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Abstract 
 

An OFDM transceiver suffers from latency due to the calculation of 

FFT/IFFT. The objective of this paper is to exemplify a new approach for 

performing a 4k FFT in order to reduce latency by operating on the inputs as 

they arrive. The large sized FFT is realized using smaller FFT kernels as it 

does not increase the computational complexity. 4 point radix-2 FFT/IFFT is 

used since only adders are needed to develop the kernel which is used to 

evaluate 4096 point FFT. The large sized FFT is calculated by using these 

kernels over six pipeline stages and in parallel within stages. This approach 

significantly reduces the latency in the OFDM transceiver and usage of a 

modified 4 point radix 2 FFT/IFFT as the basic unit to evaluate the large 4096 

point FFT/IFFT also reduces the computational requirements. The same has 

been implemented in a Spartan 3 FPGA and the latency is significantly 

reduced. 
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Introduction 
Orthogonal Frequency division multiplexing which is used in the fourth generation 

mobile communication systems uses Inverse Fast Fourier Transform and Fast Fourier 

Transform functionalities in its endeavor to multiplex closely spaced carriers which 

carry low rate data to mitigate all ill-effects that arise due to multipath configuration. 

The devices that use 4G are mostly mobile and handheld, i.e., standalone and 

compact, hence IFFT/FFT blocks which are computationally less complex and 

consume less power are preferred. These devices support several real time 

applications hence reduced latency is necessary. In this paper large sized IFFT/FFTs 

are decomposed into smaller FFTs using „divide and conquer approach‟, in order to 

reduce latency. In order to reduce time consumed, larger FFTs are decomposed into 

smaller FFTs, and „less time consuming‟ additions are used for the computation of 
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these FFTs. The evaluation of the IFFT/FFT is initiated as the inputs arrive and hence 

the need to wait for the arrival of all the inputs does not arise.  

     A 4k point FFT is implemented on a Xilinx FPGA using six stages, the execution 

of every stage does not wait for the complete execution of the preceding stage; rather 

it starts execution on the available outputs from the preceding stage. The objective is 

to act upon the inputs as they arrive and not to wait for the arrival of set of inputs for 

the commencement of the IFFT/FFT function. The number of inputs on which the 

IFFT/FFT function is to be performed is 4096 precisely. The conventional approach is 

to perform IFFT/FFT after all the 4096 symbols arrive and the latency will be greater 

than the sum total of the symbol period of all these symbols in any OFDM system. 

The latency in this work is just a few symbol periods after the arrival of the last 

symbol.  

 

 

Related Work 
Adiono, T. et al [1] presented an implementation of a parallel-pipelined configurable 

FFT/IFFT processor for Orthogonal Frequency Division Multiple Access (OFDMA) 

applications in LTE. The architecture combines a multipath delay commutator and 

single-path delay feedback style to obtain low latency, high throughput, and high 

efficiency memory. A radix 2
2
 SDF pipelined FFT/IFFT processor was implemented 

with an architecture that had the same multiplicative complexity as radix-4 but retains 

the butterfly structure of radix-2 by Ahmed Saeed et al [2]. The results showed that 

the processor achieves higher throughput and lower area and latency. Alexander A 

Petrovsky et al [3] created a methodology for automatic synthesis of real time FFT 

processors at structural level under the given restrictions: speed of input data receipt, 

structure of the computing element and the time of the butterfly execution. It involved 

creating parallel-pipelined structures for fixed radix FFT and modified split radix FFT 

algorithms. A VLSI FFT architecture based on combining three consecutive radix-4 

stages to result in a 64-point FFT engine was presented by Babionitakis K. et al [4] 

Cascading these 64 point FFT engines resulted in an improved architecture design 

with reduced memory requirements and latency reduced to one third compared to the 

fully unfolded radix-4 architecture. Jesus Garcia et al [5] have used architecture for 

FPGA implementation of a Split-Radix FFT processor, which combines the higher 

parallelism of the 4r-FFTs and the possibility of processing sequences having length 

of any power of two. The simultaneous operation of the multipliers and adder-

subtractors implicit in Split-radix FFT lead to faster operation. Bin Zhou et al [6] 

presented optimized implementations of two different pipeline FFT processo rs. 

