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Abstract 

 
The SLAM or localization needs successful data association of the detected 
feature with landmarks. Well described features of the environment are 
essential for good data association. In this paper, the localization of the robot 
is executed by the extended Kalman filter (EKF) with given minimum 
landmarks of the environment. Consistent features for localization are 
extracted by using only sparse sonar data. Features are extracted by using a 
sonar data clustering from a footprint-association (FPA) method and a feature 
fitting from a least squares (LS) method to overcome challenges associated 
with sonar sensors, such as a wide beam aperture and a specular reflection 
effect. The extracted features are, also, evaluated as a post-processing through 
the probabilistic association which associates the extracted feature with the 
weighted average probability of the grids that are located within the area of 
position uncertainty of the feature. The proposed methods have been tested in 
a real home environment with a mobile robot. 
 
Key words: Extended Kalman Filter, Footprint Association (FPA), Feature-
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Introduction 
Mobile robot navigation requires certain vital information, including a representation 
of the environment, localization, path planning, and obstacle avoidance. Especially 
building a map of an environment can be the basis for other functions such as SLAM 
(simultaneous localization and map building) or localization problem for autonomous 
navigation. The consistency of SLAM or localization is led by good describe of the 
environment [1]. However, the robotic mapping has many problems [2]. A key 
challenge arises from the nature of the measurement noise. The second complicating 
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aspect of the robot mapping problem arises from the high dimensionality of the 
entities that are being mapped. Third, environments change over time. 
   Typical sensors for building environmental maps include vision systems and laser, 
infrared, and ultrasonic rangefinders. Researchers have used ultrasonic sensors 
extensively not only because these sensors are inexpensive but also because they 
provide direct depth information about object locations. Moreover, these sensors have 
a relatively long detection range and are unaffected by changes in light intensity. 
However, a sonar beam’s specular reflection effect results in the multipath 
phenomenon [3]. This phenomenon, together with a wide beam aperture, makes it 
difficult to gather object locations using only a single sonar measurement. 
   Researchers commonly use two different approaches to build sonar maps. The first 
approach is grid-based and divides the environment into several two-dimensional (2-
D) or three-dimensional (3-D) cells. Each cell is represented by the probability of its 
being occupied by an object [4]. Two typical techniques for building grid maps are the 
Bayesian updating model [5] and the orientation updating model [6,7]. Use of a grid 
map is very efficient for representing object locations, regardless of object shapes, but 
building and maintaining a map of a large space requires considerable memory.  
   The other common approach is feature-based and represents the environment using 
three basic primitive geometries: a line, a point, or an arc. Crowley (1985) developed 
one of the earliest feature-based approaches by introducing the concept of the 
composite local model [8]. This model used extracted straight-line segments from sets 
of sonar data and provided localization by matching them to a global line segment 
map stored previously. Wijk and Christensen (2000) later developed triangulation-
based fusion (TBF) of sonar data, which delivers stable natural point landmarks [9]. 
Nagatani et al. (1999) developed the arc transversal median (ATM) method and an arc 
carving algorithm [10]. ATM and arc carving fused multiple sonar readings to 
improve azimuth resolution. 
   Leonard and Durrant-Whyte used a rotating sonar scanner to obtain densely 
scanned sonar data (Leonard, 1992), developing a simple threshold technique to 
extract regions of constant depth (RCDs) that were used to extract features such as 
lines and points [11]. Kleeman (1999) designed a new sonar system based on a digital 
signal processor (DSP) [12]. This system was able to produce accurate measurements 
and on-the-fly single cycle classification of planes, corners, and edges. 
   In this paper, the localization of the robot is executed by the extended Kalman 
filter (EKF) with given minimum landmarks of the environment. Consistent features 
for localization are extracted by using only sparse sonar data. Features are extracted 
by using a sonar data clustering from a footprint-association (FPA)method and a 
feature fitting from a least squares (LS) method to overcome challenges associated 
with sonar sensors, such as a wide beam aperture and a specular reflection effect. The 
extracted features are, also, evaluated as a post-processing through the probabilistic 
association which associates the extracted feature with the weighted average 
probability of the grids that are located within the area of position uncertainty of the 
feature. The proposed methods have been tested in a real home environment with a 
mobile robot. 
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Figure 1: Hypothesized circles that are tangential to the two circles defined by the 
footprints: (a) possible radius range for the hypothesized circles without considering 

angle constraints, and (b) trace of virtual circles’ centers that satisfy the angle 
constraints 

 
   The structure of this paper is as follows: Section 2 introduces the feature extraction 
method such as the FPA model and the LS fitting. Section 3 explores the EKF 
localization of robot pose. Section 4 presents the evaluation of the feature reliability 
through the probabilistic association. Section 5 illustrates the experimental setup and 
results. Finally, Section 6 draws conclusions and discusses future research topics. 
 
 
Feature Extraction 
 
Ultrasonic Sensor 
Ultrasonic sensors can measure how far they are from the nearest object by using the 
elapsed time between a sonar beam’s transmission and detection. However, they 
frequently fail to detect the nearest object. There are two possible explanations for this 
[3,7]. First, the object’s surface may produce an echo amplitude that is too small to be 
detected by the receiver. Second, the echo pulse may be reflected from the receiver by 
a surface that is not perpendicular to the transducer axis. The latter, referred to as the 
specular reflection effect, happens more frequently. Since the surfaces of most real-
world objects can be considered specular for ultrasonic sensors, this effect is almost 
always observed when the incidence angle is greater than half the beam’s aperture [6]. 
   The RCD method is one simple and powerful means of reducing both the specular 
reflection effect and angular uncertainty [11]. However, these methods cannot be used 
when data are sparsely scanned because neighboring sets of these data have few 
associations. Single rotating sonar is usually applied to gather densely scanned data, 
but single rotating sonar is not adequate for applications because it has a slow data 
acquisition speed. In addition, it requires a robot to stop when acquiring scanned data. 
   This study tested a sonar ring that gathered data quickly while a robot was in 
motion. In total, 8 sensors made by Murata were mounted on the sonar ring, one every 
45º (the effective beam aperture). As mentioned above, sparsely scanned data do not 
allow rejection of incorrect data corrupted by the specular reflection effect, and cannot 
reduce the sonar beam’s angular uncertainty. To compensate for these challenges, we 
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developed the data filter model by the sonar footprints acquired at different scanning 
steps and the probabilistic association model based on the occupancy probability grid 
map. 
 
