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Abstract 
 

To improve Software quality, it is essential for software developers to identify 

defective software modules at any phase of Software Development Life Cycle 

(SDLC). Many machine learning based classification models were designed 

and are still getting improved to solve the problem of defect prediction. The 

effectiveness of these models is influenced mainly by two key quality of data 

factors – set of software metrics used to build the models and proportion of 

defect-prone instances in the software measurement data set. In this paper, we 

proposed a classification model which is a combination of Naive Bayes and 

relational association rules. The classifier discovers relational association rules 

on the metrics data based on user defined confidence and support during 

training stage and integrates using Naive Bayes at testing stage to predict 

whether a software module is defective or non defective. An experimental 

evaluation of the proposed model is carried out on open source bug prediction 

dataset containing object oriented metrics. The proposed model performed 

better with class imbalance data and is compared with existing machine 

learning based techniques – Naive Bayes, Bagging and One R. The results 

obtained are positive having better improvement than existing mainly for the 

evaluation measures – Recall and F-Measure. The proposed model has shown 

high True positive rate of defective modules which signifies the model 

capability of identifying defective modules as defective than any other 

classifiers used in the experiment. This confirms the potential of the proposal. 

 

Key-Words: Data Mining, Association Rules, Naive Bayes, Software Defect 

Prediction. 
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Introduction 
Software quality is considered to be of great importance in the area of software 

engineering. In order to increase the efficiency and the quality of software modules, 

software defect prediction is used to identify defect prone modules and helps in 

achieving high software reliability. Any project having many defects lacks quality and 

thus techniques and methodologies for predicting the defects can help in reducing the 

faultiness during software testing process which results in high quality software 

product. Prediction models with input as software metrics, can predict the number of 

defective software modules. Software metrics are attributes which includes process, 

productor source code metrics of the software system. There are many metrics that 

have proved their value for system maintenance and modification and hence selecting 

metrics plays a key role in software defect prediction. For our work, we have used one 

set of dataset that is made public by D‟Ambros et al. to evaluate bug prediction 

techniques [1], [2]. Basically, the dataset includes seventeen product based object 

oriented metrics collected at class-level for Java based Systems. Another set of 

product metrics includes static code metrics that are available in PROMISE 

Repository [3]. 

     In Association rule mining [4], frequently occurring attribute value conditions are 

searched in a dataset and used for prediction purpose thereby neglecting non frequent 

attribute values. Ordinal association rules [5]are a particular type of association rules 

that specifies ordinal relationship i.e., numerical ordering between attributes for a 

certain percentage of records. However, in real world scenarios, there might not exist 

ordinal relationship all the time between attributes in which case ordinal association 

rules are not strong enough to describe the different domains and relationships 

between the attributes. In such situations, ordinal association rules are not strong 

enough to describe data consistency. Consequently, relational association rules were 

introduced in [6] in order to capture various kinds of relationships between record 

attributes. 

     This paper proposes novel approach based on Naive Bayes using relational 

association rules. Naive Bayes is simple yet powerful. The primary Naive Bayes 

assumption is that for a given class, the features are conditionally independent. Even 

if the features are not independent, each feature is considered as independent in terms 

of how it contributes to the classification of the set. By combining Relational 

Association Rules with Naive Bayes approach the results obtained are promising. 

     The paper is organized as follows. We start with related work and background in 

section 2. Next, Section 3 introduces our methodology by including system design, 

Training, classification process and measurement technique. An experimental 

evaluation with result analysis is reported in section 4. Conclusions and future work 

are outlined in section 5. 

 

 

 

 

 



Product Metrics Based Predictive Classification of Software Using RAR et.al.  17377 

 

Related Work and Background 
 

Related Work 

This section briefly describes the various studies done in the field of the association 

rule mining, relationships between object oriented metrics and its impact in defect 

prediction models. Association rule mining [7] identifies interesting relationships 

among data items and is used as unsupervised learning scenarios. The discovery of 

these relationships can help in many decision making processes. Association rule 

mining finds those rules that satisfy some minimum support and minimum confidence 

constraints. Many extensions of association rules are discovered for classification. 

