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Abstract 

 

This paper tackles the problem to single out the maintenance actions to be 

executed on a production system during the planned stop of given length. In 

detail, from a reliability viewpoint the system is assimilated as a series-parallel 

multi-component system and the maintenance actions need to maximize the 

system reliability up to the next planned stop. Moreover, it is assumed that 

some components reliability values are affected by vagueness within a given 

range. To solve the considered problem, an exact dynamic programming 

algorithm suitable to quickly point out the maintenance scheduling is developed 

and, moreover, it is formulated a proper parameter able to express the 

robustness of the obtained optimal solutions. Finally, a numerical example with 

reference to a complex system composed by a large number of components is 

reported. 

 

Keywords: Maintenance scheduling optimization; series–parallel systems; 

vagueness on reliability; dynamic programming algorithm. 

 

 

1. Introduction 

In the last few years, many researchers have faced some maintenance problems in the 

multi-component systems field. From a reliability point of view, these systems are 

constituted by several components arranged in a series disposition, some of which are in 

their turn parallel or parallel-series components. A wide overview about the multi-unit 
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system maintenance models developed up to 1991 is presented by Cho and Parlar 

(1991), while a complete updated survey can be found in Dekker et al. (1997) and 

Nicolai and Dekker (2006). A comprehensive literature study on maintenance policies 

of deterioration systems are reported in Lupo (2014a). 

 In the literature, the most used measure in evaluating the maintenance policy 

performance is the stationary availability of a production system. The various models 

differ for the considered objective function, that usually is the global maintenance cost, 

for the eventual constraints and for the resolution approach (Bris et al., 2003; Certa et 

al., 2012a; Tam, 2006). Nevertheless, for some systems the failure event can be 

dangerous, too expensive or even disastrous. For these reasons, being the reliability 

defines as the probability that the system operates without failure for a fixed period of 

time under stated conditions, for such systems a high reliability level is imposed. That 

being so, the reliability constitutes another meaningful parameter to assess the system 

performance (Certa et al., 2011; 2012b; Lupo, 2013). 

 This paper tackles the problem of singling out the maintenance actions to 

execute on a series-parallel system exploiting planned plant stops, for example due to 

production change, so as a given reliability value is warranted up to the next planned 

stop. 

 Cassady (2001) tackles the problem of identifying the set of elements on which 

to operate during a planned downtime between two missions, aiming to maximize the 

system reliability up to the next mission. The maintenance activities must be completed 

within a stated time and a fixed cost. The problem is formulated by a mathematical 

programming model and two numerical examples with 10 and 12 components 

respectively are reported. 

 Rajagopalan and Cassady (2006) deal with the reliability maximization for a 

system constituted by a series arrangement of subsystems, each one containing a set of 

identical parallel arranged elements. A constraint on maintenance time is considered. 

Elements have a constant failure rate and therefore maintenance action reduces to the 

replacement of those failed. The decision variable is the number of failed elements to be 

replaced for each subsystem. The problem is a non-linear knapsack problem and thus 

the Authors propose four improvements to speed up the total enumeration approach 

originally employed (Rice et al., 1998). Recently, also suitable statistical tools based on 

for attributes (Inghilleri, 2015; Lupo, 2015) or for variables (Lupo, 2014b) control 

charts are considered to support the choice of maintenance actions to be performed on a 

multi-component system. 

 When lots of failure data are available for some components or they are 

monitored, the failure probability estimation can be considered reliable. On the contrary, 

for other components, estimates could be the more vague the longer their operating time 

is. For the decision maker it is important to take into account such vagueness in order to 

single out the best solution. In detail, such a solution must be robust, that is scarcely 

sensitive to possible differences between the supposed component reliability and the 

real one. Therefore, the decision maker could be interested in having more optimal 

solutions for the problem previously formulated, obtained by assuming, at least for few 

components, different reliability values inside some vagueness range. In this way, 



Maintenance Planning For The Reliability Maximization 22037 

he/she can verify how much robust a solution is in relation to various possible scenarios. 

