
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 7 (2015) pp. 17375-17391

© Research India Publications

http://www.ripublication.com

Product Metrics Based Predictive Classification of Software

Using RAR Mining and Naive Bayes Approach

Kumudha. P, Assistant Professor(SG),CSE

Venkatesan. R, Professor, CSE

Radhika Engimuri, PG Scholar,CSE

Coimbatore Institute of Technology, Anna University,Coimbatore-641014,Tamilnadu

PSG College of Technology, Anna University,Coimbatore-641004,Tamilnadu

Coimbatore Institute of Technology, Anna University,Coimbatore-641014,Tamilnadu

kumudha.cit.cse@gmail.com, rve@cse.psgtech.ac.in,radhi.eg@gmail.com

9944970398 9789219522 7708936665

Abstract

To improve Software quality, it is essential for software developers to identify

defective software modules at any phase of Software Development Life Cycle

(SDLC). Many machine learning based classification models were designed

and are still getting improved to solve the problem of defect prediction. The

effectiveness of these models is influenced mainly by two key quality of data

factors – set of software metrics used to build the models and proportion of

defect-prone instances in the software measurement data set. In this paper, we

proposed a classification model which is a combination of Naive Bayes and

relational association rules. The classifier discovers relational association rules

on the metrics data based on user defined confidence and support during

training stage and integrates using Naive Bayes at testing stage to predict

whether a software module is defective or non defective. An experimental

evaluation of the proposed model is carried out on open source bug prediction

dataset containing object oriented metrics. The proposed model performed

better with class imbalance data and is compared with existing machine

learning based techniques – Naive Bayes, Bagging and One R. The results

obtained are positive having better improvement than existing mainly for the

evaluation measures – Recall and F-Measure. The proposed model has shown

high True positive rate of defective modules which signifies the model

capability of identifying defective modules as defective than any other

classifiers used in the experiment. This confirms the potential of the proposal.

Key-Words: Data Mining, Association Rules, Naive Bayes, Software Defect

Prediction.

17376 Kumudha. P

Introduction
Software quality is considered to be of great importance in the area of software

engineering. In order to increase the efficiency and the quality of software modules,

software defect prediction is used to identify defect prone modules and helps in

achieving high software reliability. Any project having many defects lacks quality and

thus techniques and methodologies for predicting the defects can help in reducing the

faultiness during software testing process which results in high quality software

product. Prediction models with input as software metrics, can predict the number of

defective software modules. Software metrics are attributes which includes process,

productor source code metrics of the software system. There are many metrics that

have proved their value for system maintenance and modification and hence selecting

metrics plays a key role in software defect prediction. For our work, we have used one

set of dataset that is made public by D‟Ambros et al. to evaluate bug prediction

techniques [1], [2]. Basically, the dataset includes seventeen product based object

oriented metrics collected at class-level for Java based Systems. Another set of

product metrics includes static code metrics that are available in PROMISE

Repository [3].

 In Association rule mining [4], frequently occurring attribute value conditions are

searched in a dataset and used for prediction purpose thereby neglecting non frequent

attribute values. Ordinal association rules [5]are a particular type of association rules

that specifies ordinal relationship i.e., numerical ordering between attributes for a

certain percentage of records. However, in real world scenarios, there might not exist

ordinal relationship all the time between attributes in which case ordinal association

rules are not strong enough to describe the different domains and relationships

between the attributes. In such situations, ordinal association rules are not strong

enough to describe data consistency. Consequently, relational association rules were

introduced in [6] in order to capture various kinds of relationships between record

attributes.

 This paper proposes novel approach based on Naive Bayes using relational

association rules. Naive Bayes is simple yet powerful. The primary Naive Bayes

assumption is that for a given class, the features are conditionally independent. Even

if the features are not independent, each feature is considered as independent in terms

of how it contributes to the classification of the set. By combining Relational

Association Rules with Naive Bayes approach the results obtained are promising.

 The paper is organized as follows. We start with related work and background in

section 2. Next, Section 3 introduces our methodology by including system design,

Training, classification process and measurement technique. An experimental

evaluation with result analysis is reported in section 4. Conclusions and future work

are outlined in section 5.