Different optimization techniques and rounding schemes were explored. The 

implementation of 16 bit 1024 point FFT with the R2
2
SDF architecture achieved 

better performance with lower resource usage than prior art. The R2
2
SDF was more 

efficient than the R4SDC in terms of throughput per area due to a simpler controller 

and an easier balanced rounding scheme. They also showed that balanced stage 

rounding is an appropriate rounding scheme for pipeline FFT processors. A 

reconfigurable FFT architecture which processes variable-length, multi-streams, 

namely, 1 stream of 2048 point FFT or 2 streams of 1024 point FFT or 4 streams of 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Adiono,%20T..QT.&searchWithin=p_Author_Ids:37370695100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Babionitakis,%20K..QT.&searchWithin=p_Author_Ids:37283499600&newsearch=true
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512 point FFT using modified radix-2 single delay feedback (SDF) FFT was 

introduced by Boopal P.P et al [7]. This architecture achieves the throughput that is 

required by the WiMax standard. C. Yu et al [8] implemented a pipeline FFT/IFFT 

processor adopting a single path delay feedback by using a reconfigurable complex 

multiplier and bit-parallel multipliers to achieve a ROM-less FFT/IFFT processor. In 

order to reduce the latency of the FFT block, the FFT is modified to allow calculation 

of FFT as the input arrives. The individual input‟s contribution towards outputs are 

identified in the form of equations for radix-2 FFT algorithm, as its regular structure 

is attractive for high throughput design as stated by Chao Cheng et al [9]. A 256 point 

FFT architecture that utilizes cascaded radix-2
4
 single-path delay feedback (SDF) 

structures based on radix-16 FFT algorithm with low multiplier and multiplication 

complexities and a simple control circuitry was proposed by Chih-Peng Fan et al [10]. 

Chin-Long Wey et al [11] presented simple radix-2 memory-based FFT (MBFFT) 

processors with low hardware cost and high maximum operation frequency. Chin-

Long Wey et al [12] also presented parallel MBFFT structures with two and four 

butterfly processing elements (PEs) respectively, to improve the latency while still 

keeping hardware cost low and maximum operation frequency high. An multiplier 

less VLSI architectures of Split radix FFT algorithm using new distributed arithmetic 

(NEDA) was introduced by DiptiSankar Das et al [13]. Since the architecture did not 

contain any multiplier blocks, reduction in terms of power, speed and area was 

observed. A fixed-point, 16-bit word-width, 64-point FFT/IFFT processor was 

developed primarily for the application in an OFDM-based IEEE 802.11a wireless 

LAN baseband processor by Koushik Maharatna et al [14]. The 64-point FFT was 

realized by decomposing it into a two-dimensional structure of 8-point FFTs. This 

approach reduced the number of required complex multiplications compared to the 

conventional radix-2 64-point FFT algorithm. The complex multiplication operations 

were realized using shift-and-add operations. Thus, the processor did not use a two-

input digital multiplier. It also did not need any RAM or ROM for internal storage of 

coefficients. A modified single-path delay feedback (SDF) architecture for FFT 

implementation, which implements a mixed decimation-in-frequency (DIF) / 

decimation-in-time (DIT) FFT algorithm was proposed by Seungbeom Lee et al [15]. 

This architecture was applied to a 64-point FFT and compared to the radix-4 DIF SDF 

and radix-4 multi-path delay commutator (MDC) architecture in the context of 

throughput, latency and hardware complexity. It exhibited lower hardware complexity 

as compared to the radix-4 MDC while maintaining the same throughput and latency. 

It achieved lower latency compared to the original radix-4 SDF architecture with 

reasonable increase in hardware complexity. Xu Peng et al [16], chose split-radix 

algorithm as the basic algorithm and implemented High speed FFT algorithm using 

paralleled processing and pipeline techniques. This method performed well when 

implemented in FPGA and satisfied the requirement of high speed. Results show the 

system latency of 13 clock periods and high efficiency in conserving hardware 

resources. 

   

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chin-Long%20Wey.QT.&searchWithin=p_Author_Ids:37267240400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chin-Long%20Wey.QT.&searchWithin=p_Author_Ids:37267240400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chin-Long%20Wey.QT.&searchWithin=p_Author_Ids:37267240400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Seungbeom%20Lee.QT.&searchWithin=p_Author_Ids:37281131200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xu%20Peng.QT.&newsearch=true
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Modification of 4 point radix-2 FFT/IFFT 
 

Divide and conquer approach 

Generally a N point DFT is described as below, where x(n) has N time samples and it 

results in N frequency samples. 

 

     Alternatively, N point IDFT helps obtain N time samples from N frequency 

samples as given below, 

 

     Both the expressions use the twiddle factor 

 

     which exhibits the following properties. 

 

 

     Consider a discrete time sequence of length N>>1, N can be factored as LM. This 

N point DFT can be performed by arranging N points in L rows and M columns.  

 

 

 

     Similarly the resulting  will also appear in a similar 

arrangement. 

