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Abstract 

 
Recently compressive sensing (CS) technique places a major role in many 
research areas like Image Processing, Medical and Seismic Imaging, Analog 
to Information Conversion, Wireless Communication and Networks. It 
predicts the sparse or approximately sparse high dimensional data or signal 
from the highly incomplete linear measurements. This paper reviews the 
various compressive sensing iterative algorithms. Performance of those 
algorithms are evaluated in terms of Mean Square Error (MSE) and inferred 
that Orthogonal Matching Persuit has lower MSE for Gaussian sparse signal. 
Recovery guarantee of OMP algorithm is also stated. 
 
Index Terms: Compressive Sensing, Reconstruction algorithms, Orthogonal 
Matching Pursuit, Sensing Matrix, Mutual Incoherence. 

 
 
Introduction 
The Shannon Nyquist Sampling theorem states that a band limited signal can be 
reconstructed from the samples without distortion if the samples are taken at least 
twice the highest frequency spectral component. But if the signal of interest is sparse 
or approximately sparse in some suitable basis, then a new technique called 
compressive sensing provides an alternate means for lower sampling rate and its 
recovery. A signal is said to be k sparse if it has only k non zero entries alternatively 
support of a signal is k. The CS measurement system for recovering k sparse signal 

nRx can be modelled mathematically, as 
     xy   
     where dxnR  called sensing matrix and dRy  represent measurements. If the 
measurement vector y is equal to the length of the signal x then it can be perfectly 
recovered provided matrix   is invertible. In case of measurement vector y with size 
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nd   and also greater than the number of nonzero entries of the original signal x 
then from these few incomplete measurements x can be recovered using CS theory.  
     For the recovery, projection basis   should be incoherent with the basis in which 
the signal has a sparse representation [1]. The natural attempt to recover x  by solving 
an optimization problem of the form  

     )(minargˆ
0

yBztosubjectzx    

     where )( yB { yzz : }. It is a NP hard problem. One avenue for translating this 
problem into track able is replace l0 minimization with l1 minimization based on linear 
programming techniques. l1 minimization techniques provides accurate method for 
sparse signal recovery if it satisfies Restricted Isometry Property(RIP). But the 
computational complexity of l1 minimization is highly impractical. It leads to the need 
of faster recovery algorithm that works in linear time. Recently several low 
complexity iterative algorithms are proposed.  
     The rest of the paper is organized as follows. The basics of Iterative Compressive 
Sensing are described in section II. Various iterative algorithms are discussed in 
section III. Implementation of those algorithms and results are given in section IV and 
also describes the recovery guarantee of OMP. Conclusion is given in section V. 
 
 
Basics of Iterative Compressive Sensing 
A set n

ii 1  is called a basis for Rn if the vectors in the set span Rn and are linearly 
independent. Each vector in the space has unique representation as a linear 
combination of these vectors. For any nRx , there exist coefficient  n

iic 1  such that 

     



n

i
iicx

1

  

     It can be represented by matrix as cx  where nxn  matrix with columns given by 

i  and c length n vector. Note that if the columns of  are orthonormal then the 
coefficient c can be easily calculated as  

     ii xc ,  or xc T  

     Basis can be generalized to set of possibly linearly dependent vectors known as 
frame. Mathematically, a frame is a set of vectors  n

ii 1  in Rd, d<n corresponding to 
a matrix dxnR . Frame is the richer representation of data due to their redundancy. 
That is for a given x, there exist infinitely many coefficients vectors c such that 

cx  , since number of unknowns are greater than number of equations. If   is well 

defined and have linearly independent rows that ensures T is invertible then one of 
the ways to obtain the coefficient is 

     xc T  1)(   
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     CS literatures refer dxnR  as dictionary or sensing matrix. CS recovery 
algorithms are guaranteed for the perfect recovery of the sparse signal x via RIP [2-4] 
given by 
     A sensing matrix  satisfies the RIP of order k if there exists a constant δ such that 

         2
2

2

2

2

2
11 xxx    

     for any k sparse vector. 
     The minimum of all constants δ satisfying the above condition is called isometry 
constant δk. But verifying a sensing matrix   for RIP involves combinatorial 

computation complexity, since in each case one must essentially consider )(n
k  sub 

matrices. Other than RIP the widely used condition is mutual incoherence given by 
Donoho et al.[5] 
     The mutual incoherence   of a sensing matrix  , is the largest absolute inner 
product between any two columns ji  ,  of   

     
22

1

,
max) (

ji

ji

nji 





  

 
Iterative Reconstruction Algorithms 
The underdetermined system of equations xy   can be perfectly reconstructed from 
the properly designed recovery algorithms with known signal sparsity. From the 
various CS approaches available, iterative greedy algorithms received a significant 
attention due to their low complexity. Greedy iterative algorithm searches the support 
of the sparse signal. In each greedy iteration search, correlation between each columns 
of   and residual are compared to identify the element of the support. This approach 
includes Orthogonal Matching Pursuit (OMP), Single Step Orthogonal matching 
pursuit(SSOMP), Regularized Orthogonal Matching Pursuit(ROMP), S tagewise 
Orthogonal Matching Pursuit (StOMP) and Compressive Sampling Matching Pursuit 
(CoSaMP). The reconstruction probability of OMP from given y is stated by 
following theorem [6]. 
 
