Nodes Not yet finalized: {2,4}

Distances={0,8,5,13,7}

Distnace[4]=Distance[5]+wt(5,4)=13

we will consider minimum node i.e, 2 and

proceed.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6085

Figure 10: Input Graph

Please Refer with: Fig 10 for the status of nodes and distances

while considering nodes 2,4,5

 Nodes Not yet finalized: {2}

Distances={0,8,5,11,7}

NO update is required. hence distance between

1 and all other nodes are given in distance.

Another algorithm is Floyd–Warshall algorithm[9] , for

getting the shortest paths in a weighted graph with positive or

negative edge weights (but with no negative cycles). A single

run of the algorithm will capture the lengths (summed

weights) of the shortest paths between all pairs of vertices. We

can call this algorithm also Roy–Warshall algorithm, the Roy–

Floyd algorithm, or the WFI algorithm. Consider a graph G

with vertices M numbered 1 through N. Consider a function

shortestPath(i,j,k) that returns the shortest possible path from i

to j using vertices only from the set {1,2,3,4...k} as

intermediate points along the way. w(i,j) is the weight of the

edge between vertices i and j we can define

shortestPath(i,j,k+1) using the recursive formula :

shortestPath(i,j,0) = w(i,j) and the recursive function is

shortestPath(i,j,K+1) = min(shortestPath(i,j,k),

shortestPath(i,k+1,k) + shortestPath(k+1,j,k)). The algorithm

works by computing shortestPath(i,j,k) for all (i,j) pairs for

k=1, then k=2 etc. This process continues until k=N.

Let the dist be |M| * |M| array of minimum distnaces

initialized to INFINITY.

for each vertex i

 dist[i][i] <- 0

for each edge (a,b)

 dist[a][b] <- w(a,b)

for k from 1 to |M|

 for i from 1 to |M|

 for j from 1 to |M|

 if dist[i][j] > dist[i][k] + dist[k][j]

 dist[i][j] <- dist[i][k] + dist[k][j]

 endif

 Let n be number of vertices that is |M| . To find all n2 of

shortestPath(i,j,k) from those of shortestPath(i,j,k-1) requires

2n2 operations.We begin with shortestPath(i,j,0) =

edgeCost(i,j) and compute the sequence of n matrices

shortestPath(i,j,1) , shortestPath(i,j,2) till shortestPath(i,j,n) ,

the total number of operations used is n*2n2 = 2n3. So the

total complexity is O(n3). Running Dijkstras algorithm for all

nodes where V is number of vertices and E is the number of

edges gives the complexity is O(E log V), while Floyd's

complexity is O(V3If E is equal to O(V2) then these two

algorithms are theoretically identical, but in practice Floyd's

is faster. If you E = O(V), then running Dijkstra for all nodes

is better both in theory and in practice. If there is a complete

graph please prefer Floyd's algorithm and run Dijkstra from

all nodes if there are as many edges as you have nodes. If you

have enough memory and time Floyd's algorithm is clearly

better because it takes much less time to code. But If you do

not want every possible path, Floyd-Warshall may waste time

by calculating too many unwanted shortest paths. In that case

we can use Dijkstra's algorithm. Another Algorithm is

Bellman-Ford Algorithm, to find the shortest path from source

to all vertices in the graph. The graph may contain negative

edges. But here no meaning of negative edge. Bellman ford is

simpler than Dijkstra's and suits well for ditributed systems.

But time complexity of Bellman-Ford is O(VE) is more than

Dijkstra's Algorithm.

IMPLEMENTATION

Refer with:Fig17. for the implementation of fully connected

digraph network topology[4] among DataNodes inside

Hadoop Distributed File System. The HDFS client sends

create a request on DistributedFileSystem APIs.