 

 

 

     There is a two pronged approach used for converting a single dimensional 

arrangement into a two dimensional arrangement to represent the DT signal. The 

sequence x(n) could be arranged by filling row after row. The mapping of n to (row 

„l‟, column „m‟) is given by . N point DFT can be performed by first 

performing L point DFT column-wise to form F (p, m), then multiplying the matrix 

values with  and finally performing M point DFT row-wise. The resulting X (k) 

will appear column-by-column in the proper order, where .  

     In case the input x(n) is mapped column-by-column  N point DFT 

can be performed by performing M point DFT row-wise to give F(l,q), then 
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multiplying the matrix by  and finally performing L point DFT column-wise. The 

resulting X(k) will appear row-by-row in the proper order, where . 

     The latter approach explained employs Column wise mapping for x(n) and row 

wise mapping for X(k). The DFT equation in such a case is given by  

 

     Rewriting the above equation by expanding the twiddle factors and rearranging the 

summations results in  

 

     Decomposing the above equation we obtain the following equation which 

represents M point DFT row by row.  

 

     The matrix then is multiplied by the twiddle factor, every element in the matrix is 

multiplied by  where and  

 

     Finally L point DFT is performed column by column and the resulting X(k) is 

available row wise.  

 

     A 4096 point DFT is performed by the above mentioned approach, that is, instead 

of performing a 4096 point DFT directly, it is rearranged as 4 x 1024, implying that 

four 1024 point DFTs, twiddle factor multiplication with 4096 elements of the array 

and 1024 4-point DFTs are required. Instead of performing a 1024 point DFT directly 

it can be further decomposed into 4 x 256. Every 1024 point DFT will involve 4 256-

point DFTs, twiddle factor multiplication with 1024 elements of the matrix and 256 4-

point DFTs. This decomposition can continue till it reaches a point that the DFTs that 

are to be found out is just 4 point DFTs but the evaluation of the 4 point FFTs is on 

the basis of „part-by-part-evaluation-on-arrival‟ (PPEA) approach.  

 

Modified radix-2 IFFT/FFT for N=4 

Consider 4 time samples  and frequency samples 

 and on performing 4-point FFT on the former the 

latter is obtained. And on performing 4 point IFFT on the latter the reverse is 

obtained. If the relationship between the inputs and outputs when 4 point radix 2 
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IFFT/FFT is performed and analyzed, it is found that evaluation is simpler, since no 

multiplication is involved. It is presented below for analysis and observation.  

 

IFFT 

     n=0; :  

     n=1; :  

     n=2; :  

     n=3; :  

     The relationship between inputs and outputs when 4 point radix 2 FFT is 

performed also requires only negated inputs for calculating outputs, as is shown 

below.  

 

FFT 

     n=0; :  

     n=1; :  

     n=2; :  

     n=3; :  

     The PPEA FFT for 4 points, which was developed using radix 2 FFT did not 

involve any twiddle factor multiplications. 4 point PPEA FFT involves only complex 

additions or subtractions. When the same is used for realizing a larger sized FFT the 

resulting operations need complex multipliers for twiddle factor multiplications. The 

FFT is calculated using 4 point PPEA FFT – which does not involve any complex 

multiplication - by using pipelined stages. These stages are pipelined and overlapped, 

implying that the inputs to the consecutive stages are not the complete set of outputs 

from the respective previous stage but individual outputs are fed as inputs to the 

consecutive stages. The reduction in latency that is obtained in small sized FFTs is 

exploited and accrued by this overlapping to result in increased latency. The inputs 

and outputs that are obtained are not reordered by using this approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Symbol Combiner 
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     Every consecutive 1024 inputs as they arrive are operated upon by the symbol 

combiner, shown in Fig. 1 to produce eight outputs to be stored in the 4 real and 4 

imaginary storage locations that are 1024 locations apart. For example 0
th

 input will 

cause outputs to be stored in 0
th

, 1024
th

, 2048
th

 and 3072
nd

 locations. These outputs 

will be used again to be added to the symbol combiner outputs for the 1024
th

 input, 

the same will be done when the 2048
th

 and 3072
nd

 inputs arrive and are sent to the 

symbol combiner. It should be noted that to obtain the 4 point FFT outputs the symbol 

combiner outputs of 0
th

, 1024
th

, 2048
th
 and 3072

nd
 inputs are accumulated. Hence for 

consecutive inputs, results of the symbol combiner are stored and retrieved for 

accumulation. The symbol combiner operates on the 0-1023 inputs in a similar 

fashion while it treats the consecutive 3 sets of 1024 inputs in 3 different ways. The 

net result of what is done is that the inputs have been reordered and 1024 4-point 

FFTs of the reordered sequences has been performed. Every stage performs a 4 point 

FFT and twiddle factor multiplication. The subsequent stages need to multiply the 

twiddle factors and perform 4-point DFTs column-wise. Once again a symbol 

combiner is preferred to perform the column wise FFTs since the inputs can arrive at 

different instants of time.  

