
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 9 (2015) pp. 21749-21765

© Research India Publications

http://www.ripublication.com

A Model Based Regression Test Reduction Approach For

SOA Based Applications

Rajani Kanta Mohanty
1
, Binod Kumar Pattanayak

2
, Durga Prasad Mohapatra

3

1:
Department of Computer Science and Engineering, Institute of Technical Education

and Research, Siksha ‘O’ Anusandhan University, Bhubaneswar, OR, India, Email:

rkm.bbs@gmail.com
2:

Department of Computer Science and Engineering, Institute of Technical Education

and Research, Siksha ‘O’ Anusandhan University, Bhubaneswar, OR, India, Email:

binodpattanayak@soauniversity.ac.in
3:

Department of Computer Science and Engineering, National Institute of Technology,

Rourkela, Odisha, India, Email: durga@nitrkl.ac.in

Abstract

In this paper, we present a model based test regression approach for SOA

based applications in the context of web service. Here we consider an

insurance system, a type of web service. The purpose behind this work is to

reduce human efforts in test case generation for regression testing of a web

service. We perform the tests with traditional approach as well as SOA based

approach using cross platform tools. Results of tests depict that SOA based

approach is more efficient in terms of spending person-days.

Keywords: SOA, WEB-SERVICES, MODEL BESED TESTING,

REGRESSION TESTING

Introduction
Today‟s IT experts of large enterprises are adopting Service-Oriented Architecture

(SOA) based application models to develop their enterprise information systems and

applications. In reality, SOA based applications and web services have been used in

recent times to cater the development of loosely- coupled, interoperable components

and distributed applications across different platforms and hardware. Services and its

application along with their underlying systems grow over time and need to be

retested whenever they undergo a change, to verify that the quality has not regressed.

If a small part of the system is changed, it should be possible to reuse existing tests so

that the impact of changes does not need extra labour and time for the tester or

developer. In this paper, we propose a model-based regression test reduction

mechanism with a real life application.

21750 Rajani Kanta Mohanty

 Functionalities of SOA can be split into distinct units (services) [1]. Conceptually

SOA is the practice of designing and developing information systems using loosely

coupled interoperable software components [2]. SOA based applications offer a

number of benefits and advantages such as flexibility, agility, reusability, scalability,

maintainability and interoperability [3]. SOA and its more adopted implementation,

Web Services, add features that need to be considered in the software development,

such as distribution, lack of observability and control, and dynamic integration. In this

context, the testing becomes more crucial in establishing the quality of services. The

testing mechanism should be dynamic since SOA applications are constantly

changing and are deployed in heterogeneous environments. Many consolidated testing

approaches are applicable to the context of SOA application, though they cannot be

directly termed to the dynamic and adaptive nature of services [4].

 Among the existing techniques, model-based testing (MBT) is a promising

candidate to provide these characteristics. MBT is an approach that derives test cases

from which models are derived subsequently by the tester to describe the system

under test and to support testing activity. Using MBT, the test case generation is

usually efficient since the tester can update the model and regenerate the test suite,

avoiding error prone manual changes [5].

 In this paper we propose and compare a MBT process for SOA application versus

traditional component model with respect to regression testing and establish how the

time, labour and resources are saved by reduced test suites and hence the productivity

and quality.

 The rest of the paper is organized as follows. Section 2 covers the background. In

Section 3, a traditional web-based component architecture is detailed in the context of

an insurance system. The procedure for development of a web service for plug-in is

discussed in Section 4. Web-based component architecture using SOA is covered in

Section 5. Section 6 includes the method of deriving regression test data. Testing tools

used are described in Section 7 and Section 8 concludes the paper.

Background
In this section, we present overviews of a high level architecture of web services and

regression testing of the component as well as model based approaches [6].

