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Abstract 

Residential and commercial buildings have contributed 
significantly to the total energy demand and are responsible of 
about 40% of primary energy demanded in developed 
countries. D, there is growing interest for development of 
tools to evaluate the energy performance of buildings and to 
identify the parameters with significantly influence in future 
energy demand. This article presents the application of a 
training algorithm which could improve accuracy and 
interpretability of data, through a fuzzy singleton model, for 
the prediction of heating load and cooling load in residential 
buildings  

Keywords: building energy performance, estimation of 
energy performance, heating load, cooling load, fuzzy model. 

 

INTRODUCTION 

According to the U.S Energy Information Administration 
(EIA) in 2016, about 40% of total U.S. energy consumption 
was consumed in residential and commercial buildings, 
butjust about 21% was consumed in residential buildings. 
Besides this, according to information supplied by European 
Commission in 2016, buildings are responsible for 40% of 
energy consumption and 36% of CO2 emissions in the 
European Union EU.  

The constant use of air conditioners and heaters result in high 
levels of energy consumption in residential buildings. In order 
to reduce the use of such equipment, energy-efficient 
buildings able to maintain the desired indoor climate 
conditions should be designed, considering estimation and 
analyzing of heating and cooling loads [1], [2]. One of the 
most important aspect for designing energy efficient buildings 
is to identify the parameters with significantly influence in 
future energy demand, for instance: overall height, relative 
compactness, surface area, wall area, roof area, orientation, 
glazing area, and glazing area distribution of building [3]. 

Recently, there is growing interest for the development of 
approach for predicting energy performance of residential 
buildings [4], [5].Many techniques have been proposed for 
modeling building energy demand. Some of these techniques 

are based on traditional regression methods [6], statistical 
linear regression model, which focus on demographic, 
household behavior and building appliance influences on 
household electricity demand [7], least square support vector 
machine (LS-SVM) [3], Incremental Radial Basis Function 
Network (IRBFN), designing a Linear Regression LR as a 
global model and refining it through local RBFN [8], Bees 
Algorithm, a nature-inspired intelligent optimization method 
based on the foraging behavior of honey bees [9]. 

This article is organized as follows: Section2 presents a 
description of the data set which has been used for training 
and testing of fuzzy models. Section 3 describes how the 
fuzzy model is trained. Section 4 shows the obtained results 
and a comparison between the proposed system and other 
state-of-the-art methods. Finally, Section 5 summarizes the 
contributions of this research. 

 

DATA SET DESCRIPTION  

The dataset comprises 768 samples and 8 features, aiming to 
predict two real valued responses (heating load and cooling 
load). It could also be used as a multi-class classification 
problem if the response is rounded to the nearest integer. This 
dataset performs energy analysis using 12 different building 
shapes. As there are two responses, it could be derived two 
datasets from it. The features are reported in Table 1. 

Table 1: Input variables(Attributes) 

Item Variable Discrete 
Values 

Range 

1 Relative Compactness 12 [0.62, 0.98] 

2 Surface Area 12 [514.5, 808.5]

3 Wall Area 7 [245.0, 416.5]

4 Roof Area 4 [110.25, 220.5]

5 Overall Height 2 [3.5, 7.0] 

6 Orientation 4 [2.0, 5.0] 

7 Glazing Area 4 [0.0, 0.4] 

8 Glazing Area Distribution 6 [0.0, 5.0] 
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Table 2: Responses  

Item Outcome Mean Range 

1 Heating Load 22.3072 [6.01, 43.10] 

2 Cooling Load 24.5878 [10.9, 48.03] 

 

The prediction task is to use various building characteristics, 
such as a surface area and a roof area, in order to predict the 
energy efficiency of a building, which is expressed in the form 
of two different metrics—heating load and cooling load. All 
experiments were completed with a typical 60%–40% split 
between the training and testing data subsets. 

 

FUZZY MODEL 

The fuzzy algorithm used in this research has been applied in 
the identification and classification of problems [10]-[12]. For 
each input variable an uniform partition was built using 

normalized triangular sets with overlapping of 0.5 between 
two successive fuzzy sets. There were two triangular 
membership functions with their modal values placed in the 
minimum and the maximum of the universe of discourse. This 
fuzzy partition was considered a Strong Fuzzy Partition (SFP) 
because it satisfies the following semantic constraints [13]: 
distinguishability; overlapping in 0.5; coverage; normality; 
convexity and the number of fuzzy set is no upper than 
9.Fuzzy singletons were used for the consequent membership 
functions. 

For each triangular membership function of each input 
variable a singleton consequent was generated and there were 
so many rules as singleton consequents (or triangular 
membership function). Therefore, the distribution of the 
membership functions generated p x n rules, where p is the 
number of input variables and n is the number of membership 
functions for each input variable. 

The inference formula of the singleton fuzzy model proposed 
is given by 
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The previous equations could be expressed in a matricial form as 
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Given a collection of experimental input and output data 
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(a) (b) 

 

Figure 2. Root Mean Square Error between the output of fuzzy model and the responses: heating load (a) and cooling load (b) 

 

The best option was 7 triangular membership funtios for each 
input: Relative Compactness and Surface Area. 

The figure 3, shows a comparison between the output of the 
fuzzy model (o) and the real value of load, heating and 
cooling. 

 

 

 

(a) 

 

 

(b) 

 

Figure 3. Prediction performance for heating load (a) and cooling load (b) in training process 
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The resulting fuzzy model has the following specifications:  

Table 3:FuzzyModel 

Variable Number of Triangular 
Membership Functions

Number of singleton 
 consequents 

Relative Compactness 12 12 

Surface Area 12 12 

Wall Area 7 7 

Roof Area 4 4 

Overall Height 2 2 

Orientation 4 4 

Glazing Area 4 4 

Glazing Area Distribution 6 6 

Number of rules 51 

 

Table 4: Comparison results of fuzzymodel for prediction of heating load [8] 

Method 
 

RMSE 
(Training) 

RMSE 
(Testing) 

LR 2.936 2.911 

MLP 2.833 2.890 

RBFN 3.707 5.199 

RBFN(CFCM) 2.767 3.106 

LM 4.084 4.388 

IRBFN LSE 2.284 2.826 

IRBFN BP 2.353 2.730 

Our approach 0.9608 1.217 

 

Table 5: Comparison results of fuzzymodel for prediction of cooling load [8] 

Method 
 

RMSE 
(Training) 

RMSE 
(Testing) 

LR 3.180 3.208 

MLP 3.176 3.226 

RBFN 3.601 4.812 

RBFN(CFCM) 2.866 3.388 

LM 3.866 4.296 

IRBFN LSE 2.462 3.102 

IRBFN BP 2.555 3.089 

Our approach 1.3057 1.745 
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CONCLUSIONS 

In thisstudy, a fuzzy identification algorithm for the prediction 
of energy performance of residential buildings was proposed. 
The method guarantees the completeness of the rule base and 
it constrains the exponential growth of the rule base as the 
number of inputs increases as it occurs with classical methods. 
This is becausethe proposed method generated p x n rules, 
where p is the number of input variables and n is the number 
of membership functions for each input variable. Each fuzzy 
region was covered with a fuzzy rule and there was no 
redundancy in the rule base. The results showedthat fuzzy 
models obtained could predict the heating load and cooling 
load of residential buildings with reasonable accuracy. 

For further research, we propose to include in the fuzzy 
identification algorithm the gradient descent method to adjust 
triangular membership function. The triangular membership 
functions are parameterized by using only their modal values 
for preserving the overlap of 0.5 and to reduce the number of 
parameters to be tuned. 
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