
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 14 (2017) pp. 4282-4285

© Research India Publications. http://www.ripublication.com

4282

Visual Analytics of Millions of GPU Threads

SeongKi Kim1,* and HyukSoo Han2

Sangmyung University,

20, Hongjimun 2-gil, Jongno-gu, Seoul, Republic of Korea

*Corresponding author

1Orcid: 0000-0002-2664-3632, 2Orcid: 0000-0003-2369-7202

Abstract

Although the GPGPU has been widely used in various fields

for algorithms acceleration, it is notorious for its programming

difficulties because of many different concepts from general

CPU programming and issues from the huge number of

concurrent threads. In order to verify GPGPU software, we

have developed a visualization tool known as GPGPU-Vis,

which shows the run-time actions of all threads. However, it is

still challenging to visualize millions of threads, due to time and

memory limitations. To successfully visualize them, we

propose reduction methods for threads containing duplicated

information. Our methods can reduce the number of threads

from millions to only one in many cases, and we can effectively

visualize GPGPU software within given resource limitations.

Through the suggested reduction methods, our tool can

visualize the millions of threads with a minimum information

loss, can help verifying the GPGPU software.

Keywords: Visualization, GPGPU, GPU, Thread, Verification

INTRODUCTION

With GPU performance improvements and the advent of

GPGPU, GPGPU programming has recently been widely

applied in various fields. In artificial intelligence, the GPU has

been used to accelerate deep learning [1] and machine learning

[2]. In the graphics field, the GPU has been used for collision

culling among millions of objects [3], as well as intersection

tests among the ray and objects [4]. Furthermore, the GPU has

been applied to supercomputing, and many GPU-based

supercomputers are listed in the Top500 [5].

However, GPGPU programming is notorious for its difficulties

in the aspects of logic and intervention. In terms of logic, the

GPU threads exhibit different characteristics from those of the

CPU, in that the GPU threads in the same group run the same

code by means of a lockstep method. A further difference in the

logic is that communication through memory is not guaranteed,

because inter-group memory coherency is not supported. The

number of threads and group size are also different to those of

general CPU threads. When running GPU threads, the number

and size should be specified, as these affect software behavior.

Moreover, interventions among threads can cause many

problems, an example of which is the data race. This occurs

when two or more threads access the same memory location,

and one of these is write access. The second intervention

example is the barrier divergence that occurs when certain

threads run a barrier function and other threads do not execute

this function. The results of barrier divergence are unexpected

from vendors to vendors, due to no mention of this in the

specification. Deadlock as a result of the lockstep execution is

the third intervention issue, which occurs when certain threads

in a group can exit a loop, but others cannot. In this case, no

threads are able to exit the loop due to the GPU’s lockstep

execution.

In order to alleviate these difficulties for developers and aid in

verifying GPGPU software, we developed the GPGPU-Vis,

which is a visualization tool, and evaluated it using a variety of

GPGPU software. This tool can assist in analyzing the actions

of each thread, as well as detecting the data race, barrier

divergence, and deadlock. However, when attempting to

visualize software with millions of threads, the tool requires a

long time or fails, because it must check every instance of

memory access and monitor every executed instruction

(millions of threads are common in a lot of GPGPU software).

Moreover, when an HTML browser shows developers the

visualization results, it also requires a great deal of time

because the browser needs to parse the generated HTML files

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 14 (2017) pp. 4282-4285

© Research India Publications. http://www.ripublication.com

4283

Figure 1. Overall architecture of GPGPU-Vis.

by millions of threads, and display the results on a webpage.

This paper makes the following contributions to GPGPU

software research. Firstly, we propose a novel method for

reducing the number of threads requiring additional analysis.

Secondly, we propose a novel method for reducing the number

of visualizing threads with duplicated information. Thirdly, we

successfully visualize the kernels (GPGPU codes executed)

with millions of threads by means of the proposed methods.