 

 

4096 POINT FFT – PPEA APPROACH 
 

Stage wise PPEA FFT 

The 4096 point FFT using “divide and conquer” approach is realized by arranging the 

sequence values row-wise in a matrix of dimension 4x1024 as shown in Fig. 2. In 

order to obtain a 4096 point FFT, one thousand and twenty four column-wise 4 point 

FFT is performed, followed by twiddle factor multiplication of every resulting value 

by , where r1 = 0 to 3 and c1 = 0 to 1023 and finally four 1024 point FFTs is 

found. Instead of performing the 1024 point FFTs, they are in turn factorized into a 4 

x 256 matrix arrangement as shown in Fig. 2. Hence every 1024 point FFT is 

performed using two hundred and fifty six column-wise 4 point FFT, followed by 

multiplication of twiddle factors , where r2 = 0 to 3 and c2 = 0 to 255 and 

finally four row-wise 256 point FFT.  

     Similarly every 256 point FFT is performed by sixty four column wise 4 point FFT 

in a 4 x 64 matrix arrangement as shown in Figure 5.6, followed by multiplication of 

twiddle factors , where r3 = 0 to 3 and c3 = 0 to 63 and four row-wise 64 point 

FFT. Further every 64 point FFT is performed by sixteen column wise 4 point FFT in 

a 4 x 16 matrix as shown in Figure 5.7, followed by multiplication of twiddle factor 

, where r4 = 0 to 3 and c4 = 0 to 15 and four 16 point FFTs. Finally every 16 

point FFT is performed using 4 column wise 4 point FFT followed by multiplication 

of twiddle factors , where r5 = 0 to 3 and c5 = 0 to 3 and 4 row wise 4 point 

FFT in a 4 x 4 matrix arrangement shown in Figure 5.8. In the discussion above every 

instance where a 4 point FFT is mentioned, a PPEA FFT is used. The total calculation 

is organized in 6 stages, where the first 5 stages consist of 2 sub-stages, namely PPEA 

FFT and TWF multiplication while the last stage only consists of only the PPEA FFT. 
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Figure 2: Stage 1 arrangement of PPEA FFT values, one 4 x 1024 matrix of points 

 

     In Stage 1 every input as it arrives undergoes 4 point PPEA FFT between points 

that are 1024 inputs apart. For the first 1024 inputs, 1024 stage 1 PPEA FFTs are 

initiated. Thereafter for every subsequent 1024 inputs are the second symbols of stage 

1 PPEA FFTs. The next 1024 inputs are the third input to the same, While the 3072
nd

 

input arrives, the first of 1024 stage 1 PPEA FFT is completed. Four outputs of the 

stage 1 PPEA FFT is available for stage 1 Twiddle factor multiplication by a 

factor,  where r1 = 0, 1, 2, 3 & c1 increments when the successive inputs arrive. 

Since the twiddle factor is unity when r1=0, multipliers are not used, hence only 3 

complex multipliers are needed. 

 

 
 

Figure 3: Stage 2 arrangement of PPEA FFT values, Four 4x256 matrix of points 

 

     The outputs of the complex multipliers initiate four stage 2 PPEA FFT. This stage 

2 FFT involves values that are 256 point apart as shown in Fig. 3. Hence for the next 

256 clock instants when consecutive inputs arrive stage 2 PPEA FFTs are initiated, 

while every consecutive set of 256 clock instants the consecutive inputs for the stage 

2 FFT will generated and acted upon by the symbol combiner. When the 3840
th

 input 

arrives, the stage 1 PPEA FFT involving that input is completed and subsequently 3 

stage 1 TWF multiplications are completed, thereafter completing the first four of the 

stage 2 PPEA FFT. These four stage 2 PPEA FFT involves values that resulted from 

the completed stage 1 PPEA FFT using inputs (768, 1792, 2816, 3840). Since four 

stage 2 PPEA FFT is completed, 16 values are available for stage 2 TWF 

multiplication by a factor where r2= 0 to 3 and c2 = 0 to 255. Complex 

multipliers use 4 distinct twiddle factors to perform the sixteen stage 2 TWF 
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multiplication. Once again one of the distinct twiddle factor values is unity (r = 0) 

hence 12 complex multipliers are used. 