One such is CBA(Classification Based Association) method presented in [8] where 

association rules are mined for pre determined target class. CBA2 is an extension of 

CBA where association rules predict different classes having different minimum 

support to solve data imbalance problem. A novel classification model based on 

relational association rule mining has been proposed in [9] to predict whether a 

software module is defective or not. The Defect Prediction Relational Association 

Rules (DPRAR) classifier defines set of relations between the metric values during 

training process. At the classification stage, a new software entity is declared as 

positive or negative based on measurement how „close‟ the entity is to the positive 

instances and also how „far‟ it is from negative one. The obtained results shown that 

DPRAR classifier performed better than existing classifiers – CBA2, OneR and 

Bagging. 

     Apart from rule-based methods, many different machine learning algorithms are 

developed to solve software defect prediction problem. Menzies et al., [10], evaluated 

the Naive Bayes classifier, OneR and J48 and concluded that Naive Bayes produced 

the best results on the 8 used NASA datasets. Another paper [11] presents Text 

categorization using combination of association rules and Naive Bayes where in 

instead of using words, word relation is used to derive feature set from pre-classified 

text documents. Naïve Bayes Classifier is then applied on derived features for final 

categorization. The obtained results were promissory with probabilistic nature of 

Naive Bayes approach. 

     Metrics that are playing key role as feature set also been analysed and applied to 

compare different approaches. Ref. [12] evaluated the object-oriented metrics given 

by Chidamber and Kemerer, and few other static code metrics for couple of open 

source projects. The empirical study is to find out nature of relationship between these 

metrics and defects. In another literature study [13], results shows that 49% of the 

metrics used in defect prediction models are Object-oriented metrics when compared 

to 27% of traditional source code metrics or 24% of processmetrics.Chidamber and 

Kemerer‟s (CK) object oriented metrics were most frequently used compared to 

traditional size and complexity metrics. Menzies.,[14] described the value ofusing 

McCabes and Halstead static code attributes to learn defect predictor models. These 

static code attributes are module based metrics, easy to use and are widely being used 
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Background 

The objective of relational association rule mining is to find relationships between 

features that hold over large percentage of records.  In a binary classification 

problem, if an attribute A is in “>” relation with attribute B for majority of positive 

instances then a record in which attribute A holds “<” relation with B may be belongs 

to negative instance. It may not mean very much if only one rule including B is not 

fulfilled, but it increases the likelihood that the instance inquestion belongs to the 

negative class if many such rules are broken. 

     The following will briefly review the concept of relational association rules, as 

well as the mechanism for identifying therelevant relational association rules that hold 

within a dataset. 

     throughxn,  Baye‟s theorem states the following relationship: 

 

     Let R =  be a set of instances in relational model where each instance 

is characterized by list of m attributes, . We denote by Φ  as the 

value of attribute  for the instance . Each attribute  takes value from a 

domain . The domain  represents the type of data that a class can have and 

different classes represents different data. Between two domains  and  relations 

can be defined as: less or equal (<=) and greater than (>). We denote by M the set of 

all possible relations that can be defined on x . 

     A relational association rule [6] is an 

expression => where

A = , ≠ j , k = 1...l, j ≠ k and  € Mis a 

relation over is the domain of the attribute  

1. occur together(are non-empty) in S% of n instances then 

we call S the support of the rule, and 

2. We denote by Rthe set of instances where occur 

together and relations Φ  Φ , Φ  Φ  

,...Φ hold for each instance from : then we call 

c  the confidence of the rule. 

     The number of attributes in the rule is called as the length of a relational 

association rule. Maximum length could be at most equal to „m‟ number of attributes. 

Any Relational association rule is interesting if its support S is greater than or equal to 

a user specified minimum support and its confidence c is greater than or equal to a 

user specified minimum confidence.  

     Naive Bayes method[15] is a supervised learning algorithm based on applying 

Bayes‟ theorem with the “naive” assumption of independence between every pair of 

features. Given a class variable C and a dependent feature vector x1 
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     Where P (c|x) is the posterior probability of class(target) for given predictor 

(attribute), P(c) is the prior probability of class, P(x|c) is the likelihood which is the 

probability of predictor given class and P(x) is the prior probability of predictor. 

 

Advantages of Naive Bayes [15] 

Probabilistic classifier based on applying Baye‟s theorem and is easy to implement. It 

is optimistic to use even when there is dependent relation between attributes.With a 

small amount of training data, Naive Bayes will converge more quickly to a solution 

than any other machine learning classifiers. Naive Bayes can work with both discrete 

and continuous features together in the same data set. 