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17377

Related Work and Background

Related Work

This section briefly describes the various studies done in the field of the association

rule mining, relationships between object oriented metrics and its impact in defect

prediction models. Association rule mining [7] identifies interesting relationships

among data items and is used as unsupervised learning scenarios. The discovery of

these relationships can help in many decision making processes. Association rule

mining finds those rules that satisfy some minimum support and minimum confidence

constraints. Many extensions of association rules are discovered for classification.

One such is CBA(Classification Based Association) method presented in [8] where

association rules are mined for pre determined target class. CBA2 is an extension of

CBA where association rules predict different classes having different minimum

support to solve data imbalance problem. A novel classification model based on

relational association rule mining has been proposed in [9] to predict whether a

software module is defective or not. The Defect Prediction Relational Association

Rules (DPRAR) classifier defines set of relations between the metric values during

training process. At the classification stage, a new software entity is declared as

positive or negative based on measurement how „close‟ the entity is to the positive

instances and also how „far‟ it is from negative one. The obtained results shown that

DPRAR classifier performed better than existing classifiers – CBA2, OneR and

Bagging.

 Apart from rule-based methods, many different machine learning algorithms are

developed to solve software defect prediction problem. Menzies et al., [10], evaluated

the Naive Bayes classifier, OneR and J48 and concluded that Naive Bayes produced

the best results on the 8 used NASA datasets. Another paper [11] presents Text

categorization using combination of association rules and Naive Bayes where in

instead of using words, word relation is used to derive feature set from pre-classified

text documents. Naïve Bayes Classifier is then applied on derived features for final

categorization. The obtained results were promissory with probabilistic nature of

Naive Bayes approach.

 Metrics that are playing key role as feature set also been analysed and applied to

compare different approaches. Ref. [12] evaluated the object-oriented metrics given

by Chidamber and Kemerer, and few other static code metrics for couple of open

source projects. The empirical study is to find out nature of relationship between these

metrics and defects. In another literature study [13], results shows that 49% of the

metrics used in defect prediction models are Object-oriented metrics when compared

to 27% of traditional source code metrics or 24% of processmetrics.Chidamber and

Kemerer‟s (CK) object oriented metrics were most frequently used compared to

traditional size and complexity metrics. Menzies.,[14] described the value ofusing

McCabes and Halstead static code attributes to learn defect predictor models. These

static code attributes are module based metrics, easy to use and are widely being used

17378 Kumudha. P

Background

The objective of relational association rule mining is to find relationships between

features that hold over large percentage of records. In a binary classification

problem, if an attribute A is in “>” relation with attribute B for majority of positive

instances then a record in which attribute A holds “<” relation with B may be belongs

to negative instance. It may not mean very much if only one rule including B is not

fulfilled, but it increases the likelihood that the instance inquestion belongs to the

negative class if many such rules are broken.

 The following will briefly review the concept of relational association rules, as

well as the mechanism for identifying therelevant relational association rules that hold

within a dataset.

 throughxn, Baye‟s theorem states the following relationship:

 Let R = be a set of instances in relational model where each instance

is characterized by list of m attributes, . We denote by Φ as the

value of attribute for the instance . Each attribute takes value from a

domain . The domain represents the type of data that a class can have and

different classes represents different data. Between two domains and relations

can be defined as: less or equal (<=) and greater than (>). We denote by M the set of

all possible relations that can be defined on x .

 A relational association rule [6] is an

expression => where

A = , ≠ j , k = 1...l, j ≠ k and € Mis a

relation over is the domain of the attribute

1. occur together(are non-empty) in S% of n instances then

we call S the support of the rule, and

2. We denote by Rthe set of instances where occur

together and relations Φ Φ , Φ Φ

,...Φ hold for each instance from : then we call

c the confidence of the rule.

 The number of attributes in the rule is called as the length of a relational

association rule. Maximum length could be at most equal to „m‟ number of attributes.

Any Relational association rule is interesting if its support S is greater than or equal to

a user specified minimum support and its confidence c is greater than or equal to a

user specified minimum confidence.

 Naive Bayes method[15] is a supervised learning algorithm based on applying

Bayes‟ theorem with the “naive” assumption of independence between every pair of

features. Given a class variable C and a dependent feature vector x1

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17379

 Where P (c|x) is the posterior probability of class(target) for given predictor

(attribute), P(c) is the prior probability of class, P(x|c) is the likelihood which is the

probability of predictor given class and P(x) is the prior probability of predictor.

