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Abstract 

 
Diabetes mellitus will lead to vision loss that is the retina gets damaged. Often 
diabetic retinopathy has no early warning signs. For early detection and 
treatment the screening program will help a lot. Early symptoms of this 
disease are exudates, so early diagnosis and treatment at right time is very 
important to prevent blindness. In this paper our idea lies in the use of Block 
Variation of Local Correlation Coefficients (BVLC) and Block Difference of 
Inverse Probabilities (BDIP) texture features to characterize detected lesions 
using Active Contour technique (ACT). Then, Support Vector Machine 
(SVM) classifier is utilized to classify the detected lesions and the accuracy 
obtained is about 96.6%, Mathew correlation coefficient is about 0.972 and 
fisher score is about 0.9625.From these techniques we can reduce false 
positives for the detection of bright lesions in Fundus images. 
 
Keywords: Bright Lesions; Block Variation of Local Correlation Coefficients 
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Introduction 
Diabetic retinopathy is a complication of diabetes that affects the eyes. It is created by 
harm to the veins of the light-delicate tissue at the back of the eye (retina). Right 
away, diabetic retinopathy may cause no side effects or just gentle vision issues. In 
the long run, diabetic retinopathy can bring about visual deficiency [1].  
     The more extended a man has diabetes, and the less controlled his sugar is, the 
more probable he is to develop Diabetic retinopathy. Regardless of these threatening 
insights, research indicates that not less than 90% of these new cases could be 
lessened if there were legitimate and vigilant treatment and checking of the eyes. The 
more extended a man has diabetes, the higher his or her risks of increasing diabetic 
retinopathy [2] 
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     At present, 40.9 million Indians are estimated to have diabetes. By 2025, this count 
would be around 69.9 million, and 85 million by 2030. Many people diabetes in India 
these days are being affected by diabetes as early as 25 years of age [3]. Increasing 
number of cases of diabetes is being seen in rural areas of India. 
     In this paper, we propose an alternative way to perform false positive reduction 
using moment features of the detected RoIs. Region of interest is detected with the 
help of the Active Contour Method [5]. Our idea is inspired by the recent work in 
which Block Variance of Local Correlation Coefficients (BVLC) features are applied 
successfully to the early detection of tumours in retina. Once the BVLC features are 
extracted, Support Vector Machine (SVM) is used as pattern classifier [4]. 
     We experiment the proposed method on a dataset of about 500 RoIs that are 
detected from the Diabetic Retinopathy Database. The obtained results demonstrate 
the effectiveness and efficiency of our approach. To our knowledge, this is the first 
attempt to use BVLC features in the field of bright lesions detection in retinopathy 
[4]. 
 
 
Materials and Methods 
 
Region of Interest detection using Active Contour Technique (ACT) 
Before the feature extraction, the RoI is determined with the help of active contour 
technique (ACT) and the essential thought of ACT is to develop a bend under a few 
limitations to extract the desired object[5,6] and for acquiring the curve a standard 
Signed Pressure Force (SPF) function is used. This Function can more appropriately 
end the contours at feeble or obscured edges. The Region of Interests i.e., the 
exudated regions in abnormal Fundus image is detected using the above mentioned 
method (Fig.1). The radiologists have to focus their attention to these extracted 
regions. The steps of the procedure is explained in the below block diagram. Detected 
RoIs are marked as true positive RoIs (TP-RoIs) or false positive RoIs (FP-RoIs) 
based on the ground truth provided in the Diabetic Retinopathy Database. There are 
about 500 detected RoIs. 
 

 
Figure 1: Active Contour Technique applied for abnormal Fundus image. 
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Block Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
Feature extraction 
 
BVLC: 
Each detected RoI is characterized by a set of features that is formed using BVLC 
features. The computation of BVLC starts from correlation coefficients in a local 
region, which are characterized in the following way: 

ρ(g, h, c) = 1/(σ(g, h) ∗ (σ(g, h) + c))X[
1

R(g, h) X⅀(p, q)€(g, h)I(g, h) ∗ (I(g, h) + c)

− µ(g, h) ∗ µ(g, h) + c)] 

     Where c signifies a shifting orientation and µ(g, h) and σ(g, h)are the mean and 
standard deviation in a local region R (g,h), respectively. The terms µ(g, h) + c) and 
σ(g, h) + c) are the mean and standard deviation in a local region shifted by c from 
(g,h), respectively. 
     BVLC is then defined as 
     BVLC (g,h) =max [ ρ(g, h, c)]-min [ ρ(g, h, c)] 
        r €Ol            r €Ol 
     where Ol signifies a set of orientations with r of distance k. For instance, Ol may 
be picked as Ol= {(l, 0), (0, l), (0, l), (l, 0)}. The value of BVLC is determined as the 
difference between the maximum and minimum values of the local correlation 
coefficients according to orientations [4]. The higher the level of roughness in the 
local region is, the bigger the value of BVLC.  
 
