
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 9 (2015) pp. 24463-24478

© Research India Publications

http://www.ripublication.com

A Comparative Study on Fault Tolerance Strategies For Job

Scheduling In Grid Environment

B.Muthulakshmi
1
, K.Somasundaram

2

1
Assistant professor (SL.Grade), Department of Computer Science and Engineering,

A.V.C. College of Engineering,Mayiladuthurai, Tamilnadu, India
2
Professor, Department of Computer Science and Engineering, Jaya Engineering

College – Avadi, Tamilnadu,India

Abstract

Grid computing is a form of distributed computing, which involves

coordinating and collaborative sharing of resources across geographically

dispersed organizations.There are no best scheduling approaches for all grid

environments since the scheduling onto the grid is NP-complete.Due to the

task characteristics, machines, and network connectivity, an appropriate

scheduling algorithm is chosen as an alternative to utilize in a given grid

environment. Job scheduling is one of the key research areas in grid

computing to accomplish high throughput of the system. The possibility of a

failure is much greater in large-scale grids than in traditional parallel systems.

Henceforth, fault tolerance has become a vital field in grid computing. It

becomes progressivelyhardto assure that a resource being used is not

malicious as it may also be used outside of organizational boundaries. This

paper presents an extensive survey of various fault tolerance strategies for job

scheduling, which can contribute in developing efficient scheduling

algorithms.Moreover, the comparison between the numerous job scheduling

and fault tolerance techniques are illustrated.

Index Terms: Grid Computing, Job Scheduling, Fault Tolerance, Checkpoint

Recovery, Failure Detection Service.

Introduction
GRID computing is a new trend in the distributed computing systems, which enables

the aggregation and sharing of resources for solving large-scale applications. Grid

scheduling is the process of establishing scheduling decisions, including resources

over several administrative domains to use a single machine. In an efficient way, the

grid allows the management of heterogeneous and dynamically available resources.

Job scheduling is the most critical problems in grid computing for running

24464 B. Muthulakshmi

applications. A software application, say, scheduler is used for scheduling and it

enables an enterprise to schedule. In current years, the researchers have introduced

various efficient scheduling algorithms. These algorithms are used in grid computing

to allocate the resources of the grid with a special emphasis on job scheduling. The

key parameters such as deadline, waiting time, process time, and turn around time is

included once a task is considered. The classification of scheduling algorithms are:

 Centralized Algorithm

 Decentralized Algorithm

 The global scheduling decisions are made by a central scheduler in a case of

centralized algorithm. It has the single access point for the whole infrastructure. In

decentralized algorithm, the decision is made by all the scheduling instances, which

accepts tasks for execution.

 More faults are likely to occur in grid environment since grid resources are highly

heterogeneous and dynamic. Fault tolerance is basically important to accomplish the

better performance of the computational grids. The failure of the resources affects job

execution and the possibility of a failure is much greater than in traditional parallel

computing. Therefore, it investigates the techniques of fault tolerance for grid

computing. Fault tolerance [1]can be considered as the survival attribute of computer

system in which the function of fault tolerance is described. Even in the presence of

faults, it is the ability of a system to perform its function accurately. Fault tolerance

makes the system more dependable and preserves the delivery of expected services.

The service of fault tolerance is essential for satisfying the requirements of Quality of

Service (QoS) in grid computing. Without any participation of any external agents, a

fault tolerant service candetectand recover the error. The strategies to recover from

error comprise (a) roll-back and (b) roll-forward. Different types of failures [2]with

regards to the computing resource are given in the Table I.

Table 1: Failure Types

FAILURE DESCRIPTION

Omission Failure The reply to a request is omitted by a server

Response Failure Incorrect reply is forward with a request by a server

Value failure The wrong value is returned by a server

State transmission

Failure
The incorrect state transition is made by the server

Timing Failure A server does not reply in the specified real-time interval

Crash Failure
Until being restarted, a server frequentlyfails to reply to

requests.