 

 

Methodology 
In this section we introduce a novel method for detecting software modules with 

defects, based on relational association rule mining integrating with Naive Bayes 

approach, called DRAR_NB (Defect Prediction using combination of Relational 

Association rules and Naive Bayes Approach). The combination of association rules 

with Naive Bayes on Text Categorization [16] has already demonstrated that instead 

of words, word relation i.e. association rules from these words has derived meaningful 

word sets as feature set for classification. Naive Bayes is then used on derived feature 

set for final target class categorization. In our proposed work, we extend the concept 

of association rules and Naive Bayes to capture relevant relationship between metrics 

using binary relations and then categorizing target class „defective or non-defective‟ 

with simple probabilistic Naive Bayes model. 

 

Proposed Design 

 

 
 

Figure 1: Flow Chart of The Proposed Design DRAR_NB 
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Training 

As shown in Fig. 1, the historical data is divided into training dataset and test data set. 

The data represents software metrics that are relevant for deciding if a software 

module is defective or non-defective. Relational association rules are discovered in 

training dataset containing defective and non-defective instances using minimum 

thresholds of confidence and support set by the user. The possible relations defined 

between two software metrics are <= and >. We have considered that the relations are 

not defined between zero valued software metrics. 

     Below are detailed steps to follow in training process: 

1. Determine from training dataset, using DRAR algorithm[9], the set of 

interesting relational association rules having minimum support and 

confidence. 

2. Discovery of interesting rulesstarts with two attributes (called as two attribute 

set) and extends to generate three attribute set by considering two attribute set 

as input. Similarly discovery of interesting rules carried out until total number 

of attributes. 

3. Identify Maximal length Interesting rules in each rule set by comparing first 

rule set with second rule set and pick those rules from first rule set that doesn‟t 

extend in second rule set.  

     Let us consider the java code example shown in Fig.2: 

 

Public class Class_ex1 { public class Class_ex2 { 

 publicstaticintattr1; private staticint attr3;  

 publicstaticintattr2; private statici nt attr4; 

public static void method1() public static void method4()  

 { { 

  attr1 = 0; Class_ex1.attr1 =0; 

 method2(); Class_ex1.attr2 =0; 

Class_ex1.method1();  

 } } 

Public static void method2() public static void method5() 

 { { 

  attr2 = 0; attr3 = 0; 

  attr1 = 0; attr4 = 0;  

 } } 

Public staticvoidmethod3() public static void method6() 

 { { 

  attr2 = 0; attr3 = 0; 

  attr1 = 0;    method4(); 

  method1(); method5();  

  method2(); 

 } }  

} }  

 

Figure 2: Code Example 
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In the above example, we considered software entity can be either an application class 

or a method from an application class. The software metrics considered in this 

example are : 

1. Depth in Inheritance Tree(DIT) 

2. Number of Children(NOC) 

3. Fan-In(FI) 

4. Fan-Out(FO) 

     Using the above mentioned software metrics, each software entity from the system 

presented in Fig.2. can be represented as a 4-dimensional vector, having as 

components the values of the considered metrics. The corresponding dataset is given 

in  

 

Table 1: Sample Dataset 

 

Entity DIT NOC FI FO 

Class_ex1 1 0 3 1 

Class_ex2 1 0 0 2 

method1 1 0 2 1 

method2 1 0 2 0 

method3 1 0 0 2 

method4 1 0 1 1 

method5 1 0 1 0 

method6 1 0 0 2 

 

Table 2: Interesting Relational Association Rules 

 

Length Rule Confidence 

2 DIT>NOC 1 

2 NOC < FI  0.625 

2 NOC < FO  0.75 

2 FI > FO 0.5 

3 DIT > NOC < FI 0.625 

3 DIT > NOC < FO 0.75 

3 NOC < FI > FO 0.5 

4 DIT > NOC < FI > 

FO 

0.5 

 

Table 3: Maximal Length Interesting Relational Association Rules 

 Length Rule Confidence 

3 DIT > NOC < FO 0.75 

4 DIT > NOC < FI > FO 1 
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     DRAR algorithm has been implemented on sample dataset (Table 1) with 

minimum support 0.9 and minimum confidence 0.4. Minimum values of support and 

confidence are identified by examining dataset at multiple values and setting one that 

generates enough patterns for the study. These parameters also help in pruning search 

space and vary from dataset to dataset. The discovery of interesting relational rules on 

sample dataset for length 2, 3 and 4 based are shown in Table 2.The interesting 

relational rules of length 2, 3 and 4 are called as two rule set, three rule set and 4 rule 

set respectively. Table 3 shows the maximal length interesting relational association 

rules for rule lengths 2, 3 and 4 respectively. The maximal length interesting rules are 

obtained by eliminating rules of a length „l‟ if they are subset of „l+1’ length. In the 

above example, all four rules of length „2‟ are eliminated as they became subset of 

rules of length „3‟. Similarly rules „DIT > NOC < FI‟ and „NOC < FI > FO‟ of length 