Advantages of Naive Bayes [15]

Probabilistic classifier based on applying Baye‟s theorem and is easy to implement. It

is optimistic to use even when there is dependent relation between attributes.With a

small amount of training data, Naive Bayes will converge more quickly to a solution

than any other machine learning classifiers. Naive Bayes can work with both discrete

and continuous features together in the same data set.

Methodology
In this section we introduce a novel method for detecting software modules with

defects, based on relational association rule mining integrating with Naive Bayes

approach, called DRAR_NB (Defect Prediction using combination of Relational

Association rules and Naive Bayes Approach). The combination of association rules

with Naive Bayes on Text Categorization [16] has already demonstrated that instead

of words, word relation i.e. association rules from these words has derived meaningful

word sets as feature set for classification. Naive Bayes is then used on derived feature

set for final target class categorization. In our proposed work, we extend the concept

of association rules and Naive Bayes to capture relevant relationship between metrics

using binary relations and then categorizing target class „defective or non-defective‟

with simple probabilistic Naive Bayes model.

Proposed Design

Figure 1: Flow Chart of The Proposed Design DRAR_NB

17380 Kumudha. P

Training

As shown in Fig. 1, the historical data is divided into training dataset and test data set.

The data represents software metrics that are relevant for deciding if a software

module is defective or non-defective. Relational association rules are discovered in

training dataset containing defective and non-defective instances using minimum

thresholds of confidence and support set by the user. The possible relations defined

between two software metrics are <= and >. We have considered that the relations are

not defined between zero valued software metrics.

 Below are detailed steps to follow in training process:

1. Determine from training dataset, using DRAR algorithm[9], the set of

interesting relational association rules having minimum support and

confidence.

2. Discovery of interesting rulesstarts with two attributes (called as two attribute

set) and extends to generate three attribute set by considering two attribute set

as input. Similarly discovery of interesting rules carried out until total number

of attributes.

3. Identify Maximal length Interesting rules in each rule set by comparing first

rule set with second rule set and pick those rules from first rule set that doesn‟t

extend in second rule set.

 Let us consider the java code example shown in Fig.2:

Public class Class_ex1 { public class Class_ex2 {

 publicstaticintattr1; private staticint attr3;

 publicstaticintattr2; private statici nt attr4;

public static void method1() public static void method4()

 { {

 attr1 = 0; Class_ex1.attr1 =0;

 method2(); Class_ex1.attr2 =0;

Class_ex1.method1();

 } }

Public static void method2() public static void method5()

 { {

 attr2 = 0; attr3 = 0;

 attr1 = 0; attr4 = 0;

 } }

Public staticvoidmethod3() public static void method6()

 { {

 attr2 = 0; attr3 = 0;

 attr1 = 0; method4();

 method1(); method5();

 method2();

 } }

} }

Figure 2: Code Example

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17381

In the above example, we considered software entity can be either an application class

or a method from an application class. The software metrics considered in this

example are :

1. Depth in Inheritance Tree(DIT)

2. Number of Children(NOC)

3. Fan-In(FI)

4. Fan-Out(FO)

 Using the above mentioned software metrics, each software entity from the system

presented in Fig.2. can be represented as a 4-dimensional vector, having as

components the values of the considered metrics. The corresponding dataset is given

in

Table 1: Sample Dataset

Entity DIT NOC FI FO

Class_ex1 1 0 3 1

Class_ex2 1 0 0 2

method1 1 0 2 1

method2 1 0 2 0

method3 1 0 0 2

method4 1 0 1 1

method5 1 0 1 0

method6 1 0 0 2

Table 2: Interesting Relational Association Rules

Length Rule Confidence

2 DIT>NOC 1

2 NOC < FI 0.625

2 NOC < FO 0.75

2 FI > FO 0.5

3 DIT > NOC < FI 0.625

3 DIT > NOC < FO 0.75

3 NOC < FI > FO 0.5

4 DIT > NOC < FI >

FO

0.5

Table 3: Maximal Length Interesting Relational Association Rules

 Length Rule Confidence

3 DIT > NOC < FO 0.75

4 DIT > NOC < FI > FO 1

17382 Kumudha. P

 DRAR algorithm has been implemented on sample dataset (Table 1) with

minimum support 0.9 and minimum confidence 0.4. Minimum values of support and

confidence are identified by examining dataset at multiple values and setting one that