Web Services Concept

Web Services are self-contained, modular applications that can be described,

published, located, and invoked over a network, generally, the Web. The Web

Services architecture [Fig.1] is the logical evolution of object-oriented analysis and

design, and the logical evolution of components geared towards the architecture,

design, implementation, and deployment of e-business solutions. Web Services are

deployed in different heterogonous environment and they communicate with a

common language called XML which has a specific characteristics and also

encapsulate all the information such as location, port ,security header ,messages in the

form of SOAP envelop. Web Services Description Language (WSDL) is an XML

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21751

format for describing all the information needed to invoke and communicate with a

Web Service.

Figure 1: Web Service Architecture

 After creation of web services and its deployment on a server, there are three

fundamental operations of web service such as Web Service Registry, Web Service

Consumer and Web Service Provider. Service provider publishes services to a service

registry which acts as broker. Service consumer finds required services in the service

registry, processes and sends the response as well [7].

Regression Testing Strategy

Regression means retesting the unchanged parts of the application. Test cases are re-

executed in order to check whether previous functionality of application is working

fine and new changes have not introduced any new bugs. This test can be performed

on a newly built application, when there is significant change in original functionality

or even a single bug fix. We verify that the bugs are fixed and the newly added

features have not created any problem in previous working version of the software.

 Regression testing is initiated when programmer fixes any bug or adds new code

for introducing new functionality to the system. There can be many dependencies in

newly added features and existing functionalities. It is a quality measure to check that

new code complies with old code and unmodified code is not getting affected after

the modification [8, 9, 10, 11, 12].

 This test is very important when there are continuous changes / improvements

added in the application. The new functionality should not negatively affect existing

tested code.

21752 Rajani Kanta Mohanty

 Let us consider an insurance web application with various components which

responds to the inputs as per the specification. In our study ,we will establish in the

following scenarios how regression testing tends to minimize the effort using the web

service call.

 Scenario - 1: This scenario includes a component-based architecture that

incorporates no service call and all the components are tightly coupled.

 Scenario - 2: In this scenario, we present development of a web service for

publisher and consumer.

 Scenario - 3 : In this scenario, there is a component-based architecture that is

loosely coupled with the different web services deployed in different environment.

 In each scenario, we will have a different set of test cases to be executed in order

to fulfill the business need as per the business requirement specifications during

requirement phase which is depicted in the Section 3.

Traditional Web Based Component Architecture
In this section, we discuss the traditional web-based component architecture. We have

considered the Insurance System as a case study, in order to explain the traditional

web-based component architecture. In our case study, we have used the terminologies

“module” and “component” interchangeably.

 The various components of a general Insurance System are depicted in Fig.2. As

per e-business specification document, we have designed the following architecture

where various components are bound to each other and transfer messages such as

Party, Policy, Account, Claim and Security , shown in Fig.2, are accessed by the end

user using the valid user-id and password through security module. These modules are

not SOA compatible.

Figure 2: Components of an Insurance System

 In this model, we have a two-layer abstract communication. The first layer

performs the security check. The controller passes the necessary information to the

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21753

respective component where it decides about the actions to be taken for the requests.

Here, the whole system is not being exposed.

 Let us consider a specific component. Suppose in the component 'Party', we have

defined P number of test cases for the end to end functionalities as per the business

requirements. Let us define what the component 'Party' means. In the insurance

industry, when a broker/agent comes to a customer for selling his policy, he has to

capture the basic details of the customer such as Name, DOB, Sum Assured, Contact

details, Address and so on. So here, customer is called a Party and in general called

Policy Holder.

 In the Party module, there may be various sub-modules such as:

Basic Details

First Name, Middle Name, Last Name, ID Type, ID Number, DOB

Primary Address Details

Address Line1, Address Line2, State, City, Pin, Country, Mobile Number, Office

Number

Secondary Address Details

Address Line1, Address Line2, State, City, Pin, Country, Mobile Number, Office

Number

Miscellaneous Details

PAN Number, Previous Policy Number, occupation, income etc.

 During the requirement analysis, the business person has to write the test cases

depending upon the above scenarios and in addition, he has to consider what

dependent and independent parameters based on which the test cases are to be

defined. These test cases are detailed in Table 1.