This analysis could drive the decision maker in choosing a solution characterized by a 

lower level of system reliability than the optimal one obtainable under the hypothesis of 

sure reliability data, but more robust in that case a state of uncertainty exists (Certa et 

al., 2013). 

 Summing up, in the present paper, it is supposed to handle with uncertain 

reliability data. Consequently, the decision maker has to evaluate the most robust 

solution for different possible scenarios. To this purpose, a parameter is proposed for 

representing the solution robustness. Moreover, an exact algorithm is presented for 

selecting the system elements to be maintained. Such algorithm is an adaptation of a 

previous one designed by the same authors (Galante and Passannanti, 2009), of which a 

short description is given in section 3. 

 In the next section, the faced problem is justified and it is analytically expressed. 

After the resolution algorithm presentation, the fourth paragraph proposes a parameter 

for the evaluation of solution robustness. Lastly, a numerical example explains the 

whole procedure and final remarks conclude the paper. 

 

 

2. Problem Formulation 

The system taken into consideration is a system operating for process. The plant is 

periodically stopped for production change and system setup. During these stops, 

maintenance actions are carried out in order to maximize the system reliability. As a 

matter of fact, for this type of system, failure is an event that must be avoided because it 

is too expensive and/or too dangerous for workers. A time constraint is also introduced: 

maintenance must take place during the planned plant stop to execute system setup. 

 System reliability up to the end of the next utilization period can be calculated 

by the reliability values of its components. These values depend on the execution or not 

of maintenance actions during the considered plant stop. They can be regarded as sure 

values for some elements, in particular those ones that have cumulated a short use time 

or have been maintained. As a matter of fact, the mission time is assumed to be short as 

to the element life and the maintenance action is a “as good as new” type. Other 

elements characterized by sure reliability values are those working under monitored 

conditions. On the contrary, the reliability of other elements is affected with uncertainty. 

In particular, it is supposed that the real value of reliability of each of these elements 

falls into a range that can be estimated. The uncertainty arises from a poor knowledge of 

the actual system operative conditions and then it can be supposed that a high 

correlation exists among the reliability values affected with uncertainty. Consequently, 

in any case, all the real reliability values of these elements are in the same position of 

their vagueness range. 

 Each maintenance action involves both a resource engagement time and a spare 

part cost. If more maintenance crews can simultaneously operate and the interventions 

do not present precedence constraints, then the global time required to carry out the 

interventions singled out to be optimal is given by: 
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where I is the set of elements selected to be maintained, ti is the maintenance time on 

the element i (i=1, ..., N) and n is the number of crews. 

 The previous problem can be formulated as follows: 

 max{R} (2) 

 

subject to: 

 

 T T* (3) 

 

where R is the system reliability and T* is the planned downtime length for the system 

maintenance. In order to calculate the system reliability it is necessary to know the 

reliability values for all constituting elements. As some values are doubtful, a definite 

value must be fixed inside each uncertainty range. To this aim, each continuous range is 

substituted by S equidistant values and then each element is characterized by S different 

scenarios. As said before, concerning the reliability, it can retain that the same 

conditions occur for all elements and so the system will operate in a scenario in which 

all elements have a reliability value given by their own first scenario, or by the second, 

or by the S
th

 scenario. To sum up, S scenarios need to be considered and, for each of 

them, the elements to be maintained have to be singled out by solving the previously 

formulated problem. 

 Such a problem is a NP-hard combinatorial problem (Rice et al., 1998) and, 

even if it could be easily expressed in terms of mathematical programming, the 

presence of both Boolean variables and a non-linear objective function makes this 

approach the more difficult the bigger the problem dimension is. 