 

 
 

Figure 4: Stage 3 arrangement of PPEA FFT values, sixteen 4x64 matrix of points 

 

     The outputs of the complex multipliers initiates sixteen stage 3 PPEA FFTs. This 

stage 3 FFT involves values that are 64 points apart. Hence for the next 64 clock 

instants when consecutive inputs arrive the inputs to the stage 3 FFT are generated 

and every consecutive set of 64 clock cycles provide consecutive inputs to the stage 3 

PPEA FFT. When the 4032
nd

 input arrives, the Stage 1 PPEA FFT involving that 

input is completed subsequently 4 stage 1 TWF multiplications are completed. The 

related 4 stage 2 PPEA FFT is completed and the respective stage 2 TWF 

multiplications are subsequently completed. These 16 outputs of the multipliers are 

needed to complete 16 stage 3 PPEA FFT. Hence when 4032
nd

 input arrives this 

causes the completion of the first set of stage 3 PPEA FFT. The results from 16 stage 

3 PPEA FFT are totally 64 in number which ideally needs 64 stage 3 TWF 

multiplications involving twiddle factors  to be performed. Only 4 distinct 

twiddle factors are to be used of which one is unity. Since only 3 distinct twiddle 

factors are needed, 48 multipliers need to be used, but only 16 complex multipliers are 

used. A single Twiddle factor is used to perform the 16 multiplications. Initially 

multiplications are completed for the 2
nd

 row elements and thereafter the third and 

fourth rows. 
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Figure 5: Stage 4 arrangement of PPEA FFT values, sixty four 4x16 matrix of points 

 

     In stage 4 the outputs of the complex multipliers from stage 3 initiates 16 stage 4 

PPEA FFT. Stage 4 PPEA FFT is performed between points that are 16 points apart 

as shown in Fig. 5. In stage 3 64 twiddle factor multiplications should occur at the 

arrival of every input, but since only 16 multipliers are used only 32 values are 

available for stage 4 PPEA FFT. When the 4080
th
 input arrives, the values for 

completion of the first Stage 4 PPEA FFT are available. At the arrival of 4080
th
 input, 

the corresponding stage 1 PPEA FFT is completed, the respective 4 stage 1 TWF 

multiplications are completed and 4 stage 2 PPEA FFT and 16 stage 2 TWF 

multiplications are completed. Thereafter 16 stage 3 PPEA FFT, 16 stage 3 TWF 

multiplications are completed and finally 32 stage 4 PPEA FFTs are completed. This 

is followed by stage 4 TWF multiplication involving twiddle factor where r4 = 

0 to 3 and c4= 0 to 15. Some of the multipliers used in stage 3 is reallocated, 4 gets 

allocated to stage 4. Similar to what happened in the earlier stages, PPEA FFT is 

followed by the twiddle factor multiplication.  

     At the arrival of the 4092
nd

 input, stage 5 PPEA FFT is initiated which is between 

symbols that are 4 points apart, which corresponds to the column entries in Fig. 6. The 

stage 4 TWF multiplication outputs are inputs and FFT is completed after all the 

inputs have arrived and thereafter 4 multipliers are allocated from stage 2. The stage 5 

TWF multiplication is done using twiddle factors where r5= 0 to 3 and c5 =0 to 

3. Then the outputs of the stage 5 TWF multipliers are used to obtain the stage 6 

PPEA FFT which is between points that are a point apart corresponding to adjacent 

row entries in Fig. 6.  
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Figure 6: Stage 5 & 6 arrangement of PPEA FFT values, two hundred and fifty six 4 

x 4 matrix of points 

 

     The inputs are virtually arranged in 4 x 1024 matrix as shown in Fig. 2 as the 

inputs arrive and 4 point PPEA FFT is performed. The stage 1, 4 point PPEA FFTs 

involve points [0, 1024, 2048, 3072], [1, 1025, 2049, 3073], up to [1023, 2047, 3071, 

4095]. As stated earlier when the 3072
nd

 input arrives the first FFT of the stage 1 is 

completed and the twiddle factor multiplications are performed. Each of the rows in 

the matrix shown in Fig. 2 is rearranged into 4 4x256 matrices as shown in Fig. 3. In 

every one of the 4x256 matrices shown in Fig. 3, 4 point PPEA FFT is started after 

the twiddle factor multiplications after the arrival of the 3072
nd

 input. For examples 

the FFTs start out with the [0, 256, 512, 768], [1024, 1280, 1536, 1792], [2048, 2304, 

2560, 2816] & [3072, 3328, 3584, 3840] and continue as a FFT gets completed in the 

stage 1 till it reaches [255, 511, 767, 1023], [1279, 1535, 1791, 2047], [2303, 2559, 