 The fault tolerance service deals with several kinds of resource failures, which

consists of:

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24465

 Process Failure

 Processor Failure

 Network Failure

 This may lead to the failure of job/resource, Service Level Agreement (SLA),

disrupting timing deadlines, and destroyed the user expected QoS. Fault tolerance

makes to acquire the dependability of the system that related to the QoS aspects

offered by the system. Dependability involves the attributes of reliability and

availability, where the reliability specifies that a system can run constantly without

any failure and the availability indicates that a system is instantaneously ready to

employ. In order to properly schedule both the faulty and non-faulty tasks, fault-

tolerant schedulers attempt to do so by incorporating the scheduling and fault

management.

 Many existing systems focused on the concept of the performance improvement to

achieve low cost using the grid job replication. In order to improve the reliability and

speed up of the system in the grid, the grid environment is created initially and further

the jobs are collected from the user. To avoid the permanent failure of the job, the

proposed concept is focused on the replica of the each job before scheduling. It will

improve the performance of the grid environment. Based on the replica of each

resource, the monitoring process will relocate the job.

 The rest of the paper is organized as follows. Section II describes the various fault

tolerant strategies for job scheduling in grid environment. Section III presents results

and discussion about the several fault tolerant strategies. Section IV provides the

proposed work and section V discusses conclusions.

Various Fault Tolerance Strategies For Job Scheduling In Grid

Environment
An effective scheduling and computation has become one of the major challenge in

the grid computing. Job scheduling is the job mapping to a particular physical

resource, which reduce some of the cost function specified by the user. This states an

NP-complete problem and an optimal solution is reached using different heuristics.

A. Highest Response Next (HRN) Scheduling

This scheduling approach [3]offers more response with time, memory, and the

requirements of the CPU. Based on the priority of jobs and the capability of the

processors, thejobs are allocated to the number of processors. Without any loss of

performance, this approach is adaptive for local and remote jobs. It is also highly

adaptive for grid environment.

1) Merits

 HRN scheduling approach completes all the jobs rapidly than the First Come

First Serve (FCFS).

 It effectively utilizes the available resources with priority.

 It overcomes some of the weakness of both Shortest Job First (SJF) and FCFS.

24466 B. Muthulakshmi

2) Demerits

 Since determining job priority is a tedious one, it does not suit for large

number of job allocations.

 Turn-around time is high.

 Wastage of CPU and memory.

B. Optimal Resource Constraint (ORC) Scheduling

According to the capability of the processors, ORC scheduling algorithm [4] allots the

jobs. The best fit algorithm is applied initially and then it is followed by the Round

Robin (RR) scheduling. It distributes the jobs among the available processors and is

compared with various algorithms such as FCFS, SJF, and RR. In terms of turn-

around time and average waiting time, the ORC provides better performance than the

other algorithms. The efficiency of the load balancing and grid resource dynamicity

capability are enhanced.

1) Merits

 As ORC is suitable for a large number of jobs, it overwhelms the difficulty of

HRN and FCFS scheduling.

 Decrease the process allocation complexity.

 Minimize the turn-around time and waiting time of the jobs in the queue.

 ORC avoids the problem of starvation.

2) Demerits

 ORC has high communication overhead.

C. Hierarchical Job Scheduling (HJS)

For a cluster of workstations, the scheduling model is based on a hierarchical

method[5]using two level scheduling. It comprises local level and top level, which is

the global scheduling. For distinct type of the jobs, the global scheduler utilizes a

single or separate queue for scheduling with the policy of FCFS, SJF, or FF. The

global scheduler has various functions to match the resources that a request by a job

and to obtain the best utilization of the available clusters. Whereas, the local scheduler

is responsible for scheduling the jobs to a particular resource.

1) Merits

 Decrease the overall turn-around time.

 For high system loads,

 It increases the system utilization.

 It maintains the delay of job scheduling at global level using multiple

queue.

2) Demerits

 Under-utilization of grid resources.