21754 Rajani Kanta Mohanty

Table 1: Test Cases For Different Scenarios

Test

Case

No.

Field

Names/

Process

Steps/Scenar

ios

Expected

Result Actual Result

Assig

ned

To Status Remarks

TC1

Checking

the input

fields

Verification

of optional

and

mandatory

fields

For the

mandatory input

fields system

should throw

validation

message while

savng into DB.

For the

mandatory

input fields

system should

throw

validation

message User1 PASS

TC2

Checking

for the

Date

Field

DOB

Checking

DOB should be

greater than 'X'

years from date

of inception

DOB should

be greater than

'X' years from

date of

inception User1 PASS

TC3

Checking

for the

input

field data

types

Checking for

the input

field

validation

with proper

data types

System should

allow alphabetic

characters in the

name field

System should

allow

alphabetic

characters in

the name field User1 PASS

TCn

 These above scenarios are also dependent on Policy and Claim modules because

the party will get associated with the policy as a policy holder and at the same time

during the claim, policy holder will be treated as claimant. So, all the basic details and

other information are required in Policy and Claim modules.

Testing Drawbacks
1. We need to find out how many dependent modules are present based on the

business specification and design.

2. Used to validate software after some modifications are incorporated in the

application

3. We have to not only validate the changes but also validate the functionalities

due to the changes

4. Writing proper test case and test scenarios covering all impacted modules

5. Execution of test cases and verify the test results which were obtained from

the previous test results.

6. Difficult to assess the functionalities derived from test results .

7. Ineffective review for the derived impacts

8. Depends on individual skill level

9. Increase in effort

10. Scalability problem when size grows

11. Difficult to update specification if there are any changes in the new

requirements.

 To overcome these difficulties, SOA based web services have been introduced to

minimize the testing effort and other hurdles. To incorporate the SOA based web

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21755

service, we need to develop the same and call it from the component where ever

required. In that case, there is no individual testing required in the other components.

In the next section, we will show the web service development plug-in and how it is

called from the different components.

Development of Web Service For Plug-In
In this section, we depict the Service-Oriented architecture [Fig.3] and how it is being

made to plug into the above discussed insurance system. This is basically an

integration of services which has been developed as web services and deployed in the

server. Here, we will select one component 'Party' and establish how it can leverage

the functionalities which are being called from different components. The intention of

showing the detail description is to ascertain how our testing effort is getting reduced

by introducing this architecture with the development and deployment of the web

services.

Figure 3: Integration of SOA Architecture With Cross Platform Tools

 In this section, we will consider web service “PartyWS” which comprises of four

different operations (method names) as follows.

 Web Service Name:

1. BasicDetails_WS

2. PrimaryAddressDetails_WS (Party WS)

3. SecondaryAddressDetails_WS

4. MiscDetails_WS

 Now the WSDL module for PartyWS is ready, code is ready and deployed in the

server which can be accessed by the IP address and port mentioned in the WSDL.

21756 Rajani Kanta Mohanty

Web Based Component Architecture Using SOA
In this section, basically we will combine sections 3 and 4 to formulate the SOA

based component architecture with an intention to perform regression testing with less

effort and less number of test cases.

 Let us consider the same example 'Party' service of Insurance System in the SOA

based architecture. We plug in our 'PartyWS' web service from Section 3 in the

business layer which in turn is called from the presentation layer [Fig.2]. Now, the

traditional architecture has been converted to SOA integrated architecture. In the party

component, now we are having the same service being called 4 times from the

different sections of the business layer. These operations can be reused from other

components like Policy and Claim.