DistributedFileSystem makes an RPC call to the NameNode

to create a new file in the filesystem’s namespace. The

NameNode performs various checks to make sure that the file

doesn’t already exist and that the client has the permissions to

create the file. If the outcome is positive in the check, the

NameNode makes a record of the new file; else, file creation

fails and the client is thrown an IOException. The

DistributedFileSystem gives an FSDataOutputStream for the

client to start writing data to DataNode . As the client writes

data, DFSOutputStream splits the data into packets, which

writes to an internal queue, called the data queue consumed by

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6086

the DataStreamer, which is responsible for requesting the

NameNode to allocate new blocks by picking a list of suitable

DataNodes to store the replicas. Here the DataNodes are

connected in fully connected digraph network topology so the

data packet will be transferred to all DataNodes

simultaneously.

Figure.11: Fully Connected Digraph network topology

implementation in HDFS

In the existing architecture the data packet needs to traverse

through all the DataNodes to reach the last DataNode (based

on the replication factor we need to decide last number). If we

consider one millisecond is the time required to transfer

packet from one DataNode to another DataNode between

two racks and 0.75 for intra rack DataNode transfer, then to

reach the 4th DataNode (replication factor is 4) is 2.75

milliseconds. The same is applicable for acknowledgement

transfer as well. So total 5.5 milliseconds required to complete

one packet copy operation with replication factor 4. Where as

in fully connected digraph network topology data packet will

be transferred in parallel fashion i.e, it will take one

millisecond to transfer the packet to all DataNodes

irrespective of replication factor. Acknowledgement as well

will be transferred to source DataNode in one millisecond. So

total 2 milliseconds required for successful one packet copy

operation irrespective of replication factor. If we consider

intra rack DataNode transfer less than one millisecond then

the total time is max 2 milliseconds. DN1 is connected to all

DataNodes and the same is applicable to all DataNodes. So

the total number of connections are n(n-1) excluding

acknowledgement edges. If there is any network failure while

writing datapacket to DataNodes which were connected using

fully connected network topology, no need look for the new

DataNode for replacement , instead of that there will be

number of alternative paths to reach the target DataNode . As

shown in the Fig.11 DN2 will receive the write request

(datapacket) from the IOstream. DN2 will send the packet to

DN1,DN4 and DN3 simultaneously. So the total time is max

one millisecond (considering DN1 in Rack1, DN2,DN3 are in

Rack2 and DN4 in Rack3) for writing datapacket and the

acknowledgement time is max one millisecond. While writing

datapacket to DN4 from DN2 if there is network failure issue ,

using the parameter no need to replace the new DataNode ,

instead of that,datapacket can reach DN4 using DN2->DN1-

>DN4, DN2->DN3->DN4, DN2->DN3->DN1->DN4, DN2-

>DN1->DN3->DN4. Like this depends on the replication

factor we can have multiple number of paths i.e, if the

replication factor is 3 we can have one alternate path, if it is 4

we can have 4 alternative paths (as shown above) , for 5 there

will be 15 alternate paths and for replication factor 6 we can

have 40 alternate paths from DN2 to DN4. Since we have

alternative paths we no need to think about replacement .This

is how we can avoid replacement of new node in case of

network failure.

EVALUATION

The simulation results are here with the assumption that inter

rack datanodepacket transfer will take one millisecond and

intra rack DataNode packet transfer will take 0.75

millisecond. There is best case scenario, medium and worst

case scenariosbased on the path which we consider toreach to

target node. Suppose DN2 to DN4 datapacket needs to be

copied and considering DN1 in Rack1, DN2,DN3 are in

Rack2 and DN4 in Rack3 Direct path from DN2 to DN4 is

the best case scenario where it will take max one millisecond

to copy the data and one millisecond for acknowledgement.

So total 2 milliseconds required for datapacket copy operation

including acknowledgement. Where as in medium case

scenario, DN2->DN1->DN4, DN2->DN3-DN4 it will take

one millisecond for DN2->DN1 different rack, DN1->DN4

one millisecond for different rack . So total 2 milliseconds

required for copy and 2 milliseconds for acknowledgement.

So total 4

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6087

Table 2: Access Time Analysis using Fully

ConectedDataNode Topology.