 

 

3. Proposed optimization algorithm 

Consider a system constituted by series components, some of them, in their turn, 

constituted by elements in parallel-series disposition. Regarding to the series 

components, constituted by only one element, they are ordered in a list however drawn 

out. The algorithm matches the two possible maintenance states of the first element with 

the two possible maintenance states of the second one. Among the four obtained 

sequences, the algorithm eliminates those dominated, if they exist. A sequence s1 

dominates a sequence s2 if: 

 

 Rs1 > Rs2 and Ts1≤ Ts2 (4) 

 

or 

 

 Rs1  = Rs2 and Ts1 < Ts2 (5) 
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 The survived sequences are matched with the two possible states of the next 

element in the list. The procedure continues until the last element is considered. 

 At each step, in order to reduce the number of partial sequences to be 

considered at the next step, two further elimination criteria can be introduced. In fact, 

each partial sequence s evolves to a maintenance time included between two extreme 

values. The first one, a Lower Bound value, LBT(s), is obtained if no maintenance is 

executed on the remaining elements. The other, an Upper Bound value UBT(s), is 

obtained hypothesizing that all the remaining components are maintained. Comparing 

these two time values with the constraint value, two cutting criteria are defined. LB 

criterion: if LBT(s)>T*, then the partial sequence s, even if non dominated, can be 

eliminated because it can not respect the constraint (3). UB criterion: if a partial 

sequence verifies the condition UBT(s) T*, then all the others having a lower reliability 

are removed. Moreover, the survived one does not require to be further branched and it 

is completed by maintaining all the remaining components. 

 For each component constituted by elements parallel-series, each branch is 

considered separately and it is analyzed in the same way of the series systems. That is, 

the algorithm preliminarily eliminates the dominated sequences of a branch, saving 

those non dominated. The parallel is subsequently solved by considering all the possible 

combinations of the survived sequences of the first branch with those ones of the second 

branch and, as before, only the non dominated partial sequences are saved. The method 

iteratively continues by adding the non dominated sequences of the next branch to those 

saved at the previous step. 

 Firstly the algorithm solves the components constituted by the parallel-series 

elements, obtaining for each of them the non dominated sequences, and later it analyzes 

the overall system in which the parallel-series components will be considered as a series 

component characterized by the survived sequences, representing alternative states, 

rather than the two states maintenance yes or not. 

 

 

4. Measure of the robusteness 

After solving the problem expressed by equations (1) to (3) for all considered scenarios, 

the following quantities can be calculated: 

 R(i), system reliability with respect to the optimal solution obtained for the 

scenario i; 

 R(j|i), system reliability when the implemented solution is that one determined 

for the scenario i but that occurring is j. 

 

 Then, L(j|i) = R(j) – R(j|i) measures the loss of reliability when the scenario j 

happens while the scenario i is erroneously considered to point out the maintenance 

planning. An expected loss value can be evaluated by: 

 

 SijLiL
S

j

/)|()(
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 (6) 
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 It is obvious that such summation should be minimized and, at the same time, it 

is opportune to relate it to the reliability value of the selected solutions. After all, the 

robustness of a solution determined for the specific scenario i can be defined by using 

the following ratio: 

 

 Rob(i) = R(i)/L(i) (7) 

 

that takes into account both the good quality of a solution, by means of the related 

reliability, and the possible reliability loss if a different scenario from that assumed 

occurs. 

 Finally, after the optimal solution has been found out for each hypothetic 

scenario and values of robustness have been calculated, the solution to be selected will 

be that one having the maximum value of robustness. 

 

 

5. Numerical example 

The procedure has been applied to a numerical example involving a system constituted 

by 44 components in series. Five components are macro-component constituted by 

parallel-series elements, while the others are constituted by just one element. If the 

macro-components are codified in the form j(k; m1,.. mr,.. mk), where j is the generic 

component, k indicates the number of branches and mr the elements in series in the 

branch r, then the encoding of the macro-components is: 1(3; 6,6,6); 2(2; 4,4); 3(2; 

1,1); 4(3; 3,3,3); 5(2; 2,2); so the total number of elements that constitute the system is 

eighty. The input data are reported in Table 1. Ri,b is the reliability (*10
8
) of a generic 

element i at the end of the next mission if it is not maintained, Ri,a is the reliability under 

the hypothesis of maintenance and ti is its execution time. If two values are reported for 

Ri,b, then the element reliability is doubtful: the two values represent the uncertainty 

range and they coincide with the values assigned to the extreme scenarios 1 and S. 