2815, 3071] & [3327, 3583, 3843,4095].PPEA FFT is evaluated on arrival/availability 

and the hence the operation has to be repeated on arrival/availability of individual 

values in the matrix. As discussed earlier when the 3840
th
 input arrives and stage-1 4 

point PPEA FFT involving points [768, 1792, 2816, 3840] is completed. Thereafter 

the stage 1 twiddle factor multiplication and stage-2 4 point PPEA FFT involving 

points [0, 256, 512, 768], [1024, 1280, 1536, 1792], [2048, 2304, 2560, 2816] & 

[3072, 3328,3584, 3840] are completed. This makes 16 FFT outputs available for 

twiddle factor multiplication. The stage wise functions performed to obtain a 4096 

point FFT is shown in Table 1. 
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     After twiddle factor multiplications each of the 4 x 256 matrix are now arranged as 

4 x 64 matrices as displayed in Fig. 4. As was explained and done in the earlier stages, 

the 4 point PPEA FFT is performed on every matrix arrangement as the previous 

stage FFT and twiddle factor multiplication is completed on a value in a specific 

location. When the 4032
nd

 input arrives stage 1 FFT involving points [960, 1984, 

3008, 4032] is completed and the subsequent twiddle factor multiplication is 

completed. The resulting 4 values cause 4 stage-2 FFTs involving points [192, 448, 

704, 960], [ 1216, 1472, 1728, 1984], [2240, 2496, 2752, 3008] & [3264, 3520, 3776, 

4032] to complete and the subsequent stage 2 twiddle factor multiplications are 

completed. These values in turn bring to completion the first stage 3 PPEA FFT. The 

subsequent stage 3 twiddle factor multiplications are undertaken. The resulting values 

are now arranged in 4x16 matrices. There are 64 4x16 matrices, as shown in Fig. 5, 

which are formed after the arrival of the 4080
th

 input. The stage 1 PPEA FFT that is 

completed involves points in locations [1008, 2032, 3056, 4080]. The results 

multiplied by the corresponding twiddle factors and thereafter the stage 2 PPEA FFT 

involving [240, 496, 752, 1008], [1264, 1520, 1776, 2032], [2288, 2544, 2800, 3056] 

& [3312, 3568, 3824, 4080] is completed. After subsequent stage 2 twiddle factor 

multiplications, stage 3 PPEA FFT involving points [48, 112, 176, 240] till [3888, 

3952, 4016, 4080] is completed. After the above mentioned 4 point PPEA FFT is 

completed and the resulting values propagate through the next stage the values cause 

the first set of PPEA FFTs to be completed in the stage 4. In the above matrices they 

constitute the first column of all the matrices. After the values are generated they are 

multiplied by the stage 5 twiddle factors. As the multiplications results are generated 

the values are stored in the 256 4x4 matrices as shown by Fig. 6. 

 

Table 1: Stage wise functions – 4096 point FFT 

 

FFT Factorization 
Column-

wise FFT 

Twiddle 

factor 

Row-wise 

FFT 

one 4096 point 

FFT 
4 x 1024 

1024,  

4 point FFTs 

,  

r = 0 to 3,  

c = 0 to 1023 

Four 1024 

point FFTs 

four 1024 point 

FFTs 
4 x 256 

256,  

4 point FFTs 

for every 

1024 point 

FFT 

,  

r = 0 to 3,  

c = 0 to 255 

Four 256 point 

FFTs for every 

1024 point 

FFT 

sixteen 256 

point FFT 
4 x 64 

64,  

4 point FFTs 

for every 256 

point FFT 

,  

r = 0 to 3,  

c = 0 to 63 

Four 64 point 

FFTs for every 

256 point FFT 

sixty four  

64 point FFT 
4 x 16 

16,  

4 point FFTs 

for every 64 

point FFT 

,  

r = 0 to 3,  

c = 0 to 15 

Four 16 point 

FFTs for every 

64 point FFT 
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two hundred and 

fifty six  

16 point FFT 

4 x 4 

4,  

4 point FFTs 

for every 16 

point FFT 

,  

r = 0 to 3,  

c = 0 to 3 

Four 4 point 

FFTs for every 

16 point FFT 

One thousand 

and twenty four  

4 point FFT 

- 
1, 

4 point FFT 
- 

one 4 point 

FFT 

  

     These are stage 5 matrices which were formed after the arrival of the 4080
th

 input 

and the subsequent PPEA FFT and twiddle factor multiplication in the subsequent 

stages. The values that arrive from stage 5 undergo PPEA FFT column-wise in the 

above mentioned matrices. For examples the points involved are [0,4,8,12], 

[16,20,24,28], [32,36,40,44] till [4080, 4084, 4088, 4092] initially and thereafter 

based on the availability of the successive values the FFT is extended to other 

columns of the matrices. When all the inputs have arrived, that is when the 4096
th