BestCase Scenario DataNode Connectivity Transfer Time

Rack1 DN1

Rack2 DN2,DN3

Rack3 DN4

DN2->DN4 :

1 ms, different rack

1 +1 : 2ms

(copy+ack)

MediumCase

Scenario

DataNode Connectivity Transfer Time

Rack1 DN1 ,

Rack2 DN2,DN3

Rack3 DN4

DN2->DN1->DN4,

DN2->DN3->DN4

DN2->DN1 : 1 ms

DN1->DN4 :1 ms

DN2->DN3: 0.75ms

same rack

1+1 : 2

2+2:4 (copy+ack)

0.75+1:1.75

1.75+1.75:3.50

(copy+ack)

0.75+0.75:1.5

1.5+1.5=3ms

(copy+ack)

WorstCase

Scenario

DataNode Connectivity Transfer Time

Rack1 DN1

Rack2 DN2,DN3

Rack3 DN4

DN2->DN1->DN3->DN4

DN2->DN3->DN1->DN4

1+1+1:3

3+3 : 6 ms

(copy+ack)

0.75+1+1:2.75

2.75 + 2.75 : 5.50

ms

(copy+ack)

milliseconds in medium case scenario. In the worst case

scenario DN2->DN1->DN3->DN4 (3+3) , DN2->DN3-

>DN1-DN4 (2.75+2.75) total time is max 6 milliseconds and

min 5.5 milliseconds including acknowledgement. Refer

with: Table 2 for the Access Time Analysis using Fully

Connected DataNode Topology. In the linear pipeline

connectivity time required for datapacket copy operation

including acknowledgement is 5.5 milliseconds, which is

almost two times to worst case scenario of fully connected

digraph network topology. Refer with: Table 3 for the results

of linear fashion DataNode pipeline connectivity and the fully

connected digraph network topology with different level of

replication factors using the best casescenario of fully

connected digraph network topology. That means no network

failure and using the direct path from source DataNode to

destination DataNode . In this proposed architecture the time

required to complete one packet copy operation is 2

milliseconds if there are no intra rack DataNodes , and max 2

milliseconds in case of the DataNodes list includes intra rack

DataNodes. Based on the results mentioned here for

replication factor 4 FullyConnectedDataNode Digraph

topology is better than Liner Pipeline data packet transfer

time.

Table 3: LinearPipeline vs FullyConnectedPipelinePacket

Best Case Transfer time

Replication

Factor

Linear

Pipeline(ms)

Fully

Connected

Pipeline(ms)

3 3.5 2

4 5.5 2

5 7.5 2

6 9.5 2

7 11.5 2

Refer with: Graph 2 for the time required to complete copy

operation in Linear Pipeline DataNode connectivity is

increasing once we increase the replication factor. Where as in

Fully Connected digraph DataNode network topology the time

is constant irrespective of the replication factor.

Graph 2:.PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Possible paths from DN2 to DN4 using replication factor 4

incase of network failure is there from DN2->DN4 is DN2-

0

5

10

3 4 5 6 7

3.5

5.5

7.5

9.5

11.5

2 2 2 2 2

Transfer

Time(ms)

Replication Factor

Linear Pipeline vs Fully

Connected Pipeline

Linear Pipeline(ms)

Fully Connected Pipeline(ms)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6088

>DN1->DN4, DN2->DN3->DN4. Refer with: Table 4 for

the results of linear fashion DataNode pipeline connectivity

and the fully connected digraph network topology with

different level of replication factors especially with medium

case scenario of fully connected digraph network topology for

replication factor 4. In this proposed architecture the time

required to complete one packet copy operation from DN2-

>DN1 is 1 millisecond and DN1->DN4 is 1 millisecond. So

total is is 2 milliseconds and including acknowledgement is 4

milliseconds. In case of DN2->DN3->DN4 the total time

including acknowledgement is 3 milliseconds. Based on the

results mentioned here for replication factor 4 Fully

Connected DataNode Digraph topology is better than Liner

Pipeline data packet transfer time.