„3‟ are eliminated as they exists in next level length „DIT > NOC < FI > FO‟. Thus 

maximal length interesting relational association rules get reduced to 2 from total 

number of interesting relational association rules which is 8. 

     Similarly maximal length interesting relational association rules extends upto total 

number of attributes based on rules satisfying minimum confidence and support. 

1. Determine defect likelihood for each rule by calculating how many instances 

in the training dataset satisfied the rule against total defective instances. The 

obtained value is stored as defect likelihood for the rule. 

2. Determine non-defect likelihood for each rule by calculating how many 

instances in the training dataset satisfied the rule against total non-defective 

instances. The obtained value is stored as non-defect likelihood for the rule. 

 

Classification 

At the classification stage, after the training was completed if a new software entity 

„e‟ has to be classified as defective or non-defective, then the proposed algorithm is 

[Fig.3]: 

 

Algorithm DRAR_NB is 

     //Input: Dataset R consisting of software module to be classified as defective or 

non-defective. 

      Rule sets beginning from two rule set to maximum rule sets. 

     // Output: Software module classified as defective or non-defective. 

     // Declarations: 

     Defect_Lkhd= Defective likelihood of the rules  

     Prior_prob_Defect= Prior probability of defective class  

     Non_Defect_Lkhd= Non-Defective likelihood of the rules  

     Prior_prob_Non_Defect = Prior probability of non-defective class  

     Prior_prob_rules= Prior probability of rules 

     Step 1 : For each rule set 

     Step 2: Read each rule in a rule set 

     Step 3: Scan rule on to the new instance 

     Step 4: If rule is satisfied  

     Then  
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     Step 5: Multiply defect likelihood of the rule with existing value [default is 1] 

     Step 6: Multiply non-defect likelihood of the rule with existing value [default is 1] 

     Step 7: Repeat steps 3 to 6 until end of all rules in the rule set.  

     Step 8: Determine prior Prior_prob_Defect as  

          Count of defective instances / total number of input training instances  

     Step 9: Determine prior Prior_prob_Non_Defect as  

                     Count of non-defective instances / total number of input training 

instances. 

     Step 10: Determine Prior_prob_rules as  

                     Number of rules satisfied by the new instance / total number of rules in a 

rule set. 

     Step 11: Determine posterior probability of a defective class as 

                     (Defect_Lkhd (step 5) * Prior_prob_Defect (step 8))/ Prior_prob_rules 

(step 10) 

     Step 12: Determine posterior probability of a non-defective class as 

                     (Non_Defect_Lkhd(step 6) * Prior_prob_Non_Defect(step 9))/ 

Prior_prob_rules (step 10) 

     Step 13: If (posterior probability of defective class > posterior probability of non-

defective class)  

       Then Increment score_positive by 1  

Otherwise 

       Increment score_negative by 1. 

     Step 14: Repeat steps 2 to 13 until end of all rule sets. 

     Step 15: If score_positive>score_negative then declare new instance as defective 

otherwise declare new instance as non-defective. 

 

Figure 3: DRAR_NB Algorithm 

 

     The steps 11 and 12are based on Bayes theorem specified in section 2.2. Maximal 

length Relational association rules are used to determine posterior probabilities of a 

target class which is defective or non-defective. 

 

Measurement Technique 

The prediction model used in the experiment outputs probability of defect proneness 

for each module that has been tested. To classify module as defective, one can use 

minimum threshold and minimum support set by the user and different choices of 

thresholds will give varying rates of false positives and false negatives. For a binary 

classification task, the confusion matrix for the two possible outcomes (positive and 

negative) is computed. The confusion matrix [17] shown in Table 4 consists of  

TP - The number of actual positive instances predicted as positive. 

FP - The number of actual negative instances predicted as positive. 

TN - The number of actual negative instances predicted as negative. 