 HJS approach does not consider the dynamic behavior of the grid resources.

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24467

 HJS approach has the problem of starvation.

D. Resource Co-allocation for Scheduling Tasks with Dependencies (RCST)

The co-allocation scheduling method [6] offers a strategy to schedule the jobs along

with the dependencies in grid environment. This method is applied on both inside and

across the clusters. Based on the dependencies, each and every step merges or

combines the clusters. The major objective of this algorithm is to enhance the

efficiency with respect to the load balancing and minimum time for task execution.

1) Merits

 Decrease task execution time.

 At the earliest time, the tasks are allocated and scheduled.

 Due to the decentralized strategy, this method is more reliable than a

centralized one.

 It is less subjective to the single point of failure.

 Better load balancing.

2) Demerits

 High communication overhead.

 A task requirement has not specified by the RCST.

E. Grouping based Job Scheduling

By taking into consideration of the resource computational and communication

capabilities, this scheduling algorithm [7] schedules the jobs in grid systems. The

resource priority is determined using the network bottleneck bandwidth of the

resource. The scheduler retrieves the information about the resource processing

capability by the job grouping approach. The total number of jobs group should be

established in order to avoid the higher processing time. Therefore, the processing

loads among the chosen resources are balanced. A hybrid of SJF, FCFS, and

RRscheduling algorithm provides better performance than the SJF alone in terms of

processing time.

1) Merits

 Increase the resource utilization.

 Decrease the processing time of the jobs.

2) Demerits

 The resource cannot manage the factors such as current load of resource,

network delay, and the requirements of QoS.

F. Grouping-Based Adaptive Fine-grained Job Scheduling

The grouping strategy [8],[9] in the job scheduling model is based on the

characteristics of the resources. An adaptive fine-grained job scheduling is focused on

the light-weight job scheduling in grid environment. The grouping algorithm

24468 B. Muthulakshmi

incorporates the greedy and FCFS technique, to enhance the fine-grained jobs

processing.

1) Merits

 By grouping the light weight jobs, the total overhead of fine-grained job

scheduling can be minimized.

 Maximizes the resource utilization.

 Minimize the job execution time.

 Low network latency.

 Low total processing time.

2) Demerits

 High pre-processing time for job grouping.

 The memory size constraint does not consider in this scheduling algorithm.

G. Job Schedule Model

The job schedule model is based on the Maximum Processor Utilization and

Throughput (MPUT) scheduling algorithm to accomplish the performance utilization.

There are two major modules in this model, Supervisor Schedule Module (SSM) and

Execute Schedule Module (ESM). The functions of the supervisor grid node[10]are:

processing new jobs, processing transferred jobs, receiving completion of transferring

jobs, grouping job information and grid information, executing job scheduling, and

updating the information to the log file.

1) Merits

 At the condition of failure of the supervisor node, it uses the backup node.

 Therefore, it provides reliability with good load balance.

 Increases the CPU utilization.

 Maximizes the throughput.

 Decreases the turn-around time.

2) Demerits

 More communication overhead.

 This scheduling model does not consider any job and resource constraints.

H. Replication Fault Tolerance

A fault can occur while a grid resource is unable to complete its job in the given

deadline and due to the failure of resource, job or network. The term check-pointing is

the process of saving the running application state to the constant storage. If there is

any fault occur, this saved state is used to resume execution of the application instead

of restarting the application from the beginning.The check-pointing can be classified

based on the attributes such as the requirement of storage space, level of abstraction,

orphan messages, in-transit messages, the granularity of check-pointing, and scope of

the check-point.

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24469

 To accomplish the fault tolerance in grids, replication is the significant method.

Several replication mechanisms are:

a. Job replication: The service of fault tolerant service is capable of receiving and

executing the jobs, performing the operations of checksum, and transfer the

results back [11]. The co-ordination service initially locates, receives, and

votes upon the jobs that submitted by a user.

b. Component replication: If any machine fails or components are replicated on

various machines in the grid, then that respective application could be

relocated and run on another machine [12].

c. Data replication: To improve the availability in the grid, say, environments

where the failure occurs, the replication is used by fault tolerance mechanisms.

