
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 9 (2015) pp. 22651-22662

© Research India Publications

http://www.ripublication.com

Enriching Packet Aggregation Mechanism Based on Cloud

Services I/O Virtualization

Dr. S. Selvakani
1
, J.Nelson

2

1
Professor and Head,

2
 PG Scholar

Department of Computer Applications, Francis Xavier Engineering College,

Tirunelveli, Tamilnadu, India

Abstract

The key technology that power’s cloud computing virtualization. Aggregation

algorithm combine several small packets into larger packet and forward to an

aggregation target. In the network I/O virtualization model, to increase the

throughput and decrease the delay, a packet aggregation mechanism is used. It

reduces the memory creation in virtual machine monitor. Because the packets

are combined using the MAC address of the packets. A survey of the packet

aggregation mechanism has been analyzed in this paper.

Keyword: Virtualization, XEN, Driver Domain, Cloud Computing,

Networking Performance

Introduction
Cloud computing is changing the way of computer world operates and it’s a profit by

providing infrastructure and software as chargeable services delivered over the

internet. Virtualization enables the cloud computing. Virtualization helps to achieve

greater system utilization and total cost of ownership, responding more effectively to

changing conditions in government and organizations. Virtualization technique to run

multiple and isolated virtual machines on a single physical machine.

 The driver domain is a special virtual machine that is in charge of managing the

shared access to the devices, especially the network interface card(NIC).The driver

handles networking by multiplexing incoming traffic. The additional layer in the

packets path produces an extra overhead. The I/O mechanism of virtual machine

monitor consists in copying the packet to the shared memory between the driver

domain and the virtual machine.

 We proposed packet aggregation for networking performance enhancement. In the

packet aggregation mechanism the detail study of throughput and delay jitter are

provided.

22652 Dr. S. Selvakani

Terminologies:

Virtualization

In computing refers the creation of virtual. Version of operating system, Storage

devices.

Network Virtualization

Network Virtualization is the process combining hardware and software network

resources and network functionality into a single , software-based administrative

entity a virtual network.

Packet Aggregation

Packet aggregation is the process of joining multiple packets together into a single

transmission unit. In order to reduce the overhead associated with each transmission.

Queuing Theory

Queuing theory is a collection of mathematical models of various queuing system.

exceeds the capacity Queues or waiting lines are arise when demand for a service

facility of that facility.

Packet Aggregation Algorithm

The packet aggregation algorithm used to aggregate the packet based on the MAC

address. Based on the network we can assign the MAC address for packet and then

aggregate the packet.

Figure: Flow chart for packet Aggregation

Enriching Packet Aggregation Mechanism Based on Cloud Services I/O et.al. 22653

 Assume that packets are transferred from the driver domain to virtual machine.

Packet aggregation is based on the MAC destination address. The packet aggregation

is divided into two parts. They are container and unloader. Based upon the incoming

packet the container generator module remover its MAC header and it checks if a

container with same MAC destination is already waiting to be transferred to the net

front. The container generator module checks the total size of the container. It

examine the maximum allowed size of the container after adding the incoming packet,

the packet is transferred to the destination through the shared memory. Then the

generator creates a new container with the same MAC header of that incoming packet.

Packet Aggregation Model

Packet aggregation algorithms combine several small packets into one larger packet

and forward to an aggregation target. It is used to construct trains of packets. The

packet aggregation mechanism consists of two modules. They are container and

module. Containers used to transfer the packets between netback and net front in both

directions. In this method more data can be transferred with less memory request for

memory grants and less copies and less notifications. In packet aggregation methods

transferred packets first assembled in containers. Then containers are transferred

through the event channel to destination. Packet aggregation is based on their MAC

destination address. The original packets will be retrieved in the destination. The

packet aggregation is then performed in one side and their extraction in the other one.

Figure: Packet Aggregation Model

 Figure shows the architecture of packet aggregation model. It consists of two

modules container and unloader. When the network interface card has the packets it

raises the interrupt, if the physical driver needs the interrupt of the NIC directly it

must pass through the virtual machine monitor. So the virtual machine monitor raises

the virtual interrupt for the NIC in the driver domain. Upon receiving the virtual

interrupt the physical driver sends the packet to the Ethernet Bridge. The Ethernet

Bridge demultiplexes the packets based on its Ethernet address and delivers to the

22654 Dr. S. Selvakani

appropriate netback interface. The netback driver sends the packet to the net front,

over an I/O channel.