Theorem 

 36.0,0 , and choose )/ln( nCkd  . Suppose x is an arbitrary k sparse signal in 
Rn. Draw d from the standard Gaussian distribution on Rd. Given the data, OMP can 
reconstruct the signal with probability exceeding 1-2δ. For this theoretical results, it 
suffices that C=20. When k is large, C=4 is enough. 
     The basic iterative algorithm is Orthogonal Matching Pursuit (OMP), which was 
popularised and analyzed in [6][7]under a hypothetical assumption that columns   
are orthonormal.  
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A. OMP 
To identify the original signal x, it is needed to determine which columns   
participate in the measurement vector y. The algorithm picks the columns in greedy 
fashion. At each iteration a column of   is selected which is strongly correlated with 
y. Then subtract off its contribution to y and iterate on residue. The OMP algorithm is 
followed [6] 
__________________________________________________________ 
Input: 

 Measurements y 
 Sensing matrix  
 Sparsity k 

 
Initialization 

 Residual vector rt=y,  
 Estimated support set 0 =null matrix, 
 Iteration t=1  
 Index set Io= null matrix 

 
1. Find the index t that solves the optimization problem 

      nj
t

,.....2,1
maxarg




  jtr ,1  

2. Augment the index set  1tt II  { t } and ][ 1 tItt    

3. Solve a least squares problem to obtain a new signal estimate 

      
yx

x
x tt  

minarg
 

       =   yT
tt

T
t  1

 
4.  Calculate the new approximation of the data and the new residue 

       ttttt ayrxa  ,  
5. Increment t, and return to step 2 if t<k 
6. The estimate x̂ for the signal has non zero indices at the components listed in    
Ik. The value of the estimate x̂ is component Ij equals jth component of xt 

________________________________________________________________ 
 
     The computational complexity of OMP depends on the number of iterations 
needed for exact reconstruction. The OMP always run through k iterations and its 
complexity is in O(kdn)[8]. 
 
B. Single step OMP 
Algorithm acquires the participated d columns of   in the measurement vector y in a 
single step by picking d columns which have the highest correlation magnitudes 
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developed by Manjumdar et al.[9]. It leads to form linear matrix equation where 
concerned matrix is almost full rank.  
____________________________________________________________ 
Input: 

 Measurements y 
 Sensing matrix  
 Sparsity k 

 
Initialization:  

 Index set I 
 

1. Compute  
      niyI ii  1  
2.  Form a matrix A whose columns are Sji ,  where  
       dSandSjIIiS ji  }:{  

3. Compute yAx 1ˆ   as the signal estimate  
________________________________________________________________ 
 
     SSOMP reduces the number of iterations required for exact recovery to single 
iteration, in some sparsity levels. The range over which SSOMP effective is different 
from the effective range of OMP. And also it is proved in Avishek Manjumdar et 
al.[9] the asymptotic performance of SSOMP is poor where the recovery error decays 
logarithmically with signal dimension n and d=klogn. However, for more realistic 
ranges of parameters, SSOMP can have good performance.  
 
C. ROMP 
The main difference between OMP and ROMP algorithm is the identification and 
regularization steps given by Needell & Vershynin [10]. Instead of choosing only one 
strongly correlated column at each iteration in OMP, choose set of k biggest absolute 
coordinates of the observation vector yu * . By this way, ROMP can recover 
signals perfectly without going through all k iterations. And also it is able to make 
mistakes in the support set by selects more than one coordinate, while still correctly 
reconstructing the original signal. This is accomplished because the number of 
incorrect choices the algorithm can make. Once the algorithm chooses an incorrect 
coordinate, however, there is no way for it to be removed from the support set 
[10][11]. 
______________________________________________________________ 
Input: 

 Measurements y 
 Sensing matrix  
 Sparsity k 
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Initialization:  
 Residual vector r=y 
 Iteration t=1  
 Index set Io= null matrix 