While a node hosting a data replica crash, other replicas are made available by

other nodes [13]. It may further consist of two categories: (a) synchronous

replication, and (b) asynchronous replication.

1) Merits

 Protect against malicious services.

 Maximize the functionality in the fault tolerance grid services.

2) Demerits

 High overhead.

 Voting could not commence until an appropriate number of outcomes have

been produced.

I. Checkpointing Fault Tolerance

Based on the attribute of the level of the abstraction, the state of a process is being

saved. The categories of level of abstraction are:

 System Level Check-Point (SLC)

 ApplicationLevel Check-Point (ALC)

 Mixed Level Check-Point (MLC)

 At the level of operating system or middleware level, SLC[14] is a technique that

offers the automatic, transparent check-pointing of applications. The mechanism of

check-pointing has no knowledge about any of its characteristics as the application

seemed as a black-box. In SLC, check-pointingthe bits that constitute the program

counter contents, registers, and memory are stored on the constant storage. The

Condor and Libckpt are the examples of systems that do SLC.

 An application can acquired fault tolerance by offering their own code of check-

pointing. It accurately restarts from several positions in the code via saving the

specific information to a restart file. BONIC and XtremWeb[15] are the examples of

ALC. The major distinguishing between SLC and ALC are listed as follows:

 Transparency

 Portability

 Size of check-point

 Flexibility

24470 B. Muthulakshmi

 Forced check-point generation

 ALC cannot be created forcefully, since the process state can only be saved once

the generated code of checkpoint is reached during execution[16]. Whereas, SLC can

be saved at any moment andMLC is the integration of SLC and ALC.

1) Merits

 Provide transparency, flexibility, and portability.

2) Demerits

 Complex to build the MLC systems.

J. Scheduling Fault Tolerance

Fault tolerance is factored into grid scheduling to overwhelm the demerits present

with the mechanisms of check-pointing and the replication. The policies of scheduling

for grid system can be categorized into time-sharing [17]and space-sharing policy.

The processors have shared over time in time-sharing scheme by implementing

various applications on the same processors through distinct time interval. Whereas,

the processor is split into disjoint sets in the space-sharing approach.

 Many fault tolerance scheduling has been studied for load balancing, failure

masking, enhanced scalability, and so on. Fault tolerance scheduling mechanisms

such as Charlotte, Bayanih an, Javelin, GUCHA and Xtrem Web may tolerate crash

and link failures. But, they have limitations like redundant re-computation and an

independent live-lock problem [18]. To overcome these complications, Distributed

Fault Tolerant Scheduling (DFTS) [19]and Volunteer Availability based Fault

Tolerant Scheduling (VAFTS) [18] are described. The major components of the

DFTS policy are: job placement algorithm and replica management. The algorithms

are described as follows:

Job Placement Algorithm[19]

1. Poll all sites for availability information

a. IF (R ≥ n) THEN

i. Choose the best n sites

ii. Designate one of them as a backup home SM andnotify the n sites the backup

b. ELSE

i. Reserve n - R site that are expected to finish soon.

ENDIF

2. IF there are at least n sites THEN

a. Send a replica of the job to each site

b. Update job table and backup scheduler.

ENDIF

1) Merits

 Load balancing.

 Failure masking.

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24471

 Improved scalability.

 Volunteer autonomy failures.

2) Demerits

 Redundant re-computation

 An independent live-lock problem.

