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Abstract 

Although the GPGPU has been widely used in various fields 

for algorithms acceleration, it is notorious for its programming 

difficulties because of many different concepts from general 

CPU programming and issues from the huge number of 

concurrent threads. In order to verify GPGPU software, we 

have developed a visualization tool known as GPGPU-Vis, 

which shows the run-time actions of all threads. However, it is 

still challenging to visualize millions of threads, due to time and 

memory limitations. To successfully visualize them, we 

propose reduction methods for threads containing duplicated 

information. Our methods can reduce the number of threads 

from millions to only one in many cases, and we can effectively 

visualize GPGPU software within given resource limitations. 

Through the suggested reduction methods, our tool can 

visualize the millions of threads with a minimum information 

loss, can help verifying the GPGPU software. 
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INTRODUCTION 

With GPU performance improvements and the advent of 

GPGPU, GPGPU programming has recently been widely 

applied in various fields. In artificial intelligence, the GPU has 

been used to accelerate deep learning [1] and machine learning 

[2]. In the graphics field, the GPU has been used for collision 

culling among millions of objects [3], as well as intersection 

tests among the ray and objects [4]. Furthermore, the GPU has 

been applied to supercomputing, and many GPU-based 

supercomputers are listed in the Top500 [5]. 

However, GPGPU programming is notorious for its difficulties 

in the aspects of logic and intervention. In terms of logic, the 

GPU threads exhibit different characteristics from those of the 

CPU, in that the GPU threads in the same group run the same 

code by means of a lockstep method. A further difference in the 

logic is that communication through memory is not guaranteed, 

because inter-group memory coherency is not supported. The 

number of threads and group size are also different to those of 

general CPU threads. When running GPU threads, the number 

and size should be specified, as these affect software behavior. 

Moreover, interventions among threads can cause many 

problems, an example of which is the data race. This occurs 

when two or more threads access the same memory location, 

and one of these is write access. The second intervention 

example is the barrier divergence that occurs when certain 

threads run a barrier function and other threads do not execute 

this function. The results of barrier divergence are unexpected 

from vendors to vendors, due to no mention of this in the 

specification. Deadlock as a result of the lockstep execution is 

the third intervention issue, which occurs when certain threads 

in a group can exit a loop, but others cannot. In this case, no 

threads are able to exit the loop due to the GPU’s lockstep 

execution. 

In order to alleviate these difficulties for developers and aid in 

verifying GPGPU software, we developed the GPGPU-Vis, 

which is a visualization tool, and evaluated it using a variety of 

GPGPU software. This tool can assist in analyzing the actions 

of each thread, as well as detecting the data race, barrier 

divergence, and deadlock. However, when attempting to 

visualize software with millions of threads, the tool requires a 

long time or fails, because it must check every instance of 

memory access and monitor every executed instruction 

(millions of threads are common in a lot of GPGPU software). 

Moreover, when an HTML browser shows developers the 

visualization results, it also requires a great deal of time 

because the browser needs to parse the generated HTML files  
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Figure 1. Overall architecture of GPGPU-Vis. 

 

by millions of threads, and display the results on a webpage. 

This paper makes the following contributions to GPGPU 

software research. Firstly, we propose a novel method for 

reducing the number of threads requiring additional analysis. 

Secondly, we propose a novel method for reducing the number 

of visualizing threads with duplicated information. Thirdly, we 

successfully visualize the kernels (GPGPU codes executed) 

with millions of threads by means of the proposed methods. 

The remainder of this paper is organized as follows. Section 2 

describes the GPGPU-Vis, which is a visualization tool of GPU 

threads. Section 3 describes our thread reduction methods and 

demonstrates the results, and our conclusion is provided in 

section 4. 

 

GPGPU-Vis 

The GPGPU-Vis is a visualization tool for GPGPU software, 

and its overall architecture is illustrated in Fig. 1. 

In Fig. 1, it can be seen that the GPGPU-Vis is largely 

composed of two subcomponents: a visualization plugin and 

reporting tool. When the Oclgrind [6] runs GPGPU software 

with a plugin option, it calls the plugin, which records a 

timeline, data race, barrier divergence, and deadlock, and then 

generates visualization data including the detected information. 

The reporting tool reads the visualization data and generates an 

HTML file that uses the vis.js [7] library for visualization. Once 

the reporting tool has created the HTML file, the results can be 

observed through any HTML browser. 

In our experiments, the architecture shown in Fig. 1 can 

successfully visualize results if the number of threads is less 

than 256 and the analyzed kernel is simple. However, when the 

number is more than 256 or the kernel is complex, the analysis 

is lengthy or fails due to memory limitations. Even if the tool 

successfully visualizes the results, it is challenging to 

investigate 256 or more threads in an HTML page, and 

investigations are error-prone. 