FN - The number of actual positive instances predicted as negative. 
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Table 4: Confusion Matrix 

 

  Actual 

Predicted 

  Defect-Prone Non-Defect-Prone 

Defect-Prone True Positive False Positive 

Non-Defect-Prone False Negative True Negative 

 

     The following evaluation measures are used for defect prediction in this paper: 

     Accuracy of the model is the proportion of correct classifications (true positives 

and true negatives) from overall number of cases. 

     Accuracy = (TP + TN)/ (TP + FP + TN + FN)       (2) 

     Ma et al. [18] observed that in a highly class imbalanced data set with very few 

defective modules, accuracy is not a useful performance measure because accuracy 

shown to be high even with poor detection of positive cases. 

     Precision measures proportion of correct positive classifications (true positives) 

from cases that are predicted as positive. 

     Precision= TP/ (TP + FP)          (3) 

     Recall measures proportion of correct positive classifications (true positives) from 

cases that are actually positive. 

     Recall = TP/ (TP + FN)          (4) 

     F- Measure is a harmonic mean of precision and recall and is defined as: 

     F-measure = (2 * Recall * Precision)/ (Recall + Precision)     (5) 

 

 

Experimental Evaluation 
This section aims at experimentally evaluating proposed method DRAR_NB for 

defect prediction using relational association rules and provides a comparison with 

existing classifiers – Naive Bayes, Bagging and One R. 

 

Data Collection  

One set of datasets chosen in the experiment consists of object oriented product 

metrics describing the size and design complexity of software module. The proposed 

model is compared with other classifiers to determine how the efficiency varies in 

predicting software entity as defective or non-defective. The projects studied are open 

source projects from Eclipse- Bug Prediction Dataset (“http://bug.inf.usi.ch/ 

download.php”).  

     Table 5 shows latest version of eclipse bug prediction datasets from different 

software systems used in the experiment. Table 6 shows product based object 

oriented metrics that are used in the experiment. 
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Table 5: Eclipse Open Source Projects 

 

 
 

Table 6: Product Metrics – Object Oriented 

 

Metrics Description 

CBO Coupling between object class 

DIT Depth of inheritance tree 

FI Fan IN-Number of classes that reference the class 

FO Fan Out-Number of classes referenced by the class 

LCOM Lack of cohesion in methods 

NOC Number of children 

NOA Number of attributes 

NOAI Measure of Attributes Inherited 

NLOC Number of lines of code 

NOM Number of Methods 

NOMI Number of Methods inherited 

NOPRA Number of private attributes 

NOPRM Number of private methods 

NOPA Number of public attributes 

NOPM Number of public methods 

RFC Response for class 

WMC Weighted methods per class 

  

 

     Another set of datasets used in the experiment is based on static McCabe and 

Halstead static code metrics which is made publicly available, often classed NASA 

Datasets. These are also referred as PROMISE Repository [3] and is freely available 

for anyone who wanted to build or test defect prediction models. Table 7 shows 

description of PROMISE repository datasets – CM1 and PC1 that are studied in our 

experiment. Table 8 shows static code attributes from PROMISE Repository and data 

is available in the link “http://promise.site.uottawa.ca/SERepository 
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Table 7: PROMISE Repository 

 

 
 

Table 8: Static Code Metrics 

 

Metrics Description 

LOC McCabe's lines of code in software module 

v(g) Measure McCabe Cyclomatic Complexity 

ev(g) McCabe Essential Complexity 

iv(g) McCabe Design Complexity 

N(N1 + N2) Halstead Total number of Operators and Operands 

V Halstead Volume 

L Halstead Program length 

D Halstead Measure difficulty 

I Halstead Measure Intelligence 

E Halstead Measure Effort 

B Halstead Error Estimate 

T Halstead Time Estimator 

Locode Halstead's Number of lines in software module 

Locomment Halstead's Number of comments 

Loblank Halstead's Number of blank lines 

Locodeand 

comment 

Number of codes and comments 

uniq_op Unique Operators 

uniq_opnd Unique Operands 

total_op Total Operators 

total_opnd Total Operands 

Branchcount Number of branch count 

Defects Class describing software module is defective or not  

 

Result Analysis  

The implementation work of proposed classifier DRAR_NB is compared with Naive 

Bayes, one R classifier [19] and Bagging classifier[20].To run the experiments 

stratified ten-fold cross-validation was used. Cross-validation is a standard evaluation 
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measure for calculating error rate on data in machine learning and performance 

measures presented in section 3.4are used.  