K. Heartbeat Mechanisms for Failure Detection

Failure detectors are described as an integral part of any fault tolerant distributed

systems, where the traditional failure detectors do not execute efficiently while

applied to the grid environments. Most of the real-life distributed systems implement

the fault tolerant service through the heartbeat mechanisms[20]. Various heartbeat

mechanisms are centralized, virtual ring based, all-to-all, heartbeat groups. The

centralized approach has only one centralized monitor[21].This receives heartbeat

signals of all the nodes at regular time interval. It is considered as failed, if the leader

within the group has not received a fixed number of heartbeat signals from a specific

node. The models of centralized approach are:

 Push model

 Pull model

 Dual model

 A monitorable object transmits a heartbeat message to the monitor at regular

interval in push model. It is said to be suspected once a message has not received

within its expected time bounds. In the pull model, the monitor transmits a liveliness

request to the monitorable object and it responds to the request.

1) Merits

 Simplicity.

 Scalability.

 Adaptability.

2) Demerits

 Single point of failure, i.e., if the monitor fails then the whole approach fails.

Results and Discussion
Various techniques for job scheduling and fault tolerance on grid environment are

depicted. The results of the survey are shown in Table II. The Global Scheduler Fault

Tolerance (GSFT) improves the reliability as well as the speed up of the system in the

grid environment. From the survey, it is evident that the GSFT can result better fault

rate for each process than the other fault tolerance job scheduling algorithm like

heartbeat mechanism.

24472 B. Muthulakshmi

Table 2: Information About Various Fault Tolerance Strategies For Job Scheduling In

Grid Environment

Techniques Author &

Reference

Year Performance Frame

work

Quality measurement

Job Scheduling Approaches in Grid Environment

Highest Response

Next (HRN)

Scheduling

Somasundara

m et al [3]
2007

HRN is a novel

scheduling algorithm

in grid to offer more

responses with the

requirements of time,

memory and CPU.

Nil

1. CPU utilization

2. Memory utilization

3. Waiting time of each

job

4. Service time of each

job

Optimal Resource

Constraint (ORC)

Scheduling

Somasundara

m et al [4]
2008

ORC scheduling

reduces the waiting

time of the jobs in the

queue and increases

the processing time of

the job.

Nil

1. Average waiting time

of process

2. Jobs allocated to the

processor

3. Turn-around time for

running processes

Hierarchical Job

Scheduling (HJS)

Santoso et al

[5]
2000

HJS approach uses

both the global and

local scheduling. The

policies of FCFS, SJF,

and FF are applied at

both the levels.

Nil 1. Load Balancing

Resource Co-

allocation for

Scheduling Tasks

with Dependencies

(RCST)

Moise et al

[6]
2011

Co-allocation denotes

the strategy to provide

a task scheduling with

dependencies in grid

environment.

MonAL

ISA

and

ApMon

tool.

1. Optimized resource

utilization

2. Load balancing

3. Task scheduling

4. Minimum execution

time

Group based Job Scheduling Methods in Grid Computing

Grouping based Job

Scheduling

Rosemary et

al [7]
2012

An algorithm is

developed for an

efficient job

scheduling along with

FCFS, SJF, and RR for

jobs.

MATL

AB

using

the

parallel

computi

ng

toolbox

.

1. Processing time

2. Maximize the resource

utilization

Bandwidth-Aware

Job Grouping based

Scheduling (BJGS)

Ang et al [26] 2009

BJGS focuses on

grouping independent

jobs and schedules

them in accordance

with network

conditions.

GridSi

m

Toolkit

1. Processing time with

the number of jobs

2. Processing time with

the granularity size

Resource Scheduling

Model with

Bandwidth-Aware

Job Grouping

Strategy

Sharma et al

[27]
2010

The resource

scheduling algorithm

with BJGS is used to

minimize the

processing time and

increase the grid

resource utilization.

GridSi

m

Toolkit

1. Processing time of the

algorithms

2. Processing cost of the

algorithms

Grouping-Based

Adaptive Fine-

grained Job

Scheduling

Liu et al [8] 2009

To utilize the grid

resources sufficiently,

grouping based fine-

grained job scheduling

GridSi

m

toolkit.

1. Reduce the execution

time from 20 to 30s.