 Packets aggregation is based on their MAC destination address. Upon the arrival of

a packet, the container generator module removes its MAC header and checks

whether a container with that same MAC destination is already waiting to be

transferred to the net front. The container generator checks whether the total size of

the container would exceed the maximum allowed size of the container after adding

the incoming packet. The container is transferred to the destination through the shared

memory according to event channel mechanism. In the case where no container is

available to carry the packet, the container generator creates a new container with the

same MAC header of the arriving packet. The Unloader is the component that unloads

the received container at the destination to extract the packets. It removes its MAC

header and retrieves the packets one by one based on their offset. Packets are then

processed by the upper layer. Packets transferred from the VM to the driver domain

follow the opposite path.

Software Router Architecture
Software router architecture [7] that parallelizes router functionality both across

multiple servers and across multiple cores with single server. In current networking

equipment the important goal are high performance and programmability. Next goals

are high-end routers, because they rely on specialized and closed hardware and

software, and they are difficult to expand and program. Software routers perform

packet processing in software running on general-purpose platform. They are easily

programmable. But they are only suitable for low-packet rate environments.

 There are multiple challenges in building a high speed out of pc. They are

performance, power and space consumption, then choosing the light programming

model .Para virtualization across servers allows us to incrementally scale out router

capacity by adding more servers. The role of the router is to receive the packets

arriving at all thee ports, process them and transfer each incoming packet from its

input port to the corresponding output port. The routers functionality can be divided

into two tasks. They are packet processing and packet switching. Existing software

routers, follow an single server as router. The requirement of parallelism is to allow

each individual server can met with existing or at least upcoming server models. The

server and link technology narrow options to solutions based on load-balanced

interconnects. In this each node can independently make packet routing and dropping

decisions for a subset of the router’s overall traffic. A witching solution involves

selecting an interconnect topology with adequate capacity and a routing algorithm that

selects the path each packet takes from its input to output port.

Click Modular Router
Click [3] a flexible modular software architecture for creating routers. They are build

from fine grained components. The components are packet processing module called

elements. To build a router configuration, the user chooses a collection of elements

Enriching Packet Aggregation Mechanism Based on Cloud Services I/O et.al. 22655

and connects them into a graph. The graph’s edges, which are called connections,

represent possible path for packet handoff. Click configuration are modular and easy

to extend. Click architecture were directly inspired by properties of routers. They are

packet hand off and flow based router context mechanism.

 A click element represents a unit of router processing. An element represents a

conceptually simple computation such as decrementing an IP packet’s time to live

,rather than a large, complex computation such as IP routing. Inside a running router,

each element is a c++ object that may contain private state. The important properties

of an element are element class ,ports, configuration string, method interface.

 Click supports two kinds of connection, PUSH and PULL. On a push connection,

packets start at the source element and are passed downstream to the destination. On a

pull connection, the destination element initiates packet transfer. It asks the source

element to return a packet, or a null pointer if no data packet is available. A click

packet scheduler is simply an element with one pull output and multiple pull inputs.

An elements responds to a pull request by choosing one of its input, making a pull

request to that input and returning the packet receives.

 The element is click’s unit of CPU scheduling as well as its unit of packet

processing. A task can initiate an arbitrary sequence of PUSH and PULL connections

or requests. Task handles timer events . Each element can have any number of active

timers, each timer calls an arbitrary method when it fails.

Safe Hardware Interface With XEN
Safe hardware interface,[5] is an isolation architecture which allows unmodified

device drivers to be shared across isolated operating system instances, while

protecting individual operating systems and the system a a whole, from driver failure.