generates enough patterns for the study. These parameters also help in pruning search

space and vary from dataset to dataset. The discovery of interesting relational rules on

sample dataset for length 2, 3 and 4 based are shown in Table 2.The interesting

relational rules of length 2, 3 and 4 are called as two rule set, three rule set and 4 rule

set respectively. Table 3 shows the maximal length interesting relational association

rules for rule lengths 2, 3 and 4 respectively. The maximal length interesting rules are

obtained by eliminating rules of a length „l‟ if they are subset of „l+1’ length. In the

above example, all four rules of length „2‟ are eliminated as they became subset of

rules of length „3‟. Similarly rules „DIT > NOC < FI‟ and „NOC < FI > FO‟ of length

„3‟ are eliminated as they exists in next level length „DIT > NOC < FI > FO‟. Thus

maximal length interesting relational association rules get reduced to 2 from total

number of interesting relational association rules which is 8.

 Similarly maximal length interesting relational association rules extends upto total

number of attributes based on rules satisfying minimum confidence and support.

1. Determine defect likelihood for each rule by calculating how many instances

in the training dataset satisfied the rule against total defective instances. The

obtained value is stored as defect likelihood for the rule.

2. Determine non-defect likelihood for each rule by calculating how many

instances in the training dataset satisfied the rule against total non-defective

instances. The obtained value is stored as non-defect likelihood for the rule.

Classification

At the classification stage, after the training was completed if a new software entity

„e‟ has to be classified as defective or non-defective, then the proposed algorithm is

[Fig.3]:

Algorithm DRAR_NB is

 //Input: Dataset R consisting of software module to be classified as defective or

non-defective.

 Rule sets beginning from two rule set to maximum rule sets.

 // Output: Software module classified as defective or non-defective.

 // Declarations:

 Defect_Lkhd= Defective likelihood of the rules

 Prior_prob_Defect= Prior probability of defective class

 Non_Defect_Lkhd= Non-Defective likelihood of the rules

 Prior_prob_Non_Defect = Prior probability of non-defective class

 Prior_prob_rules= Prior probability of rules

 Step 1 : For each rule set

 Step 2: Read each rule in a rule set

 Step 3: Scan rule on to the new instance

 Step 4: If rule is satisfied

 Then

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17383

 Step 5: Multiply defect likelihood of the rule with existing value [default is 1]

 Step 6: Multiply non-defect likelihood of the rule with existing value [default is 1]

 Step 7: Repeat steps 3 to 6 until end of all rules in the rule set.

 Step 8: Determine prior Prior_prob_Defect as

 Count of defective instances / total number of input training instances

 Step 9: Determine prior Prior_prob_Non_Defect as

 Count of non-defective instances / total number of input training

instances.

 Step 10: Determine Prior_prob_rules as

 Number of rules satisfied by the new instance / total number of rules in a

rule set.

 Step 11: Determine posterior probability of a defective class as

 (Defect_Lkhd (step 5) * Prior_prob_Defect (step 8))/ Prior_prob_rules

(step 10)

 Step 12: Determine posterior probability of a non-defective class as

 (Non_Defect_Lkhd(step 6) * Prior_prob_Non_Defect(step 9))/

Prior_prob_rules (step 10)

 Step 13: If (posterior probability of defective class > posterior probability of non-

defective class)

 Then Increment score_positive by 1

Otherwise

 Increment score_negative by 1.

 Step 14: Repeat steps 2 to 13 until end of all rule sets.

 Step 15: If score_positive>score_negative then declare new instance as defective

otherwise declare new instance as non-defective.

Figure 3: DRAR_NB Algorithm

 The steps 11 and 12are based on Bayes theorem specified in section 2.2. Maximal

length Relational association rules are used to determine posterior probabilities of a

target class which is defective or non-defective.

Measurement Technique

The prediction model used in the experiment outputs probability of defect proneness

for each module that has been tested. To classify module as defective, one can use

minimum threshold and minimum support set by the user and different choices of

thresholds will give varying rates of false positives and false negatives. For a binary

classification task, the confusion matrix for the two possible outcomes (positive and

negative) is computed. The confusion matrix [17] shown in Table 4 consists of

TP - The number of actual positive instances predicted as positive.