2. Decrease the total cost

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24473

is introduced. The

grouping algorithm

can be incorporated

with greedy and FCFS

approach.

Chang et al

[9]
2012

An adaptive scoring

method is introduced

for scheduling the jobs

in grid environment.

Taiwan

UniGri

d

Platfor

m,

Globus

Toolkit

4.

1. CPU speed of each

resource

2. Makespan

3. Decrease the

completion time of jobs

Job Schedule Model Wu et al [10] 2007

The performance of

the job schedule model

system can be

measured from the log

file editorial policy.

Job

informa

tion

history

databas

e and

supervi

sor grid

informa

tion

databas

e.

1. Maximum processor

utilization and throughput

2. Minimize the turn-

around time

Fault Tolerance by Replication in Grid Environment

Replication Fault

Tolerance

Townend et al

[11]
2004

Replication based fault

tolerance uses an FT-

Grid co-ordination

service to locate,

receive, and vote upon

the jobs submitted by a

client program.

DSS-

Net and

web

hosting

environ

ment

1. Minimize the

likelihood of faulty

results.

2. Protect against the

malicious services.

Arshad et al

[12]
2006

An automated failure

method based on

continuous monitoring

and AI planning is

presented for failure

recovery.

Apache

,

Tomcat

.

1. Recovery from

machine failure.

2. Recovery from the

failure of component.

Antoniu et al

[13]
2004

A software

architecture is

presented to decouple

the consistency

management from the

fault-tolerance

management.

JUXM

EM

platfor

m.

1. Allocation cost based

on the replication degree.

2. Cost of the basic

primitives.

Fault Tolerance by Check-pointing in Grid Environment

Checkpointing Fault

Tolerance

Amoon [22] 2012

A checkpointing based

scheduling system is

presented for

computational grids

using the average

failure time and failure

rate of the grid

resources.

Grid

simulat

or

1. Throughput

2. Average turn-around

time

3. Failure tendency

Nandagopal

et al [23]
2010

Fault tolerance based

job scheduling with

checkpoint replication

Globus

Toolkit

1. Number of jobs

completed for various

deadlines.

24474 B. Muthulakshmi

service can optimize

the user-centric

metrics in the presence

of faults.

2. Execution time for

number of jobs.

Gokuldev et

al [24]
2013

A fault index based re-

scheduling algorithm

is introduced for re-

scheduling the jobs to

other available

resources.

GridSi

m

Toolkit.

1. Dynamic adaptive

checkpoint.

2. Kernel level

checkpoint.

Chtepen et al

[25]
2009

Based on the

information of the grid

status, numerous

heuristics are

presented to offer high

job throughput in the

presence of the failure.

DSiDE

grid

simulat

or.

1. Average job execution

time.

2. Average job length.

Fault Tolerance by Scheduling in Grid Environment

Scheduling Fault

Tolerance

Gannon et al

[17]
2004

The common

component

architecture is

introduced to describe

the support for user-

defined checkpointing

and restart for

distributed

applications.

XCAT3

Framew

ork.

1. Checkpoint time with

data size.

Choi et al

[18]
2004

Volunteer autonomy

failures are specified

to solve an

independent livelock

problem

Nil

1. Total execution time

according to the number

of tasks.

Abawajy et al

[19]
2004

Fault tolerance job

scheduling approach is

presented to

incorporate the

scheduling and

replication of the jobs.

Nil
1. Sensitivity to mean

time between failures.

Fault Tolerance by Heartbeat Mechanisms in Grid Environment

Heartbeat

Mechanisms for

Failure Detection

Jain et al [21] 2004

A highly scalable

failure detector is

presented along with a

membership

management

algorithm.

GridSi

m
1. Processor utilization.

Monnet et al

[28]
2007

A hierarchical failure

detection service is

evaluated in a test

environment.

Grid

5000

platfor

m

1. The faults are detected

efficiently.