Table 4: LinearPipeline vs FullyConnectedPipelinePacket

medium case Transfer time

Replication Factor Linear Pipeline(ms) Fully Connected Pipeline(ms)

3 3.5 2

4 5.5 3

5 7.5 2

6 9.5 2

7 11.5 2

Graph 3: PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Refer with: Graph 3 for the time required to complete copy

operation in Linear Pipeline DataNode connectivity is

increasing once we increase the replication factor. Where as in

Fully Connected digraph DataNode network topology the

time is constant irrespective of the replication factor.

If we consider the network failure from DN2-DN4 in two

combinations DN1->DN4 or DN3->DN4, then the possible

paths from DN2->DN4 are DN2->DN1->DN3-DN4 and

DN2->DN3->DN1->DN4. Refer with: Table 5 for the

results of linear fashion DataNode pipeline connectivity and

the fully connected digraph network topology with different

level of replication factors especially with worst case

scenario of fully connected digraph network topology for

replication factor 4. In this proposed architecture the time

required to complete one packet copy operation from DN2-

>DN1 is 1 millisecond , DN1->DN3 is 1 millisecond and

DN3->DN4 is 1 millisecond. . So total is 3 milliseconds and

including acknowledgement is 6 milliseconds. In case of

DN2->DN3->DN1->DN4 ,DN2->DN3 is 0.75 millisecond ,

DN3->DN1 is 1 millisecond and DN1->DN4 is 1 millisecond.

The total time is 2.75 millisecond and including

acknowledgement is 5.50 milliseconds.Only in the worst case

scenari Linear pipeline connectivity id equal to

FullyConnectedDataNode Digraph topology. Two network

failures I have taken to create the worst case scenario. But this

very rare case. So we can conculde that

FullyConnectedDataNode Digraph topology is giving always

better results than liner fashion DataNode pipeline

connectivity.

Table 5:.LinearPipeline vs FullyConnectedPipelinePacket

worst caseTransfer time

Replication

Factor

Linear

Pipeline(ms)

Fully Connected

Pipeline(ms)

3 3.5 2

4 5.5 5.5

5 7.5 2

6 9.5 2

7 11.5 2

0

5

10

3 4 5 6 7

3.5

5.5

7.5

9.5

11.5

2
3

2 2 2

Transfer

Time(ms)

Replication Factor

Linear Pipeline vs Fully

Connected Pipeline

Linear Pipeline(ms)

Fully Connected Pipeline(ms)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6089

Graph 4: .PacketTransferTime for Linear Pipeline

vsFullyConnectedDatanode Pipeline.

Refer with: Graph 4 for the time required to complete copy

operation in Linear Pipeline DataNode connectivity is

increasing once we increase the replication factor. Where as in

Fully Connected digraph DataNode network topology the time

is constant irrespective of the replication factor.

CONCLUSION

Based on the analysis of the values using different replication

factors we can say that the time required to copy data packet

to all DataNodes as per the list available from the metadata

from the NameNode is constant. Where as in linear Pipeline

DataNode connectivity the time increases while increasing

the replication factor. In Linear Pipeline DataNode

connectivity we need to support network failure by using the

parameterdfs.client.block.write.replace-datanode-on-

failure.enable using true or NEVER options based on the

available DataNodes in the cluster (cluster size), where as in

fully connected digraph DataNode network topology if there

is any chance of network failure in one edge we can have

multiple paths to reach to destination node, i.e, if the

replication factor is 3 we can have one alternate path, if it is 4

we can have 4 alternative paths , for 5 there will be 15

alternate paths and for replication factor 6 we can have 40

alternate paths. So we can nullify the network failure issues.

In this architecture the time required to copy the datapacket to

DataNodes in the network is max one millisecond and

acknowledgement is max one millisecond. With the

replication factor 4 max 2 milliseconds required to complete

the datapacket write operation in the best casescenario, that

means there is no network failure , where as 3 milliseconds

for the same operation in medium case scenario , that is where

there is one network failure issue and 5.50 milliseconds

requiredin worst case scenario where there are two network

failure issues. Here we have verified that no need of

replacement of DataNode in case of network failure issues.