Regression Test Scenarios:

As per the business requirement, web application is always being changed from one

version to another by incorporating the new changes in the different components to

meet the business expectations. Modifications to one or more components might

affect other components of an application, which might lead to errors. We classify

modifications to web service based applications into the following types:

a) Type-1: integrating a newly established web service into the application

 In this type, we merge Section 3 and Section 4 to make the web service

 compatible with SOA based application.

b) Type-2: adding, removing or fixing an operation in an existing component

Scenario 1:

Let us assume that we have a new business requirement from the client and after due

analysis, we came up with the solution that we need to add one parameter "Email ID"

in the "Primary Address details" section of the presentation layer. For that, we need to

have the following steps to complete the project life cycle.

1. Modify the business specification document as per the new requirement

2. Prepare the analysis document

3. Prepare the design document

4. Coding

5. Prepare unit test cases

6. Prepare system test cases

 Here the coding part is simple because of the de-coupled web service. The coder

only needs to change in the PartyWS (Primary Address Details); will add one new

parameter "Email ID" and necessary changes in the presentation layer to view the

Email ID. Once the new parameter has been added in PartyWS, then we need to build

the code and generate the WSDL. The next step is to deploy the web service PartyWS

in the server. Now, our code is ready for the testing.

 We have observed that there is only one change in the service and that change is

one of the operations/methods (Method2). So, the impact of the changes will be

none as the operations/methods are not dependent on each other. Hence, it

implies that the coverage of the test cases will be less as compared to the traditional

architecture component model. Therefore, our testing approach would be as follows:

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21757

a) Development of Web Service - Partyws Using Eclipse Tool

In this section, we have developed the web service PartyWS in which we have added

new parameter „Email ID‟ in the existing parameter list. Once the WSDL and

underlying business logic is ready, then coding is done in the ECLIPSE and deployed

in Oracle-Web logic 10.3 server [Fig.4].

Figure 4: Snapshot of Party WS Using Eclipse Tool

b) Testing Web Service – PartyWS using SOAP UI tool

Once the PartyWS is deployed, then we test the WSDL by using the SOAP UI tool, as

depicted in Fig.5.

21758 Rajani Kanta Mohanty

Figure 5: Snapshot of Party WS Using SOAP UI Tool

 We fill up the input parameter in the SOAP UI console and press the run button.

Then, we get the web service response in right hand side of the SOAP UI as

success/failure [Fig.6].

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21759

Figure 6: Snapshot of Web Service Response

 If we fill up all the parameters except one mandatory parameter, then we will get

the response as Failure: Mandatory parameter missing [Fig.7].

21760 Rajani Kanta Mohanty

Figure 7: Snapshot of Failure

c) Testing primary “Address details” section of Party Module

Here we narrow down the testing coverage. Instead of testing whole module and

associated modules, we only test the modified services of the component. In a

nutshell, we have achieved the following.

a) Saving the manpower

b) Saving the time

c) Increasing the scalability

d) Increasing the productivity

e) Test coverage is high within the limited time frame.

Scenario 2:

In this scenario, Let us assume that we have one request from client to remove one

functionality from the existing business specification. The requirement is that to

remove the miscellaneous section from the presentation layer. Hence, we need to

follow the similar steps as we mentioned above with proper documentation and test

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21761

case preparation. Once the analysis and design are finished, during the coding only,

we need to remove the miscellaneous section (Method4 - Operation name) from the

existing web service and then build and generate the new WSDL and deploy in the

server. In this case, the testing coverage only would be only to test our services

through SOAP UI and regression test case would be to test our miscellaneous section

so that we can complete our test scenario in a short span of the project schedule.

Scenario 3:

Here, let us assume that there is a new requirement to add a new functionality in the

existing web application. The new requirement is that to send an email to the

customer for a particular event like "party saving" in the database. Once the party is

saved, there would be one email to be sent to that party/customer.