Proposed Work: Global Scheduler Fault Tolerance (GSFT)

Algorithm
Grid computing is an efficient technology to enhance the resource execution, which

may follow the scheduling approaches. In general, the scheduling algorithms will

enhance the resource utilization in the grid. A fault tolerance is one of the most

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24475

important factor of grid computing. The fault is measured level by level in the

proposed system and the three major levels of monitoring the fault in the grid job

execution are:

 Before Execution

 Before Scheduling

 Scheduling Phase

 Execution Phase

 After Execution

 These three categories will improve the reliability as well as the fault recovery for

the jobs in the resource. For scheduling the jobs, Peeking Order Scheduling System

will introduced based on the fault tolerance. Level by level grid environment will

connected with the global grid resource scheduler and local grid resource scheduler.

Further, the global grid resource scheduler connects to the virtual network, which has

multiple resources. Grid Information Server (GIS) will used to store the data of each

virtual network status. Based on the GIS, the Global Scheduler Fault Tolerance

(GSFT) algorithm will presented to schedule the jobs.

 The QoS parameters for the virtual network are gathered and are considered by the

GIS. The next level of scheduling will performed in the local grid resource scheduler.

This scheduling will consider the QoS parameters for the individual resource that are

connected to the virtual network. After performing this operation, the jobs will

submitted to grid resources. Subsequently, it will analyzed to monitor the fault

occurrence in the grid environment at the time of job execution.

3) Merits

 Achieve less fault rate for each process.

 Enhance the reliability.

 Improve the speed up of the system in the grid.

Conclusion
In this paper, an overview of various fault tolerance based job scheduling algorithms

are presented. The survey is based on the techniques of the job scheduling, group

based job scheduling, fault tolerance by replication, fault tolerance by checkpointing,

fault tolerance by scheduling, and fault tolerance by heartbeat mechanisms. From the

survey, it is finding out that the Global Scheduler Fault Tolerance (GSFT) algorithm

is an efficient failure reduction service to minimize the job execution time. It results

more improved reliability and the speed up of the system in the grid environment.

GSFT also provides the less fault rate for each process than the other mentioned fault

tolerance mechanisms.

References

[1] P. Townend and J. Xu, "Fault tolerance within a grid environment," time-

out, vol. 1,no. S2, p. S3, 2003.

24476 B. Muthulakshmi

[2] N. Arshad, et al., "A planning based approach to failure recovery in

distributed systems," in Proceedings of the 1st ACM SIGSOFT workshop

on Self-managed systems, 2004, pp. 8-12.

[3] K. Somasundaram, et al., "Efficient Utilization of Computing Resources

using Highest Response Next Scheduling in Grid," Asian Journal of

Information Technology, vol. 6,no. 5, pp. 544-547, 2007.

[4] K. Somasundaram and S. Radhakrishnan, "Node allocation in grid

computing using optimal resource constraint (ORC) scheduling," IJCSNS

International Journal of Computer Science and Network Security, vol.

8,no. 6, pp. 309-313, 2008.

[5] J. Santoso, et al., "Hierarchical job scheduling for clusters of

workstations," in Proceedings of the sixth annual Conference of the

Advanced School for Computing and Imaging, Delft, Netherlands, 2000,

pp. 99-105.

[6] D. Moise, et al., "Resource coallocation for scheduling tasks with

dependencies, in grid," arXiv preprint arXiv:1106.5309, 2011.

[7] P. Rosemarry, et al., "Grouping Based Job Scheduling Algorithm Using

Priority Queue And Hybrid Algorithm in Grid Computing," International

Journal of Grid Computing & Applications (IJGCA) Vol, vol. 3,2012.

[8] Q. Liu and Y. Liao, "Grouping-based fine-grained job scheduling in grid

computing," in Education Technology and Computer Science, 2009.

ETCS'09. First International Workshop on, 2009, pp. 556-559.

[9] R.-S. Chang, et al., "An adaptive scoring job scheduling algorithm for grid

computing," Information Sciences, vol. 207,pp. 79-89, 2012.