Xen ,an X86 –based virtual machine manager designed specifically targeting two

utility based computing environments. They are organizational compute data centers

and global scale compute utilities. The basic requirements of Xen are reliable

execution of operating system instances, hard isolation and accounting and

management for the underlying physical resources. Device drivers are used to identify

the system bugs and system failures. The sharing of devices raises the stakes of driver

dependability in a strong way. To avoid this problem a safe hardware interface has

been developed. It allows the containment of practically all driver failures by limiting

the driver’s access to the specific hardware resources(memory, interrupts, I/O

ports)necessary for its operation

22656 Dr. S. Selvakani

Figure: Design of Safe Hardware Model

 Safe hardware model comprises three parts. First I/O spare which arrange that

devices perform their work in isolation from the test of the system. It increases the

reliability. Second, a set of per-class unified interfaces that are implemented by all

devices of a particular type. It provides driver portability. Third, control and

management interfaces, it simplifies system configuration and diagnosis and treatment

of device problems.

Driver Domain Virtualization
The driver domain[6] is a virtual machine that runs a largely unmodified operating

system. It is able to use all of the device drivers that available for that operating

system.

 The driver domain model provide a safe execution environment for physical device

driver, enabling improved fault isolation over traditional models that locate device

driver in the virtual machine monitor. The processing overheads occur in the driver

domain virtualization limit overall I/O performance. There are two approach used for

reduce the driver domain overheads. The multi-queue network interfaces in Xen is

used to eliminate the software overheads of packet multiplexing and copying, second,

a grant reuse mechanism is used to reduce memory protection overheads. These

mechanism reduce the I/O virtualization in guest domain because these methods shift

the bottleneck from the driven domain to the guest domain.

 Figure illustrates the operation of driver domain virtualization model. When the

network packets received by the network interface card (NIC) it raises an interrupt

Enriching Packet Aggregation Mechanism Based on Cloud Services I/O et.al. 22657

when the physical driver access the NIC, the interrupt must passes through the virtual

machine monitor. So that the virtual machine monitor raises the virtual interrupt, for

the NIC in the driver domain upon receiving the virtual interrupt ,the physical driver

sends the packet to the Ethernet bridge.

Figure: Xen’s Domain Driver Architecture

 The Ethernet bridge demultiplexes the packet based on its Ethernet address and

deliver it to the appropriate netback interface. The netback driver then sends the

packet to the net front, over an I/O channel. The I/O channels allow communication

between the frontend and back end drivers using an event based mechanism.

 The Ethernet bridge demultiplexes the packet based on its Ethernet address and

deliver it to the appropriate netback interface. The netback driver then sends the

packet to the net front, over an I/O channel. The I/O channels allow communication

between the frontend and back end drivers using an event based mechanism.

Packet Aggregation Dimensioning Tool
The queuing theory will be used to model the system parameters like load, number of

concurrent VM, etc.., The analytical model is used to get the average waiting time of

the packet. The analytical model for packet aggregation consists of driver domain, the

virtual machine and shared memory.

22658 Dr. S. Selvakani

 To consider the s/m composed of a driver domain and Network virtual machine

denoted by VMi, i=1,2,…..N that exchange containers through shared memory.

Figure: Packet Aggregation Dimensioning Tool

Assumptions

Assumption 1:

If the system will be an under heavy load conditions, there will always be a container

available to be unloaded in guest domain.

Assumption 2:

The packets arrival to the driver domain follows a Poisson process with parameter µ0.

Assumption 3:

The packets are aggregated according to Poisson process with parameter µi=1,2…N.

Assumption 4:

Containers receive an exponential service of parameter α0, when they are transferred

from driver domain to virtual machine and of parameter αi, when they are transferred

from virtual machine to driver domain.

Assumption 5:

The packets extraction time is null in the driver domain as well as in the virtual

machine.

Analytical Model
Upon the arrival of a packet from the network device to the driver domain, it creates a

container with size k0 and waits for the arrival of the k0-1 packets , before the whole

container transferred through the shared memory to the destination virtual machine.

The delay between the arrival of two containers generated by the driver domain and

transferred to the shared memory corresponds to the sum of k0 random variables.

Each random variables follows an Poisson process (i.e) random variable is

exponentially distributed with parameter µ0. The sum of k0 exponential random

Enriching Packet Aggregation Mechanism Based on Cloud Services I/O et.al. 22659

variables is characterized by an Erlang distribution with parameters µ0 and k0. In the

similar way, the container size and packet delay are calculated in the virtual machine.