 
1. Choose a set J for the k biggest coordinates in magnitude of the observation 

vector ru *  
2. Divide the set J into subsets J0 which satisfies 

      )(2)( juiu  for all i, j  J0 

and choose the subset J0 with maximum energy of 
20j

u  

3. Set 01 JII tt   & calculate the new approximation by solving the least square 
equations  

      2

minargˆ yxx
tI    

       xyr ˆ  
4. Go to step 1 if r  0 then keep increasing 1 tt  

____________________________________________________________ 
 
     The algorithm ROMP reconstructs a sparse signal in a number of iterations linear 
to the sparsity that is it runs with at most O(k) iterations and the reconstruction is 
exact provided that the RIP holds with parameter kk log/06.02  . It also 
demonstrates that the number of iterations needed for sparse compressible is higher 
than the number needed for sparse flat signals.  
     The total running time of ROMP is O(ndk) which is the same bound as for 
OMP[10]. 
 
D. StOMP 
The modified version of OMP is called StOMP. The OMP find solution by adding 
one vector at a time but StOMP uses several vectors. StOMP compares the values of 
the dot product of y with the columns of . Then selects all vectors above a preset 
threshold value and uses a least squares method to find an approximation. This is then 
repeated with a residue vector. The algorithm iterates through a fixed number of 
stages and then terminates given by Donoho et al. [12]. 
____________________________________________________________ 
Input: 

 Measurements y 
 Sensing matrix  
 Sparsity k 

 
Initialization:  

 Residual vector rt=y,  



Review of Different Compressive Sensing Algorithms and Recovery et.al.  17207 

 Estimated support set 0 =null matrix, 
 Iteration t=1  
 Index set Io= null matrix 

 
1. The tth stage applies matched filtering to the current residual, getting a vector 

or residual correlation  
    1 t

T
t rC   

2. Next perform hard thresholding to find the significant non zeros. 

      tttt thjCjJ  )(:  
      where Jt -Set contain large coordinates, t -Formal noise level and th-        

Threshold parameter 
3. Update the newly selected coordinate with the previous support estimate 

      ttt JII  1  
4. New approximation tx̂  supported in It with coefficient supported in It and 

estimate residual are given by 

       tt
T
ItIt

T
ItIt xyryx

t
ˆ)ˆ(

1
 


 

5. Check stopping condition. If not t=t+1and go to the next stage of procedure. If 
time to stop tx̂  set as the final output. 

___________________________________________________________ 
 
     The algorithm selects coordinates whose values are above a specified threshold in 
each iteration rather than selecting the largest component in OMP. Then it solves the 
least squares problem to update the residual. An advantage of using a method like this 
is that it can produce a good approximation with a small number of iterations. A 
disadvantage is in determining an appropriate value for the threshold as different 
threshold values could lead to different results.  
 
E. CoSaMP 
An alternative approach for ROMP would be to allow the algorithm to choose 
incorrectly as well as fix its mistakes in later iterations. Needell &Tropp [13] 
developed a new variant of OMP, Compressive Sampling Matching Pursuit 
(CoSaMP). In this case, each iteration selects a slightly larger support set, reconstruct 
the signal using that support, and use that estimation to calculate the residual. At each 
iteration, the algorithm runs through five steps. At the first step using the current 
sample y, the algorithm computes a vector that is highly correlated with the signal 
which is called as proxy. Then the current approximation is coupled with the newly 
indentified components. Next the algorithm solves the least squares problem to 
approximate the target signal. Through pruning, the algorithm provides a new 
approximation by retaining only the largest entries in the least squares approximation. 
Finally the samples are updated. The algorithm’s major steps are described as follows 
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____________________________________________________________ 
Input: 

 Measurements y 
 Sensing matrix  
 Sparsity k 

 
Initialization: 

 Residual vector r=y 
 set a0=0 
 Iteration t=1  

     Repeat the following steps and increment t until the halting criterion is true. 
     Signal Proxy: set v=  *r, Ω=supp v2k, and merge the supports T=Ω   suppat-1 
     Signal Estimation: Using least squares, set bT= †

Ty and bT
c=0. 