 The process is simple to incorporate the changes in the existing system. The steps

to be followed are :-

a) Modify the business specification document as per the new requirement

b) Prepare the analysis document

c) Prepare the design document - Low Level

d) Code

e) Prepare unit test case

f) Prepare system test case

 In the low level design, we came up with the solution that there is already a web

service developed from the client side(Output Management System) which can be

reused to meet the business expectation. Here, we have to call their web service from

our business layer. In that case, we need to know what inputs are required to call their

web service from our business layer. Then, we have to formulate those inputs and call

the web service so that it will send the message to the target recipient. The inputs

would be

a) ToAddress

b) FromAddress

c) BodyText

d) SubjectLine

 The envelope format for the outgoing WSDL is as :

<soapenv:Envelopexmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:com="http://com.tcs.bancs.insurance.claim.note">

<soapenv:Header/>

<soapenv:Body>

<com:outgoingMails>

<strFromAddress>XYZCompany.co.in</strFromAddress>

<strToAddress>Customer1@gmail.com</strToAddress>

<strEmailSubject>Test Mail</strEmailSubject>

<strEmailBody>Dear Sir, This is a test.</strEmailBody>

</com:outgoingMails>

</soapenv:Body>

</soapenv:Envelope>

21762 Rajani Kanta Mohanty

 So, we can plug-in this code block in our “Party” component and call the service.

We need to test only the saving of party/customer in the basic detail section of the

PartyWS whether email is successfully sent or not. Besides that, we should not test

the other parameters and/or functionalities of the other sections of the party

component.

 We concluded that addition/deletion/modification of existing component is not

creating any risk for doing the regression testing. So, the changes made before and

after are always satisfying the business expectations. This will not create any adverse

effect after the changes are made, even if it is not being tested from end to end of the

system. The reason behind this is that the architecture is fully loosely coupled with the

service-oriented design and pattern.

Deriving Regression Test Data
Regression testing measures the relationship between the dependent modules and

independent modules and derives the effective changes of the existing application to

cover the business functionality test cases. Let us take a comparative study between

sections 3 and 5.

Traditional Component Model:

In the section 3, we have mentioned the traditional component based module where

all the components are tightly coupled. Now, considering the example of scenario-1

depicted in section 5, we need to add one parameter as "Email ID" in the "Primary

Address details” of the party module. In this scenario, we need to find out which

modules are affected by these changes and then find out the dependent and

independent modules. Based on that we need to plan for the coverage of the testing.

 As per the business specification, we have observed the following modules are

affected. Here 'M' stands for the module.

1. User Login process – LDAP - M1

2. Application Security module– Authorization/Authentication - M2

3. Party Main Module (M3) and following sub-modules

 Basic Details - M31

 Primary Address Details - M32

 Secondary Address Details - M33

 Miscellaneous Details - M34

4. Policy Main Modules - M4

 Policy Quotation Details (During policy quotation Capture) - M41

 Policy Party Details (During the party association with the policy) -

M42

5. Claim Main Modules - M5

 Claim intimation Details (During claim registered, need to capture the

party details) - M51

 Claim Party Association (Associating party with the claim during

claim intimation) - M52

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21763

 Claim Party Payment (Giving payment to claim party, system need to

know the party details) - M53

6. Reports - Generating the party report - M6

7. User Logging-out -LDAP - M7

 Now we derive the dependent and independent modules from above affected

modules.

 Dependent Modules :M3, M31, M32, M33, M34, M4, M41, M42, M5, M51, M52,

M53

 Independent Modules :M1, M2, M6, M7

 For any changes in the dependent modules of the traditional architecture,

regression testing needs to be performed. As depicted in Fig.8, regression testing of

independent module starts from T3=30 hours and ends at T8=80 hours. Thus, the total

time taken for the purpose is 50 hours and person-days spent for it is 50/8=6.33

considering 8 working hours per day for one person.

Figure 8: Representation of Modules in Time (Traditional Component Model)

SOA Based Component Model

Now, it can be observed how much time is taken for the same changes through SOA

based implementation model. As per above modules and sub-modules, we need to see

what are the dependent modules and what are the independent modules through SOA

implementations.