BDIP: 
The distinction of inverse probabilities (DIP) is an operator for separating sketch 
features that contain valleys and edges subject to nearby intensities. In the DIP, the 
proportion of pixel intensity in a picture window to the total of all pixel intensities in a 
window is considered as Likelihood. In this way, the name DIP implies the difference 
between the inverse of the probability for the center pixel in a window and that for the 
pixel of maximum intensity in the window. BDIP, which is one of the proposed 
texture features, is a block-based version of the DIP. It is characterized as the 
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difference between the number of pixels in a block and the ratio of the sum of pixel 
intensities in the block to the maximum in the block. That is 

BDIP=M2 – [ ⅀I(g, h)/ max I(g,h)] 
           (g,h) €B            (g,h)€B 

     Where I(g,h) denotes the intensity of a pixel(g,h) and B a block of size MxM. The 
larger the variation of intensities there is in a block, the higher the value of BDIP. 
 
 
Classification by SVM 
In this paper, Support Vector Machine (SVM) is utilized to classify the images into 
normal and anomalous. The images with lesions are anomalous and pictures without 
lesions are normal. The fundamental operation of binary SVM is by discovering the 
hyper-plane that best divides vectors from both classes in feature space in the 
meantime augmenting the separation from every class to the hyper plane. It 
incorporates both straight and nonlinear methods for this hyper plane creation [7]. In 
the event that the two classes are linearly separable, SVM processes the ideal dividing 
hyper-plane with the maximum margin by minimizing the objective function║w║2 

subject to: 
(xi *w +b) yi ≥1, 

     Since SVM is a linear classifier, it has it impediment when a non-linear 
classification is required. To overcome this Kernel functions can be utilized as a 
solution for nonlinear limits problems.SVM has 2 sets namely Training set and the 
Testing set and with the help of these it classifies the data into normal and abnormal 
images, making the SVM a non- probabilistic binary linear classifier. Given a set of 
training samples, each marked as belonging to one of two categories, a SVM training 
algorithm manufactures a model that allots new samples into one class or the other. A 
SVM model is a representation of the examples as points in space, mapped so that the 
samples of the different categories are divided by a clear gap that is as wide as could 
be allowed. New samples are then mapped into that same space and anticipated to 
belong to a category based on which side of the gap they fall on [7]. 
 
 
Results 

 
 

Figure 1: BVLC 2x2 feature values 
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Figure 2: BDIP 2x2 feature values 
 

 
 

Figure 3: BVLC + BDIP 2x2 Feature Values 
 

     The accuracy value (ACC) to estimate the performance of classification process is 
given by 
     Specificity = TN / (TN + FP) 
     Sensitivity = TP / (TP + FN) 
     ACC = [(TP +TN) / (TP +FP +TN +FN)] x100%. 
     Where  
     True positive (TP): Sick individuals effectively diagnosed as sick 
     False positive (FP): Healthy individuals erroneously distinguished as sick 
     True negative (TN): Healthy individuals effectively recognized as healthy 
     False negative (FN): Sick individuals mistakenly distinguished as healthy 
     To improve the accuracy further, the feature values are normalised using the 
formula 
     Nxy = Fxy – min(Fxy) / max(Fxy)– min(Fxy) 
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Table 1: Sensitivity, Specificity and Accuracy values with various feature extraction 

techniques 
 
Feature extraction technique Sensitivity (%) Specificity (%) Accuracy (%) 
BVLC 95.23 94.77 95.0 
BDIP 95 90 93.33 
BVLC + BDIP 95.23 100 96.66 
BVLC + BDIP + Normalization 100 94.2 97.1 

 
Previous work Accuracy (%) 
K. Deepak[25] 96 
A. Rocha[26] 95.3 
Ramon Pires [27] 93.4 
Our Proposed Method 97.1 

 
 
Conclusions 
In this paper, we have approached an efficient technique to reduce false positives in 
abnormal Fundus images based on BVLC and BDIP features and SVM. Experiments 
have shown that normalized BVLC+ BDIP features are effective and efficient 
descriptors for bright lesions in Fundus images. In comparison with other descriptors, 
combining BVLC features with BDIP features also provide better and more constant 
results. 
     In the future, combining the above features with other efficient techniques will be 
investigated. Also better performing classifiers will be studied. 
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