     Prune: To obtain the next approximation, set at=bk. 
     Sample Update: Update the current samples, r=y- at. 
____________________________________________________________ 
 
     The CoSaMP recovery algorithm delivers the same guarantees as the best 
optimization-based approaches[13]. Moreover, this algorithm offers rigorous bounds 
on computational cost and storage. It is likely to be extremely efficient for practical 
problem because it requires only matrix-vector multiplies with the sampling matrix. 
For compressible signals, the running time is just O(n log2 n), for signal of length n. 
Satpathi et al. [14] demonstrate that the CoSaMP algorithm can successfully 
reconstruct a k sparse signal from a compressed measurement y by a maximum of 5k 
iterations if the sensing matrix   satisfies the Restricted Isometry Constant of 

5/14 k  
 
 
Implementation and Results 
The Sensing matrix 25050x was randomly generated with normally distributed 
elements with mean equal to 0 and variance to 1, then its columns were normalised to 
1 in the l2 norm. The input signal 256Rx was also generated randomly with gaussian 
distribution. Tropp’s[6] OMP, Needell’s[10] ROMP, Donoho’s[12] StOMP and 
Needell &Topp’s[13] CoSaMP algorithms are subjected to MATLAB and the 
performances of those algorithms are evaluated interms of mean square error 
computed by

2
ˆ

l
xx  over 1000 trial signals. For halting, Zero threshold uniformly 

fixed for all algorithms as )4(^10  and maximum iteration are fixed as per the 
recommendations of the authors. For stomp, threshold is fixed according to normal 
inverse cumulative distribution function. Figure1 shows Mean Square Error versus 
Sparsity for all the algorithms. The result of OMP with respect to Gaussian amplitude 
is quite encouraging.  
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Figure1: Mean Square Error of The Reconstructed Signal Versus Sparsity 
 
     Number of iterations required by algorithm for various sparsity levels is presented 
in table1. From the table it is observed that OMP requires iterations on the order of k. 
But when the signal is not very sparse, OMP may poor choice because the cost of 
orthogonalization increases quadratically with the number of iterations. CoSaMP 
requires in the order of 5k iterations. But ROMP and StOMP terminates with 3 and 2 
iterations respectively. It was studied OMP is efficient when the signal is highly 
sparse. In cases where unknown vector ݔ is not very sparse, OMP is not a practical 
algorithm to find the solution vector ݔ because the computational complexity of OMP 
increases linearly with the number of nonzeros ݇. Therefore, OMP has been revised in 
a way to find less accurate solutions for such large scale underdetermined linear 
systems in a reasonable time using ROMP or StOMP.  
 
Table 1: Comparison of iterations for OMP, CoSaMP, ROMP and StOMP algorithms 

for various sparsity level 
 

Sparsity No of Iterations 
OMP CoSaMP ROMP StOMP 

4 4 3 3 2 
8 6 4 3 2 
12 8 15 3 2 
16 10 39 3 2 
20 12 64 3 2 
24 14 85 3 2 
28 16 105 3 2 
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32 18 124 3 2 
36 20 143 3 2 
40 22 161 3 2 

 
     Among all, the OMP algorithm is significant interms of simplicity and competitive 
reconstruction performance but with complexity as linear function of sparsity. The 
guarantee to recover sparse signal by OMP algorithm is already ascertained by 
Ganesh et al.[15] for block sparse signal now the same is proved for sparse signal. 
 
Theorem 

Suppose that a signal is k sparse and  )11(5.0


k where μ incoherence between 

the columns of  , then OMP guarantees to find the k columns of  . 
 
Proof: 
Normalize each column of matrix  with a coefficient diagonal matrix C so that 

CD.  where dxnD  has unit norm columns. C diagonal matrix constructed by length 
of each column in   
     The guarantee to find the k columns 
     yaya t1  where t>k 

     The lower bound of ya1  is given by 

     

))1(1(
)1(
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     The upper of yat  is given by 

     



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T
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  

     using the upper and lower bounds 
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     which leads to the condition yaya t1 . Hence the theorem is proved. Next 
uniqueness of the solution guaranteed by OMP by the following theorem 
 
Theorem 
If y can be represented as a linear sum of k distinct columns from  such that 

)(5.0 sparkk  , then sparse decomposition is necessarily unique that is y cannot be 
represented as linear sum of elements from a different set of k columns. 
 
Proof: 
Les us consider there exist two solutions x1 and x2 with kxx 

0201 as 1xy   
and 2xy   respectively. Which yields 21 xx    therefore the vector 0)( 21  xx  is 
in the null space of . Since both x1, x2 contain only k nonzero entries, x1 - x2 contains 
at most 2k nonzero entries. It implies that, linear combination of 2k columns of   is 
zero means 2k columns of   are linearly dependent which is less than spark ( ) 
which is contradiction to the definition of spark. Therefore 0)( 21  xx  if and only 
if x1 = x2. Hence the solution is unique. 
 
 
Conclusion 
This paper reviews the various greedy iterative algorithms for obtaining the sparse 
solutions. The performance of various algorithms is compared on the basis of mean 
square error displaying the efficacy of OMP over other algorithms. If the signal is 
highly sparse then OMP is the best choice. It represents the uniqueness and 
correctness guarantee of OMP algorithm in terms of mutual incoherence.  
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