The remainder of this paper is organized as follows. Section 2

describes the GPGPU-Vis, which is a visualization tool of GPU

threads. Section 3 describes our thread reduction methods and

demonstrates the results, and our conclusion is provided in

section 4.

GPGPU-Vis

The GPGPU-Vis is a visualization tool for GPGPU software,

and its overall architecture is illustrated in Fig. 1.

In Fig. 1, it can be seen that the GPGPU-Vis is largely

composed of two subcomponents: a visualization plugin and

reporting tool. When the Oclgrind [6] runs GPGPU software

with a plugin option, it calls the plugin, which records a

timeline, data race, barrier divergence, and deadlock, and then

generates visualization data including the detected information.

The reporting tool reads the visualization data and generates an

HTML file that uses the vis.js [7] library for visualization. Once

the reporting tool has created the HTML file, the results can be

observed through any HTML browser.

In our experiments, the architecture shown in Fig. 1 can

successfully visualize results if the number of threads is less

than 256 and the analyzed kernel is simple. However, when the

number is more than 256 or the kernel is complex, the analysis

is lengthy or fails due to memory limitations. Even if the tool

successfully visualizes the results, it is challenging to

investigate 256 or more threads in an HTML page, and

investigations are error-prone.

However, a great deal of GPGPU software contains millions of

threads and hundreds of lines. Table 1 below displays the

number of threads and the lines of code in the Rodinia

benchmark [8]. In Table 1, we include the maximum number of

threads if the software calls several kernels.

Table 1 indicates that the software uses a large number of

threads and OpenCL kernels with lengthy lines of code. In

particular, the numbers of threads and groups are ten of millions

and tens of thousands, respectively, in the pathfinder case, and

it is therefore difficult to visualize all of the threads. Even if we

can visualize all of the threads, it is still challenging to

investigate all of the actions of each thread. This paper

describes methods that can simplify the enormous number of

threads and the resulting displayed threads. In Table 1, ∞

indicates that the software does not specify the number of

threads in a group, and in this case, the OpenCL

implementation internally determines the group size.

Figure 2. Visualization of bfs software.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 14 (2017) pp. 4282-4285

© Research India Publications. http://www.ripublication.com

4284

Figure 3. Visualization of backprop software.

Table 1. Numbers of threads and groups.

Name
Number of

Threads

Number of

Groups

Line of

codes

b+tree 2560000 10000 220

backprop 1048576 4096 90

bfs 1000192 3907 50

cfd 388608 2024 284

dwt2d 1048576 4096 707

gaussian 65536 ∞ 49

heartwall 13056 51 2235

hotspot 473344 1849 115

hotspot3D 262144 1024 50

kmeans 494080 1930 61

lavaMD 128000 1000 284

leukocyte 104448 408 581

lud 1016064 3969 162

myocyte 4 2 1445

nn 42816 ∞ 21

nw 2048 128 202

particlefilter 400384 782 752

pathfinder 10000000 10000 116

srad 230144 899 346

streamcluster 3145728 12288 68

THREAD REDUCTION

In order to reduce the results of the GPGPU-Vis described in

section 2 with minimal information loss, we use two-level

approaches for the analysis and visualization aspects.

Reduction of Analyzed Threads

In GPGPU programming, global synchronization among

different groups is not guaranteed. As a result, GPU developers

write code that each group runs independently, without any

inter-group communication. Because of this separated

characteristic of GPGPU programming, we decrease the

number of groups to only one, in order to reduce the analyzed

threads, because all of the groups run the same GPGPU kernel.

This means that the number of analyzed threads can be reduced

to the number of threads in a given group. If the number is zero

(for example, as in the gaussian and nn cases in Table 1), we

use the size internally determined by the OpenCL

implementation.

Reduction of Visualized Threads

Even if the number of analyzed threads can be reduced, certain

software still includes many threads that need to be visualized.

In particular, the pathfinder contains a complex kernel and a

thousand threads within a single group. Due to time and

memory limitations, it is still challenging to visualize all of the

threads. Therefore, we also remove duplicated information if a

thread runs the same instruction sequences as the previous ones.