 In the example the uncertainty range has been further divided into ten scenarios 

(S=10). The maintenance time constraint has been changed acting on the parameter w in 

the relation T* = wTmax, being w a positive number smaller than 1 and 

 

 ntT
N

i

i /
1

max
 (8) 

 

the time required to maintain all system elements. 

 Figs. 1a and 1b show, just for example, the reliability values that allow to 

calculate the robustness of the different solutions obtained by setting the parameter w 

equal to 0.5. The curve R(i) is the same in both Figs. and it is relevant to the reliability 

values of the optimal solutions obtained varying the scenario. Curves R(j|i) express the 

reliability that the solution individuated for the supposed scenario (1, 10 or 5) should 

have under the hypothesis of realization of the scenario j. 
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Table 1: Input data 

 

i Ri,b Ri,a ti i Ri,b Ri,a ti 

1 91930489 99009072 12.9 41 91517631 99305850 9.9 

2 91916844 99017004 12.0 42 99187777 99980093 7.5 

3 91924971 99016226 11.3 43 99186848 99982467 13.4 

4 91924935 – 98574989 99015988 8.5 44 99204631 – 99859641 99980020 10.5 

5 91926427 99017716 10.5 45 99181823 99982357 9.1 

6 91923929 99016700 9.5 46 99194409 99982572 8.9 

7 91923803 – 98574789 99017301 6.9 47 99194705 99981993 9.4 

8 91930728 99016298 8.8 48 99188859 – 9856857 99977393 11.6 

9 91925076 99013058 10.1 49 99180396 99985579 10.2 

10 91922546 99015311 11.6 50 99200604 99977563 8.5 

11 91933422 – 98576486 99018656 7.2 51 99178013 – 99854943 99977251 6.9 

12 91922546 99013912 12.1 52 99201034 99979810 9.3 

13 91931273 – 98576107 99018048 6.1 53 99201814 99978317 9.8 

14 91915307 – 98573289 99020536 10 54 99179145 – 99855143 99978999 9.7 

15 91924484  8 55 99187814 99979287 8.6 

16 91915365 99020339 12.5 56 99183147 – 99855849 99978902 14.1 

17 91929715 99014839 12.1 57 99199266 99980844 8.7 

18 91928219 99017534 10.7 58 99192017 – 99857415 99983186 10.7 

19 95797552 – 99258392 99626280 9 59 99193540 99979081 9.4 

20 95787842 – 99256678 99631849 9.6 60 99180335 – 99855353 99982996 10.5 

21 95795488 99631002 12.4 61 99199992 99982115 8.4 

22 95790784 99625609 7.4 62 99202238 – 99859218 99980961 8.9 

23 95794939 99625553 10.5 63 99180862 – 99855446 99976535 10.9 

24 95794122 – 99257786 99631856 6.9 64 99196064 99978833 11.2 

25 95793123 99625423 11.1 65 99209178 99978564 11 

26 95792950 99628841 6.5 66 99188961 – 99856875 99980975 8.2 

27 83393649 – 97069467 98435609 12.6 67 99205810 99980256 10.2 

28 85118183 98436647 12.8 68 99175949 – 99854579 99976166 9.8 

29 84149720 – 97202892 98075810 7.7 69 99196575 99982187 13 

30 84181065 98077443 7.8 70 99207745 99976730 11.2 

31 84185946 98077900 12.4 71 99194642 – 99857878 99975020 13.3 

32 84150043 – 97202949 98073956 8.5 72 99212815 99984006 8.2 

33 84165735 98084021 5.6 73 99192962 – 99857582 99975324 10.2 

34 84165296 98078055 12.1 74 99201034 99973021 12.8 

35 84158305 – 97204407 98080317 11 75 99199718 – 99858774 99982010 11.9 

36 84181451 98079127 8.8 76 99199693 99978684 8.9 

37 84188387 98080376 14.1 77 99207021 – 99860063 99981753 6.1 

38 91587808 – 98515496 99315673 7.9 78 99209486 – 99860498 99976429 9 

39 91528130 99313566 11.3 79 99211086 99982102 12.5 

40 92515189 99310754 8.4 80 99201792 – 99859140 99982140 9.2 
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                                     (a)                                                                (b) 