Packet Extraction Algorithm
The unloader is the component that unloads the receiver container at the destination to

extract the packets. It removes the MAC header and retrieves the packet one by one

based on their MAC destination address. Then the packets are processed by the upper

layer. Packets are transferred from the virtual machine to driver domain follow the

opposite path.

Figure: Packet Extraction Process

Results and Discussion

Experimental Setup

A system under test on which we use the virtual machine’s and four machines used as

traffic source and sinks.

Throughput Analysis

2000

1600

800

400

 200 400 600 800 1000 1200 1600 1800

 Figure shows the throughput for one virtual machine. The packet aggregation

mechanism significantly improves the transmission and forwarding throughputs. The

virtual machine achieves up to 1000kp/s in the case of packet forwarding. The

throughput can be achieved up to 1100kp/s.

22660 Dr. S. Selvakani

 For the four virtual machine, The throughput achieved up to 2400kp/s. The

forwarding throughput is almost increases up to 3600kp/s. For the aggregation

mechanism, the throughput increases with the number of virtual machine’s.

Delay and Jitter
Packet Delay, Jitter and Loss Rate With Native System

Packet Delay, Jitter and Loss Rate With Aggregation Based System

Future Work
In the future work, to arrange the packets in a queuing based on the priority size. So to

improve the throughput. And also to apply the segmentation scheme for the virtual

machine, When the bottleneck problem will reduced. And also to improve the

networking performance.

Enriching Packet Aggregation Mechanism Based on Cloud Services I/O et.al. 22661

Conclusion
In the next generation networking, the network virtualization place a important role in

enhance the performance. Network Virtualization is being adopted in both

telecommunication and the internet as the key attribute. Virtualization is becoming a

key technology to enable deploying efficient and cost effective cloud computing

platforms. However, current network I/O virtualization models still suffer from

performance and scalability limitations. In this paper, the survey has been provided

for improving the scalability problems to overcome this limitation, a packet

aggregation mechanism based on their MAC destination address I developed. A

packet aggregation mechanism that allows to transfer containers of packet at once. In

this survey, the packet aggregation based I/O virtualization model, packet aggregation

mechanism , and queuing theory for improving the performance of I/O virtualization

are discussed.

References

[1] A. Menon, A.L Cox, and W. Zwaenepoel, “Optimizing Network

Virtualization in Xen,” Proc. USENIX Ann. Technical Conf. (USENIX’

06), 2006.

[2] A. Menon and W. Zwaenepoel, “Optimizing TCP Receive Performance,”

Proc. USENIX Ann. Technical Conf. (USENIX ’08), 2008..

[3] E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M.F. Kasshoek, “The Click

Modular Router,” ACM Trans. Computer Systems, vol. 18, no. 3, pp. 263-

297, 2000.

[4] J.R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging the Gap

between Software and Hardware Techniques for I/O Virtualization,” Proc.

USENIX Ann. Technical Conf. (USENIX ’08), 2008

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williams,

“Safe Hardware Access with the Xen Virtual Machine Monitor,” Proc.

First Workshop Operating System and Architectural Support for the On

Demand IT Infrastructure (OASIS ’04), 2004

[6] K.K. Ram, J.R. Santos, Y. Turner, A.L. Cox, and S. Rixner, “Achieving

10 Gb/s Using Safe and Transparent Network Interface Virtualization,”

Proc. ACM SIGPLAN/SIGOPS Int’l Conf. Virtual Execution

Environments (VEE ’09), 2009.

22662 Dr. S. Selvakani

[7] M. Dobrescu, N. Egi, K. Argyraki, B.G. Chun, K. Fall, G. Iannaccone, A.

Knies, M. Manesh, and S. Ratnasamy, “Route Bricks: Exploiting

Parallelism to Scale Software Routers,” Proc. ACM SIGOPS Symp.

Operating Systems Principles (SOSP ’09), 2009]

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”

Proc. 19th ACM Symp. Operating Systems Principles (SOSP ’03), Oct.

2003.