For example, if thread 2 runs the same series as thread 1, thread

2 is not displayed.

Implementation and Results

When implementing the reductions described in this section,

we modified the tested software and GPGPU-Vis. In the tested

software, we adjusted the number of threads to the group size,

so that only one thread group is run. We furthermore modified

the GPGPU-Vis to generate an HTML file that skips the

instructions if a thread runs the same instructions as the

previous thread. When running the software displayed in Table

1, only the bfs and backprop were successfully executed on the

Oclgrind; therefore, we used this software for our reduction

verification. The bfs and backprop with millions of threads are

displayed in Fig. 2 and Fig. 3.

In the bfs and backprop cases, the thread numbers are 1000192

and 1048576, respectively. However, we decrease these

numbers to 256 by reduction of analyzed threads and 1 by

reduction of visualized threads, respectively.

CONCLUSIONS

It is known to be difficult to develop GPGPU code because of

different behaviors from general CPU code. To relieve the

burden of GPGPU researchers and developers, we developed

the GPGPU-Vis, which can visualize run-time actions.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 14 (2017) pp. 4282-4285

© Research India Publications. http://www.ripublication.com

4285

However, when attempting to use the GPGPU-Vis in a variety

of GPGPU software, a great deal of time is required, and it is at

times impossible to store all instances of memory access.

Furthermore, it is challenging to investigate all of the threads,

because the thread number is more than a million and computer

resources have limitations.

In order to address this issue without any information loss, we

reduce the number of analyzed threads and visualized threads.

We applied the general concepts that each group independently

runs the same code without any inter-communication, and most

threads execute the same series of code. Through the reduction

of duplicated information, we can successfully visualize

GPGPU programs with millions of threads. To the best of our

knowledge, this paper provides the first research to realize the

visualization of millions of threads in the GPU.

ACKNOWLEDGEMENT

This research was supported by the MSIP (Ministry of Science,

ICT and Future Planning), Korea, under the ITRC (Information

Technology Research Center) support program (2015-0-00445)

supervised by the IITP (Institute for Information &

communications Technology Promotion), and NRF in Korea

(2015R1C1A1A01051839).

REFERENCES

[1] H. Cui, H. Zhang, G.R. Ganger, P.B. Gibbons, E.P.

Xing, GeePS: Scalable Deep Learning on Distributed

GPUs with a GPU-specialized Parameter Server, in:

Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, ACM, New York,

NY, USA, 2016, pp. 1-16.

[2] J. Jia, P. Kalipatnapu, Y. Yang, Building a Distributed,

GPU-based Machine Learning Library, Tech. Rep.

UCB/EECS-2016-112, EECS Department, University

of California, Berkeley (May 2016).

[3] F. Liu, T. Harada, Y. Lee, Y.J. Kim, Real-time

Collision Culling of a Million Bodies on Graphics

Processing Units, ACM Trans. Graph. 29 (6) (2010)

154:1-154:8.

[4] V. Shumskiy, Transactions on computational science

xix, Springer-Verlag, Berlin, Heidelberg, 2013, Ch.

GPU Ray Tracing: Comparative Study on Ray-

triangle Intersection Algorithms, pp. 78-91.

[5] Top500, Top 500 the list. @ONLINE (Mar. 2017).

URLhttps://www.top500.org/lists/2016/11/

[6] J. Price, S. McIntosh-Smith, Oclgrind: An Extensible

OpenCL Device Simulator, in: Proceedings of the 3rd

International Workshop on OpenCL, IWOCL '15,

ACM, New York, NY, USA, 2015, pp. 12:1–12:7.

[7] vis.js. @ONLINE (Mar. 2017). URLhttp://visjs.org/

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer,

S.-H. Lee, K. Skadron, Rodinia: A Benchmark Suite

for Heterogeneous Computing, in: Proceedings of

IEEE International Symposium on Workload

Characterization (IISWC), 2009, pp. 44-54.