[10] H. Wu, et al., "A Job Schedule Model Based on Grid Environment," in

Complex, Intelligent and Software Intensive Systems, 2007. CISIS 2007.

First International Conference on, 2007, pp. 43-52.

[11] P. Townend and J. Xu, "Replication-based fault tolerance in a grid

environment," in UK e-Science 3rd All-Hands Meeting, 2004.

[12] N. Arshad, "A planning-based approach to failure recovery in distributed

systems," University of Colorado, 2006.

[13] G. Antoniu, et al., "Building fault-tolerant consistency protocols for an

adaptive grid data-sharing service," 2004.

[14] G. Bronevetsky, et al., "Recent advances in checkpoint/recovery systems,"

in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, 2006, p. 8 pp.

[15] P. Domingues, et al., "Using checkpointing to enhance turnaround time on

institutional desktop grids," in e-Science and Grid Computing, 2006. e-

Science'06. Second IEEE International Conference on, 2006, pp. 73-73.

A Comparative Study on Fault Tolerance Strategies For Job Scheduling In et.al. 24477

[16] R. Y. De Camargo, et al., "Checkpointing-based rollback recovery for

parallel applications on the integrade grid middleware," in Proceedings of

the 2nd workshop on Middleware for grid computing, 2004, pp. 35-40.

[17] S. Krishnan and D. Gannon, "Checkpoint and restart for distributed

components in XCAT3," in Grid Computing, 2004. Proceedings. Fifth

IEEE/ACM International Workshop on, 2004, pp. 281-288.

[18] S. Choi, et al., "Volunteer availability based fault tolerant scheduling

mechanism in desktop grid computing environment," in Network

Computing and Applications, 2004.(NCA 2004). Proceedings. Third IEEE

International Symposium on, 2004, pp. 366-371.

[19] J. H. Abawajy, "Fault-tolerant scheduling policy for grid computing

systems," in Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International, 2004, p. 238.

[20] A. S. M. Noor and M. M. Deris, "Extended Heartbeat Mechanism for Fault

Detection Service Methodology," in Grid and Distributed Computing, ed:

Springer, 2009, pp. 88-95.

[21] A. Jain and R. Shyamasundar, "Failure detection and membership

management in grid environments," in Grid Computing, 2004.

Proceedings. Fifth IEEE/ACM International Workshop on, 2004, pp. 44-

52.

[22] M. Amoon, "A Fault Tolerant Scheduling System Based on Check

pointing for Computational Grids," International Journal of Advanced

Science and Technology, vol. 48, 2012.

[23] M. Nandagopal and V. R. Uthariaraj, "Fault tolerant scheduling strategy

for computational grid environment," International Journal of Engineering

Science and Technology, vol. 2, no. 9, pp. 4361-4372, 2010

[24] V. M. Gokuldev S, "Fault Tolerant System for Computational and Service

Grid," International Journal of Engineering and Innovative Technology

(IJEIT), vol. 2, no. 10, 2013.

[25] M. Chtepen, et al., "Adaptive task checkpointing and replication: Toward

efficient fault-tolerant grids," Parallel and Distributed Systems, IEEE

Transactions on, vol. 20, no. 2, pp. 180-190, 2009.

[26] T. Ang, et al., "A bandwidth-aware job grouping-based scheduling on grid

environment," Information Technology Journal, vol. 8, no. 3, pp. 372-377,

2009.

[27] R. Sharma, et al., "A New Resource Scheduling Model with Bandwidth

Aware Job Grouping Strategy in Grid Computing," in Computer Science

and Information Technology (ICCSIT), 2010 3rd IEEE International

Conference on, 2010, pp. 324-328.

24478 B. Muthulakshmi

[28] S. Monnet and M. Bertier, "Using failure injection mechanisms to

experiment and evaluate a grid failure detector," in High Performance

Computing for Computational Science-VECPAR 2006, ed: Springer,

2007, pp. 610-621.