FP - The number of actual negative instances predicted as positive.

TN - The number of actual negative instances predicted as negative.

FN - The number of actual positive instances predicted as negative.

17384 Kumudha. P

Table 4: Confusion Matrix

 Actual

Predicted

 Defect-Prone Non-Defect-Prone

Defect-Prone True Positive False Positive

Non-Defect-Prone False Negative True Negative

 The following evaluation measures are used for defect prediction in this paper:

 Accuracy of the model is the proportion of correct classifications (true positives

and true negatives) from overall number of cases.

 Accuracy = (TP + TN)/ (TP + FP + TN + FN) (2)

 Ma et al. [18] observed that in a highly class imbalanced data set with very few

defective modules, accuracy is not a useful performance measure because accuracy

shown to be high even with poor detection of positive cases.

 Precision measures proportion of correct positive classifications (true positives)

from cases that are predicted as positive.

 Precision= TP/ (TP + FP) (3)

 Recall measures proportion of correct positive classifications (true positives) from

cases that are actually positive.

 Recall = TP/ (TP + FN) (4)

 F- Measure is a harmonic mean of precision and recall and is defined as:

 F-measure = (2 * Recall * Precision)/ (Recall + Precision) (5)

Experimental Evaluation
This section aims at experimentally evaluating proposed method DRAR_NB for

defect prediction using relational association rules and provides a comparison with

existing classifiers – Naive Bayes, Bagging and One R.

Data Collection

One set of datasets chosen in the experiment consists of object oriented product

metrics describing the size and design complexity of software module. The proposed

model is compared with other classifiers to determine how the efficiency varies in

predicting software entity as defective or non-defective. The projects studied are open

source projects from Eclipse- Bug Prediction Dataset (“http://bug.inf.usi.ch/

download.php”).

 Table 5 shows latest version of eclipse bug prediction datasets from different

software systems used in the experiment. Table 6 shows product based object

oriented metrics that are used in the experiment.

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17385

Table 5: Eclipse Open Source Projects

Table 6: Product Metrics – Object Oriented

Metrics Description

CBO Coupling between object class

DIT Depth of inheritance tree

FI Fan IN-Number of classes that reference the class

FO Fan Out-Number of classes referenced by the class

LCOM Lack of cohesion in methods

NOC Number of children

NOA Number of attributes

NOAI Measure of Attributes Inherited

NLOC Number of lines of code

NOM Number of Methods

NOMI Number of Methods inherited

NOPRA Number of private attributes

NOPRM Number of private methods

NOPA Number of public attributes

NOPM Number of public methods

RFC Response for class

WMC Weighted methods per class

 Another set of datasets used in the experiment is based on static McCabe and

Halstead static code metrics which is made publicly available, often classed NASA

Datasets. These are also referred as PROMISE Repository [3] and is freely available

for anyone who wanted to build or test defect prediction models. Table 7 shows

description of PROMISE repository datasets – CM1 and PC1 that are studied in our

experiment. Table 8 shows static code attributes from PROMISE Repository and data

is available in the link “http://promise.site.uottawa.ca/SERepository

17386 Kumudha. P

Table 7: PROMISE Repository

Table 8: Static Code Metrics

Metrics Description

LOC McCabe's lines of code in software module

v(g) Measure McCabe Cyclomatic Complexity

ev(g) McCabe Essential Complexity

iv(g) McCabe Design Complexity

N(N1 + N2) Halstead Total number of Operators and Operands

V Halstead Volume

L Halstead Program length

D Halstead Measure difficulty

I Halstead Measure Intelligence

E Halstead Measure Effort

B Halstead Error Estimate

T Halstead Time Estimator

Locode Halstead's Number of lines in software module

Locomment Halstead's Number of comments

Loblank Halstead's Number of blank lines

Locodeand

comment

Number of codes and comments

uniq_op Unique Operators

uniq_opnd Unique Operands

total_op Total Operators

total_opnd Total Operands

Branchcount Number of branch count

Defects Class describing software module is defective or not

Result Analysis

The implementation work of proposed classifier DRAR_NB is compared with Naive

Bayes, one R classifier [19] and Bagging classifier[20].To run the experiments

stratified ten-fold cross-validation was used. Cross-validation is a standard evaluation

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17387

measure for calculating error rate on data in machine learning and performance

measures presented in section 3.4are used.