So the usage of dfs.client.block.write.replace-datanode-on-

failure.enable, dfs.client.block.write.replace-datanode-on-

failure parameters is not required. This is how we can reduce

or nullify the network failure issues among DataNodes. Since

we have number of alternative paths among the DataNodes,

users can escape from experiencing an unusually high rate of

network failures. Using this shortest paths we can reduce the

copy operation time as well as we have proved using the

Access Time Analysis using Fully Connected DataNode

Topology. As we change the architecture to fully connected

digraph DataNode network topology the complexity and the

cost to implement the architecture will also increase. We can

ignore this cost and complexity since there is an improvement

in data packet write operation performance and nullifying the

network failure issues among the DataNodes. The future work

includes reducing the cost of the network by using network

cost optimization techniques.

REFERENCES

[1] Apache Hadoop. Available at Hadoop Apache.

[2] Deepak Vohra, Practical Hadoop Ecosystem: A

Definitive Guide to Hadoop-Related Frameworks and

Tools, Appress; 1st ed. edition ,October 1, 2016

[3] Tom White, "Hadoop:The Definitive Guide", Storage

and Analysis at Internet Scale, Second ed., Yahoo

Press, 2010

[4] J.L.Mott, A.Kandel, Mott & Kandel, Discrete

Mathematics For Computer Scientists And

Mathematicians (English) , 2 Ed, Pearson India,

(2015).

[5] Hadoop Distributed File System with Cache system - a

paradigm for performnace improvement by Archana

Kakade and Dr. SuhasRaut, International journal of

scientific research and management (IJSRM),

Vol.2,Issue.1: Pp,1781-1784 /Aug. 2014.

[6] KonstantinShvachko, HairongKuang, Sanjay Radia,

Robert Chansler , "The Hadoop Distributed File

System". Vol.1, No.1, pp.1-10, 2010.

[7] Debajyoti Mukhopadhyay, Chetan Agrawal, Devesh

Maru, Pooja Yedale, Pranav Gadekar, Addressing

NameNode Scalability Issue in Hadoop Distributed

0

5

10

3 4 5 6 7

3.5

5.5

7.5

9.5

11.5

2

5.5

2 2 2

Transfer

Time(ms)

Replication Factor

Linear Pipeline vs Fully

Connected Pipeline

Linear Pipeline(ms)

Fully Connected Pipeline(ms)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 16 (2017) pp. 6076-6090

© Research India Publications. http://www.ripublication.com

6090

File System using Cache Approach.Vol.1, pp.1-6, 2014

[8] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li,

Ying Li, " Hadoop High Availability through Metadata

Replication", IBM China Research Laboratory, ACM,

pp 37-44 ,2009.

[9] Ellis Horowitz and Sartaj Sahni, Sanguthevar

Rajasekaran, Fundamentals of Computer Algorithms,

Galgotia Publications , 2010

[10] John Ousterhout, Parag Agrawal, David Erickson,

Christos Kozyrakis, Jacob Leverich, David Mazières,

Subhasish Mitra, Aravind Narayanan, Guru Parulkar,

Mendel Rosenblum, Stephen M. Rumble, Eric

Stratmann, and Ryan Stutsman “The Case for

RAMClouds: Scalable High-Performance Storage

Entirely in DRAM” Department of Computer Science

Stanford University, Vol. 43, No. 4, pp. 92-105,

December 2009,

[11] Hong Zhang1, Liqiang Wang1, and Hai Huang2,

"SMARTH: Enabling Multi-pipeline Data Transfer in

HDFS", in: Proc of. Parallel Processing (ICPP), 2014

43rd International Conference on, HDFS DataTransfer,

[12] J. Shafer and S Rixner (2010), "The Hadoop distributed

file system: balancing portability and performance”, In

2010 IEEE International Symposium on Performance

Analysis of System andSoftware (ISPASS2010), White

Plains, NY, Pp.122-133, March 2010.

[13] SAM R. ALAPATI , Expert Hadoop Administration,

Managing , Tuning and Securing Spark, YARN , and

HDFS, Addision Wesley Data Analytics series, 2017.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6955014
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6955014