 Dependent Modules: M3, M32, M4, M5

 Here, only the primary section is getting affected and however, we need to check

the functionality of the module M4 and M5 as well as to check whether all the

changes are impacting or not. (to verify the high level functionalities)

 Independent Modules :M1, M2, M31,M33, M34, M41, M42,M51, M52, M53, M6,

M7

 If we plot the diagram, we can see the overall time taken for the regression testing

of only dependent modules [Fig.9].

21764 Rajani Kanta Mohanty

Figure 9: Representation of Modules in Time (SOA Based Component Model)

 After SOA implementation of the traditional pattern previously discussed, there are

4 dependent modules considering scenario 1. Hence, we need to perform regression

testing of these 4 modules only as listed above. As it can be observed from Fig.9,

regression testing of dependent modules starts from T3=30 hours and ends at T5=50

hours and the total time taken is 20 hours. Thus it requires 20/8=2.5 person-days.

 Here, it can be observed that the total time taken for traditional component module

which covers the testing of the impacted modules is almost 2.5 times more than the

SOA integration component modules. The behavioural pattern of the diagram looks

like straight line in case of SOA based testing but in the former case it was like a

zigzag curve.

Conclusion
In this paper, we have presented an approach of model-based regression test

reduction. The approach identifies the difference between the original model and the

modified model as a set of elementary model modifications. For each elementary

modification, each test case in the regression test suite, interaction patterns are

identified based on the business requirement analysis. These patterns are used to

reduce the regression test suite. Our initial experience shows that the approach may

significantly reduce the size of regression test suites. This model determines the

effectiveness of the presented approach and the quality (fault detection capability) of

reduced test suites and hence increased productivity.

References

[1] Mac kenzie etal.”OASIS reference model for service oriented architecture

1.0” [online]. http://docs.oasis-open org/soa-rm/v1.o, 2006.

A Model Based Regression Test Reduction Approach For SOA Based et.al. 21765

[2] Thomas Erl. “Service Oriented Architecture : Concepts, Technology and

Design” Prentice Hall, 2005.

[3] P. Offermann, M. Hoffmann and U. Bub, "Benefits of SOA: Evaluation of

an implemented scenario against alternative architectures", Proceedings of

EDOCW 2009, pp.352-359, 2009

[4] G.Confora and M.Di Penta “SOA testing and self-checking”, Proceedings

of Internal workshop on web services modeling and testing, pp. 3-12,

2006.

[5] Dalal etal “Model Based testing in practice”, Proceedings of the

International Conference on s/w engineering, pp.285-294, 1999.

[6] T.A. Khan and R. Heckel, “A Methodology for Model-Based Regression

testing of Web Services”, Proceedings of 2009 Testing: Academic and

Industrial Conference - Practice and Research Techniques, (2009),

[7] B. Yang, J. Wu, C. Liu and L. Xu, “A Regression Testing Method for

Composite Web Service”, Proceedings of the 2010 International

Conference Biomedical Engineering and Computer Science, Penang, pp.

1-4, 2010.

[8] A. Tarhini, H. Fouchal and N. Mansour, “Regression Testing Web

Service-based Applications”, Proceedings of IEEE/ACM International

Conference on Computer Systems and Applications

[9] G. Rothermel, M.J. Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, Vol.22, Issue 8,

pp.529-551,1996

[10] S. Dustdar and S. Haslinger, Testing of service-oriented architectures - a

practical approach. 5th Annual International Conference on Object-

Oriented and Internet-Based Technologies, Lecture Notes in Computer

Science, Vol. 3236, pp.97-109, 2004

[11] I. Alsmadi and S. Alda, „Test Case Reduction and Selection Optimization

in Testing Web Services”, International Journal of Information

Engineering and Electronic Business (IJIEEB), Vol.4, No.5, pp.1-8, 2012

[12] A. Tarhini, H. Fouchal, N. Mansour, "Regression Testing Web Services-

based Applications", 2006 IEEE International Conference on Computer

Systems and Applications, pp. 163-170, 2006

21766 Rajani Kanta Mohanty