 

Fig. 1: R(i) and R(j|i) when w = 0.5 

 

 

 The reliability values graphically represented in these Figs. allow to evaluate the 

solution robustness for the scenarios 1, 5 and 10. Fig. 2 shows the robustness values for 

all scenarios (Eq. 7). 
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Fig. 2: Robustness when w = 0.5 

 

 

 The solution to be selected is that having the greatest robustness, hence that one 

obtained for the scenario s=7. Anyway, the scenario corresponding to the greatest 

robustness requires some consideration. When uncertain data are available, but precise 

values must be utilized in order to optimize some objective function, the prudence could 

induce to assume mean values inside the variability ranges: this choice ought to 



Maintenance Planning For The Reliability Maximization 22043 

minimize the opportunity loss. That seams to be confirmed by curves in Fig. 1: the 

scenario s=5 gives rise to the lowest losses of reliability, but losses for s=7 are less 

meaningful as to the respective reliability value and then the solution obtained for s=7 is 

more robust. Curves in Fig. 3, that concern various constraints about the available 

maintenance time, confirm that a prudent choice is not always the best: if the most 

robust solution is obtained with s=5 when w=0.1 or w=0.9, the best solution is obtained 

with the scenario s=6 if w=0.05 and with s=8 if w=0.7. 
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Fig. 3: Robustness versus scenario for some values of the parameter w 

 

 

 After all, it can be stated that prudence does not pay. In the same way, it can be 

affirmed that either optimism or pessimism do not pay: see the robustness falls for 

scenarios with high indexes when w=0.7 and w=0.9, and the low values obtained for 

s=1 and s=2 when w=0.5. The tuned procedure is able of determining the best solution 

whatever the decision maker mood is. 

 Fig. 4 points out that the most robust solutions are obtained when T* is very low 

or approaching Tmax. 
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Fig. 4: Maximum robustness versus w 

 

 

 This fact can be justified by the following considerations. 

 By varying the considered scenario, the optimal solutions are generally different, 

hence reliability losses, L, (see Eq. 6) occur. Whenever w takes a high (low) value, the 

set of elements I that can be maintained within T* is very numerous (very scanty), 

consequently the optimal solutions for the different scenarios are very similar among 

them since the eventual differences are restricted to the few elements excluded from 

(included in) I. If w approaches 1 (approaches 0), all elements (no elements) are 

maintained and all solutions are identical whatever scenario may come true: the 

robustness goes to infinity. On the contrary, if w assumes an intermediate value then the 

optimal solutions variability with relation to the scenario is high. These conditions bring 

to a low robustness value. 

 Lastly, about the efficiency of the proposed optimization procedure, the global 

run time, from the determination of the optimum solution for all the scenarios up to the 

singling out of the most robust one for given value of w, requires less than 15 seconds. 

 

 

6. Conclusions 

The present paper has been focused on a system reliability maximization problem by 

maintaining the components of a multi-component system during planned intervals of 

given length. Since some components reliability values can be affected by vagueness 

within a given range, the proposed procedure allows to single out a solution that is not 

only optimal in a mathematical point of view but also robust, i.e. not very sensitive to 

changing of operative conditions of the system. A suitable parameter is proposed for 

measuring such robustness which calculation requires that the optimization problem is 

solved several times. This is possible thanks to the developed optimization algorithm 
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allowing to solve such problem to optimality and in a very short time, even for complex 

series-parallel systems. 
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