 Observations have shown that threshold value of confidence and support plays a

key role in overall prediction process. Quality of results varies based on high or low

confidence value set.

 Fig.4 shows comparison between DRAR_NB and other classifiers on datasets

containing object oriented product based metrics. The graphs reflect data related to

defective class. Results for all the three datasets namely LUCENE (Fig.4a)and

ECLIPSE_JDT (Fig.4b) are considered for evaluation. The minimum support value

has been set to „1‟ representing that none of the attributes are left empty in any

instance of „R‟ and hence total „n‟ instances in the dataset will contribute for defect

prediction. The minimum threshold value of confidence varies from dataset to dataset.

Range of values studied for setting minimum confidence in three datasets are 0.3 to

0.9 and among them obtained balanced results at 0.4 for datasets Lucene and Eclipse_

JDT. Balanced results doesn‟t consider results that are turned out completely to either

True positive (TP Rate = 1) or True negative (TN Rate = 1). Minimum value 0.4 also

ensures search space not to be pruned to a large extent which may result in lack of

quality on prediction model. The comparison results of classification based on

proposed work DRAR_NB has shown significant improvement over other classifiers

in terms of performance measures of Recall(equation4)

 Fig.5shows comparison between DRAR_NB and other classifiers on datasets

containing static code metrics. The graphs reflect data related to defective class.

Results for all the three datasets namely CM1 (Fig.5a) and PC1(Fig. 5b) are

considered for evaluation. The minimum support value has been set to „1‟ and

confidence is set to 0.2 for the two datasets. The comparison results reflect

DRAR_NB has performed significant improvement in terms of Recall which

determines the True positive rate. The results obtained are similar to those of object

oriented product based metrics.

 Table 9 shows comparative results for all open source projects considered for

evaluation, the Accuracy(equation 2), Precision(equation 3), Recall(equation 4) and

F-measures(equation 5) obtained for DRAR_NB and classifiers – Naive Bayes,

Bagging and One R.. Data reflects for defective class. As confidence, support and

Length are not applicable to all other classifiers, they are marked with NA(Not

Applicable). For each project, the best result through DRAR_NB is marked with bold

characters. Results clearly show that DRAR_NB outperforms all other classifiers in

identifying defective modules on all datasets. With respect to True Positive rate

(Recall), Lucene dataset has achieved more than double times of better improvement

through DRAR_NB when compared to Naive Bayes and Bagging. OneR classifier has

only 7.8 % of True positive rate compared to 67.2 % of DRAR_NB. Eclipse_JDT

obtained double the performance over Naive Bayes and OneR, 8% of improvement

over Bagging.

 The datasets CM1 and PC1 also obtained double the performance over Naive

Bayes and OneRwith respect to True Positive rate i.e. recall. Bagging has „0‟ true

positive rate for CM1 and performed poor in PC1 with precision as „1‟ and F-Measure

as „0.2‟.

17388 Kumudha. P

Table 9: Comparative Results (In %).

Figure 4a: Dataset – LUCENE, conf = 0.4

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17389

Figure 4b: Dataset – ECLIPSE_JDT, conf = 0.4

Figure 5a: Dataset – CM1, conf = 0.2

Figure 5b: Dataset – PC1, conf = 0.2

Conclusions and Future Work
We have introduced in this paper a classification model based on discovering

relational association rules and using probabilistic approach to detect software module

17390 Kumudha. P

that is likely to be defective in the software systems. Experiments were conducted in

order to predict defective software modules, and the obtained results have shown that

our classifier is better than existing classifiers that are already applied for software

defect prediction. The datasets considered for experiment are eclipse and PROMISE

open source projects – Lucene, Eclipse_JDT, CM1 and PC1 with latest version.

 Future work in product metrics based predictive classification of software using

relational association rules and Naive Bayes will be made to include process metrics

at different stages of SDLC and determine the improvement effectiveness. We will

investigate of extending the proposed model DRAR_NB by combining it with other

machine learning based predictive models. We will also analyze how the length of the

rules and the confidence of the relational association rules discovered in the training

data may influence the accuracy of the classification task.

References

[1] Marco D‟Ambros, Michele Lanza, and RomainRobbes. “Evaluating defect

prediction approaches: a benchmark and an extensive comparison”.