     Observations have shown that threshold value of confidence and support plays a 

key role in overall prediction process. Quality of results varies based on high or low 

confidence value set. 

     Fig.4 shows comparison between DRAR_NB and other classifiers on datasets 

containing object oriented product based metrics. The graphs reflect data related to 

defective class. Results for all the three datasets namely LUCENE (Fig.4a)and 

ECLIPSE_JDT (Fig.4b) are considered for evaluation. The minimum support value 

has been set to „1‟ representing that none of the attributes are left empty in any 

instance of „R‟ and hence total „n‟ instances in the dataset will contribute for defect 

prediction. The minimum threshold value of confidence varies from dataset to dataset. 

Range of values studied for setting minimum confidence in three datasets are 0.3 to 

0.9 and among them obtained balanced results at 0.4 for datasets Lucene and Eclipse_ 

JDT. Balanced results doesn‟t consider results that are turned out completely to either 

True positive (TP Rate = 1) or True negative (TN Rate = 1). Minimum value 0.4 also 

ensures search space not to be pruned to a large extent which may result in lack of 

quality on prediction model. The comparison results of classification based on 

proposed work DRAR_NB has shown significant improvement over other classifiers 

in terms of performance measures of Recall(equation4) 

     Fig.5shows comparison between DRAR_NB and other classifiers on datasets 

containing static code metrics. The graphs reflect data related to defective class. 

Results for all the three datasets namely CM1 (Fig.5a) and PC1(Fig. 5b) are 

considered for evaluation. The minimum support value has been set to „1‟ and 

confidence is set to 0.2 for the two datasets. The comparison results reflect 

DRAR_NB has performed significant improvement in terms of Recall which 

determines the True positive rate. The results obtained are similar to those of object 

oriented product based metrics.  

     Table 9 shows comparative results for all open source projects considered for 

evaluation, the Accuracy(equation 2), Precision(equation 3), Recall(equation 4) and 

F-measures(equation 5) obtained for DRAR_NB and classifiers – Naive Bayes, 

Bagging and One R.. Data reflects for defective class. As confidence, support and 

Length are not applicable to all other classifiers, they are marked with NA(Not 

Applicable). For each project, the best result through DRAR_NB is marked with bold 

characters. Results clearly show that DRAR_NB outperforms all other classifiers in 

identifying defective modules on all datasets. With respect to True Positive rate 

(Recall), Lucene dataset has achieved more than double times of better improvement 

through DRAR_NB when compared to Naive Bayes and Bagging. OneR classifier has 

only 7.8 % of True positive rate compared to 67.2 % of DRAR_NB. Eclipse_JDT 

obtained double the performance over Naive Bayes and OneR, 8% of improvement 

over Bagging. 

     The datasets CM1 and PC1 also obtained double the performance over Naive 

Bayes and OneRwith respect to True Positive rate i.e. recall. Bagging has „0‟ true 

positive rate for CM1 and performed poor in PC1 with precision as „1‟ and F-Measure 

as „0.2‟. 
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Table 9: Comparative Results (In %). 

 

 
 

 
 

Figure 4a: Dataset – LUCENE, conf = 0.4 
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Figure 4b: Dataset – ECLIPSE_JDT, conf = 0.4 

 

 
 

Figure 5a: Dataset – CM1, conf = 0.2 

 

 
 

Figure 5b: Dataset – PC1, conf = 0.2 

     

 

Conclusions and Future Work 
We have introduced in this paper a classification model based on discovering 

relational association rules and using probabilistic approach to detect software module 
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that is likely to be defective in the software systems. Experiments were conducted in 

order to predict defective software modules, and the obtained results have shown that 

our classifier is better than existing classifiers that are already applied for software 

defect prediction. The datasets considered for experiment are eclipse and PROMISE 

open source projects – Lucene, Eclipse_JDT, CM1 and PC1 with latest version. 

     Future work in product metrics based predictive classification of software using 

relational association rules and Naive Bayes will be made to include process metrics 

at different stages of SDLC and determine the improvement effectiveness. We will 

investigate of extending the proposed model DRAR_NB by combining it with other 

machine learning based predictive models. We will also analyze how the length of the 

rules and the confidence of the relational association rules discovered in the training 

data may influence the accuracy of the classification task. 
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