 

input arrives the last PPEA FFT of the stage 1 is completed and the generated values 

are processed through the successive PPEA FFT and multiplications. As was 

explained for the previous stages the arrival of the 4096
th
 input triggers completion of 

PPEA FFTs in all the previous stages and the resulting values initiate the completion 

of FFT in stage 5. The use of PPEA FFTs and multipliers if unrestricted will allow 4 x 

1024 values to be generated. But the use of twiddle factor multipliers are restricted to 

the values that contribute to the „early‟ outputs and other values get access to the 

multipliers later to keep the resource requirements optimal. Since the outputs stream 

serially, it is unnecessary to produce all the outputs simultaneously and hence this 

measure. Thereafter the stage 6 PPEA FFT is performed row wise on the matrices 

formed in stage 5. The stage 6 PPEA FFT is applied to values which contribute to the 

„early‟ outputs as all the inputs have arrived and to reduce the latency. In the initial 

stages these operations are applied to the inputs sequentially while after the 3
rd

 stage 

the operations are applied on the basis of whether the value in the specific locations 

will transform into „early‟ outputs.  

     The inputs as they arrive are processed through the stage 1 PPEA FFT and the 

resulting values are stored in the locations. Every input sample was allocated a 

sequence number, which was displayed in the matrix arrangement. Every input was 

virtually allocated a distinct location. The calculation of the PPEA FFT and twiddle 

factor multiplications is performed on values that contribute to the early outputsThe 

input sequence values after every subsequent processing that is, PPEA FFT and 

twiddle factor multiplication, are stored in distinct locations and hence it is easy to 

identify the outputs which are „early‟. 

 

Twiddle factor Multiplications 

The 4 point PPEA FFT is used as the inputs stream in one after the other and hence 

the part by part evaluation of contribution of every input to the FFT output is 

accumulated. This is followed by the twiddle factor multiplication by a factor , 

where r1 = 0 to 3, c1 = 0 to 1023 and subsequently by row-wise 1024 point FFT. But 

as discussed above each 1024 point FFT has been calculated using 4 x 256 
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factorization. This approach was continued till the point where only 4 point FFT was 

needed. This approach is similar to radix 4 FFT except that the approach is based on 

the part by part evaluation and hence the reordering of inputs or outputs was not 

needed. This approach to computing 4096 point FFT using the 4 point PPEA FFT was 

organized into stages. 

     Twiddle factors used in different stages: 

     Stage 1: , r1 = 0,1,2, 3 for every „c1‟ & c1 = 0, 1,2,3,…., 1023. 

     Three twiddle factors are needed (since TWF is unity for r=0), r1 taking 4 values 

with c1 remaining a constant at a given instant of time and incrementing by 1 with 

time. 

     Stage 2: , r2= 0, 1, 2, 3 for every „c2‟ & c2 = 0,1,2,3,…., 255 

     The same three twiddle factors are needed for 4 multipliers each, r2 taking the 4 

values with c2 remaining a constant at a given instant of time and incrementing by 1 

with time.  

     Stage 3: , r3 = 0, 1, 2, 3 for every „c3‟ & c3 = 0,1,2,3,….., 63 

     The same twiddle factor is needed for 16 multipliers, r3 taking the 4 values with c3 

remaining a constant at a given instant of time and incrementing by 1 with time. The 

number of multipliers varies as the inputs arrive. The number of multipliers increases 

as stage 1 and stage 2 finish the TWF multiplication. 

     Stage 4: , r4 = 0, 1, 2, 3 for every „c4‟ & c4 = 0,1,2,3,…., 15 

     The same twiddle factor is needed for 4 multipliers, r4 taking the 4 values with c4 

remaining a constant at a given instant of time. The number of multipliers varies as 

the inputs arrive. The number of multipliers increases as stage 1 and stage 2 finish the 

TWF multiplication and it increases further after completion of stage 3. 

     Stage 5: , r5 = 0, 1, 2, 3 for every „c5‟ & c5 = 0,1,2,3 

     The same twiddle factor is needed for 4 multipliers, r5 taking the 4 values with c5 

remaining a constant at a given instant of time. The number of multipliers increases 

with completion of preceding stages. 