Journal of Empirical Software Engineering.To appear.

[2] Marco D‟Ambros, Michele Lanza, and RomainRobbes. “An extensive

comparison of bug prediction approaches”. In 7th Working Conference on

Mining Software Repositories(MSR), pages 31–41, 2010.

[3] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, B.

Turhan, The promise repository of empirical software engineering data,

June 2012 <http://promisedata.googlecode.com>.

[4] B. Minaei-Bidgoli, R. Barmaki, M. Nasiri: “Mining numerical association

rules via multi-objective genetic algorithms”, Inform. Sci. 233 (2013) 15–

24.

[5] A.Marcus, J.I. Maletic, and K-I. Lin, "Ordinal Association Rules for Error

Identification in Data Sets", in Proceedings of Tenth International

Conference on Information and Knowledge Management (CIKM2001),

ACM, New York, NY, USA, pp. 589–591, Apr 2001.

[6] G. Serban, A. Campan, I.G. Czibula, “A programming interface for finding

relational association rules”, Int. J. Comput., Commun. Control I (S.)

(2006) 439–444.

[7] E. Baralis, L. Cagliero, T. Cerquitelli, P. Garza, “Generalized association

rule mining with constraints”, Inform. Sci. 194 (2012) 68–84.

[8] B. Liu, W. Hsu, Y. Ma, “Integrating classification and association rule

mining”, in: Proceedings of the 4th International Conference on

Knowledge Discovery and Data Mining (KDD), 1998, pp. 80–86.

[9] Gabriela Czibula , Zsuzsanna Marian, IstvanGergelyCzibula, “Software

defect prediction using relational association rule mining”, Information

Sciences vol no.264, pp.260–278, Jan 2014.

[10] T. Menzies, J. Greenwald, A. Frank, “Data mining static code attributes to

learn defect predictors”, IEEE Trans. Softw. Eng. 33 (1) (2007) 2–13.

Product Metrics Based Predictive Classification of Software Using RAR et.al. 17391

[11] M Kamruzzaman and Chowdhury Mofizur Rahman, “Text Categorization

using Association Rule and Naive Bayes Classifier”, Asian Journal of

Information Technology, Vol. 3, No. 9, pp 657-665, Sep. 2004.

[12] Pradeep Singh, K.D.Chaudhary, ShrishVerma, "An Investigation of the

Relationships between Software Metrics and Defects", International

Journal of Computer Applications (0975 – 8887),Volume 28– No.8,

August 2011.

[13] DanijelRadjenovic, MarjanHericko, Richard Torkar and Ales Zivkovic,

"Software fault prediction metrics: A systematic literature review",

Elsevier, Information and software Technology, pp. 1397–1418, Mar

2013.

[14] Paul Jenkins and P. Radivojac.“Naive Bayes Clasifiers”.Machine

Learning, CSCI-B555,45(1), 2001, pp 5-32.

[15] S.Stehman, “Selecting and interpreting measures of thematic classification

accuracy”, Rem. Sens. Environ. 62 (1) (1997) 77–89.

[16] Y. Ma and B. Cukic.“Adequate and precise evaluation of quality models in

software engineering studies”. In Proceedings of the 29th ICSE

Workshops, ICSEW ‟07,pages 68–, Washington, DC, USA, 2007. IEEE

Computer Society.

[17] V.U.B. Challagulla, F.B. Bastani, I.-L. Yen, R.A. Paul, “Empirical

assessment of machine learning based software defect prediction

techniques”, in: Proceedings of the 10th IEEE International Workshop on

Object-Oriented Real-Time Dependable Systems, WORDS ‟05, IEEE

Computer Society, Washington, DC, USA, 2005, pp. 263–270.

[18] A.S. Haghighi, M.A. Dezfuli, S. Fakhrahmad, “Applying mining schemes

to software fault prediction: a proposed approach aimed at testcost

reduction”,in: Proceedings of the World Congress on Engineering 2012,

WCE 2012, vol. I, IEEE Computer Society, Washington, DC, USA, 2012,

pp. 1–5.

[19] Tina. R. Patil and S.S. Sherekar, “Performance Analysis of Naive Bayes

and J48 Classification Algorithm for Data Classification”. In International

Journal of Computer science and Applications, vol.6, No.2, Apr 2013.

17392 Kumudha. P