However, a great deal of GPGPU software contains millions of 

threads and hundreds of lines. Table 1 below displays the 

number of threads and the lines of code in the Rodinia 

benchmark [8]. In Table 1, we include the maximum number of 

threads if the software calls several kernels. 

Table 1 indicates that the software uses a large number of 

threads and OpenCL kernels with lengthy lines of code. In 

particular, the numbers of threads and groups are ten of millions 

and tens of thousands, respectively, in the pathfinder case, and 

it is therefore difficult to visualize all of the threads. Even if we 

can visualize all of the threads, it is still challenging to 

investigate all of the actions of each thread. This paper 

describes methods that can simplify the enormous number of 

threads and the resulting displayed threads. In Table 1, ∞ 

indicates that the software does not specify the number of 

threads in a group, and in this case, the OpenCL 

implementation internally determines the group size. 

 

 

 

Figure 2. Visualization of bfs software. 
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Figure 3. Visualization of backprop software. 

 

Table 1. Numbers of threads and groups. 

Name 
Number of 

Threads 

Number of 

Groups 

Line of 

codes 

b+tree 2560000 10000 220 

backprop 1048576 4096 90 

bfs 1000192 3907 50 

cfd 388608 2024 284 

dwt2d 1048576 4096 707 

gaussian 65536 ∞ 49 

heartwall 13056 51 2235 

hotspot 473344 1849 115 

hotspot3D 262144 1024 50 

kmeans 494080 1930 61 

lavaMD 128000 1000 284 

leukocyte 104448 408 581 

lud 1016064 3969 162 

myocyte 4 2 1445 

nn 42816 ∞ 21 

nw 2048 128 202 

particlefilter 400384 782 752 

pathfinder 10000000 10000 116 

srad 230144 899 346 

streamcluster 3145728 12288 68 

 

THREAD REDUCTION 

In order to reduce the results of the GPGPU-Vis described in 

section 2 with minimal information loss, we use two-level 

approaches for the analysis and visualization aspects. 

 

Reduction of Analyzed Threads 

In GPGPU programming, global synchronization among 

different groups is not guaranteed. As a result, GPU developers 

write code that each group runs independently, without any 

inter-group communication. Because of this separated 

characteristic of GPGPU programming, we decrease the 

number of groups to only one, in order to reduce the analyzed 

threads, because all of the groups run the same GPGPU kernel. 

This means that the number of analyzed threads can be reduced 

to the number of threads in a given group. If the number is zero 

(for example, as in the gaussian and nn cases in Table 1), we 

use the size internally determined by the OpenCL 

implementation. 

 

Reduction of Visualized Threads 

Even if the number of analyzed threads can be reduced, certain 

software still includes many threads that need to be visualized. 

In particular, the pathfinder contains a complex kernel and a 

thousand threads within a single group. Due to time and 

memory limitations, it is still challenging to visualize all of the 

threads. Therefore, we also remove duplicated information if a 

thread runs the same instruction sequences as the previous ones. 

For example, if thread 2 runs the same series as thread 1, thread 

2 is not displayed. 

 

Implementation and Results 

When implementing the reductions described in this section, 

we modified the tested software and GPGPU-Vis. In the tested 

software, we adjusted the number of threads to the group size, 

so that only one thread group is run. We furthermore modified 

the GPGPU-Vis to generate an HTML file that skips the 

instructions if a thread runs the same instructions as the 

previous thread. When running the software displayed in Table 

1, only the bfs and backprop were successfully executed on the 

Oclgrind; therefore, we used this software for our reduction 

verification. The bfs and backprop with millions of threads are 

displayed in Fig. 2 and Fig. 3. 

In the bfs and backprop cases, the thread numbers are 1000192 

and 1048576, respectively. However, we decrease these 

numbers to 256 by reduction of analyzed threads and 1 by 

reduction of visualized threads, respectively. 

 

CONCLUSIONS 

It is known to be difficult to develop GPGPU code because of 

different behaviors from general CPU code. To relieve the 

burden of GPGPU researchers and developers, we developed 

the GPGPU-Vis, which can visualize run-time actions. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 14 (2017) pp. 4282-4285 

© Research India Publications.  http://www.ripublication.com 

4285 

However, when attempting to use the GPGPU-Vis in a variety 

of GPGPU software, a great deal of time is required, and it is at 

times impossible to store all instances of memory access. 

Furthermore, it is challenging to investigate all of the threads, 

because the thread number is more than a million and computer 

resources have limitations. 

In order to address this issue without any information loss, we 

reduce the number of analyzed threads and visualized threads. 

We applied the general concepts that each group independently 

runs the same code without any inter-communication, and most 

threads execute the same series of code. Through the reduction 

of duplicated information, we can successfully visualize 

GPGPU programs with millions of threads. To the best of our 

knowledge, this paper provides the first research to realize the 

visualization of millions of threads in the GPU. 
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