     The total number of distinct twiddle factors is 2047 for the stage 1 twiddle factor 

multiplication. For the consecutive stages from stage 2 to stage 5, (766, 190, 46, 10) 

distinct twiddle factors are needed. Stages 2 to 5 use the same twiddle factor for 

several multiplications since there are several similar sized matrices. During stage 1 

multiplication 3 twiddle factors (one being unity) are needed simultaneously while in 

stage 2 12 twiddle factors are needed simultaneously to the multipliers. Out of these 

12 twiddle factors there are only 3 distinct factors, meaning that 3 twiddle factors are 

used in 4 multipliers simultaneously. In stage 4, 48 twiddle factors are needed but 

only 3 twiddle factors are distinct but only 1 is used and hence one twiddle factor 

which is used by all the multipliers is read from the look up table. Thereafter the 

successive stages use only 4 multipliers needing only one twiddle factor to be read 

from the look up table. Here the value that is multiplied by the twiddle factor is 

prioritized based on whether it contributes to the „early‟ outputs.  
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Results and Conclusion 
When the 4096

th
 input arrives, the last stage 1 PPEA FFT is completed and the results 

are forwarded to the 4 stage 1 TWF multipliers within a clock cycle. Stage 2 TWF 

multiplications are completed within a clock cycle and results are forwarded to 4 

stage 2 PPEA symbol combiners which completes FFT within a clock period. Hence 

every subsequent stage‟s Symbol combiner(s) takes on clock period to complete the 

FFT as the forwarded input is the last input needed to complete the PPEA FFT and 

every stage‟s TWF multipliers take one clock cycle to complete the multiplication. 

There are 6 stages including the input stage, where 5 stages consist of the TWF 

multiplier sub-stage. Hence from the time of arrival of last input, the first output gets 

generated in after 11 clock cycles.  

 

 
   

Figure 7: Arithmetic operations that affect Latency of PPEA FFT for N=4096 

 

Latency Performance of Large Sized PPEA FFT  

The reduction of latency of FFT/IFFT used in OFDM transceivers is the objective of 

this paper. Hence as the inputs stream in serially, the inputs are processed using 

„divide and conquer‟ approach and the pipeline stages are established. Every pipeline 

stage except the last stage has PPEA Kernel(s) and TWF multipliers. When 4096 

point PPEA FFT is implemented, it is implemented in stages as already discussed. 

Every sub-stage within a stage has finite number of arithmetic operations which affect 

latency. This means that after the arrival of the last input the arithmetic operations 

shown in Fig. 7 have to be completed before the first output is produced. The 

individual stages and sub-stages take only one clock period to process the last input is 

due to the usage of parallel sub-stages.  

     Twiddle factor multiplier blocks are sandwiched between PPEA FFT blocks and 

multipliers perform multiplications and pass the outputs as inputs to the successive 

PPEA FFT stage. The resources of the FPGA, especially the multipliers were 
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distributed over all the stages, considering the „early‟ outputs that have to be 

generated. Latency is dependent on the number of arithmetic operations needed to be 

performed to generate the first output after the arrival of the last input. The 

comparison of the latencies of the Radix 4 Single-path Delay commutator , Radix 2
2
 

Single-path Delay Feedback as discussed by Bin Zhou et al [17] and PPEA 8 point 

and PPEA 4 point is shown in Table 2 and the PPEA approach used in this paper 

showed an improved performance. 

 

Table 2: Comparison of Latencies of Different Architectures In Clock Cycles 

 

Architecture Point Size Input data width Latency (cycles) 

R4SDC 
256 16 269 

1024 16 1041 

R2
2
SDF 

256 16 270 

1024 16 1042 

PPEA 4 point 4096 16 5007 

 

     The Pipelined radix – 2k feed-forward architecture as discussed by Mario Garrido 

Galvez et al (2013) which uses 16 parallel paths has offered the least latency and 

PPEA 8 point and PPEA 4 point offer lesser latencies than the former. The latency 

performance of PPEA FFT for N=512 is better than the latency performance of other 

architectures by a large margin. For example for R4SDC architecture 256 point FFT‟s 

latency is 13 clock cycles after the arrival of the last input but the architecture 

implemented in this thesis has latency of just 5 clock cycles. Similarly the latency of 

PPEA 4 point for N=4096 is 11 clock cycles this much lesser than the R2
2
SDF for 

N=1024. This improvement in latency performance comes at a cost of having higher 

resource utilization. When the PPEA 8 point FFT for N = 512 and PPEA 4 point FFT 

for N=4096 are compared with the contemporary architectures the latency offered in 

terms of clock cycles is considerably lesser as is explicit in the Table 2 and Table 3.  

 

Table 3: Comparison of latencies of different architectures in seconds 

 

Architecture Point Size Input data width Latency (µs) 

Pipelined radix -2k feed-forward 

(16 parallel) 

1024 16 0.406 

4096 16 1.516 

PPEA 8 point 512 16 0.0512 

PPEA 4 point 4096 16 0.123 
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