Footprint-Association Model 
Sonar range readings generally contain considerable angular uncertainty because of 
their wide beam angle aperture. In addition, sonar sensors often produce false 
readings due to specular reflection of sound waves. Association of more than two sets 
of sonar data is therefore very important to prevent false readings and reduce angular 
uncertainties. We tested the FPA model as a data filter to overcome the problems of a 
wide beam aperture and a specular reflection effect. Application of the FPA model 
allows determination of whether two sonar footprints are associated with a line, a 
point, or an arc. Sonar footprints that correspond to a plane or a cylinder should all be 
tangential to that plane or cylinder, while sonar footprints that correspond to a corner 
or an edge should all intersect at a corner or edge point [11]. The FPA model basically 
estimates the possibility that two sets of sonar data originate from the same feature. 
For the example shown in Fig. 1, we can define two circles centered at sensor 
locations with radii equal to footprint range values, z1 and z2, and define the effective 
sonar beam aperture as each footprint’s constraint angle, represented by the shaded 
fan shape. For more details on FPA model, please refer to our paper [13]. 
 
Least Squares Fitting 
Given the large amount of spurious data coming from specular reflections and sonar 
artifacts, classical robust techniques such as RANSAC [14,15] or the Hough 
transform [16,17] seem very appropriate. However, because all sonar readings that 
correspond to the same feature are clustered together by using the FPA model in this 
paper, the information of features such as a line, a point, and an arc can be extracted 
from each cluster directly by using the LS fitting as Eq. (1). 

   bAAAM TT 1)(          (1) 

   In the line feature fitting, A matrix is [xi 1], b matrix is [yi], and M matrix is about 
the inclined angle and the intercept to y axis of fitted line. In the arc feature fitting, A 
matrix is [xiyi], b matrix is [-xi

2-yi
2], and M matrix is about the center and radius of the 

arc feature. For the point feature fitting, the point position is calculated from the 
numerical average of data. The parameters that characterize a line or point feature are 
the shortest distance and the visible direction with respect to the robot position; the 
parameters of anarc feature include the shortest distance and the visible direction from 
the robot position to the center of the arc, and the arc radius. The visible direction of a 
line feature, defined as normal direction of the line, represents which side of the line 
is visible. 
 
Uncertainty Evaluation of a Feature 
To evaluate the features through the probabilistic association, the position uncertainty 
of the features has to be estimated. The position uncertainty of a feature depends on 
both the measurement uncertainties of the sensor and robot’s pose uncertainty. The 
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position of robot can be estimated as the robot motion model. Measurement 
uncertainties of the sonar sensing come from the range and angular error. We assume 
that the range and angular error of sensors are uncorrelated with each other, having 
zero mean Gaussian noise. We also assume the robot’s pose uncertainty and the 
measurement uncertainties are uncorrelated with each other. For more details on the 
uncertainty estimation of the feature position, please refer to our paper [13]. 
 
 
Localization 
Mobile robot localization is the problem of determining the pose of a robot relative to 
a given map of the environment. In this paper, the minimum crucial landmarks of the 
environment are given for the data association of the feature. The extended Kalman 
filter localization algorithm, EKF localization, is a special case of Markov localization. 
Kalman filters are Bayes filters that represent posteriors p(μt , ∑t| zt, ut) with Gaussians. 
Gaussians are unimodal distributions that can be represented compactly by a small 
number of parameters. Its strength lies in its simplicity and in its computational 
efficiency [18]. Fig. 2 describes the extended Kalman filter algorithm. 
   In the Fig. 2, the function g in Line 2 is about robot motion model as Eq.(2). 
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   Gt and Vt in Line 3 are computed as the Jacobians needed for the linearized motion 
model. Mt is determined as the motion noise covariance matrix from the control. Line 
3, then, implement the motion update of the robot. The predicted pose after the 
motion is calculated as in Line 3 computes the corresponding uncertainty ellipse. The 
measurement update is realizedthrough Lines 4 to 17. It calculates a predicted 
measurement z*

t
k and the jacobianHt

k of the measurement model. Using this Jacobian, 
the algorithm determinesSt

k, the uncertainty corresponding to the predicted 
measurement z*

t
k. The correspondence variable j(i) is then chosen in line 10, by 

maximizing the likelihood of the measurement zt
i given any possible landmark mk in 

the map. The data association for line features is also enhanced by considering the 
direction of the line landmarks. The Kalman gain Kt

i is then calculated in Line 11. The 
estimate is updated in line 12 and 13, once for each feature. Finally, lines 15 and 16 
set the new pose estimate. 
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1:  Algorithm Extended Kalman Filter (μt-1, ∑t-1, ut, zt, m): 
2: μt

*= g(ut,μt-1) 
3: ∑t

*= Gt∑t-1Gt
T+VtMtVt

T 

4: for all observed features zt
i do 

5: for all landmarks k in the map m do 
6: z*

t
k = h(μt

*) 
7: Ht

k = ∂h(μt
*)/∂x 

8: St
k= Ht

k∑t
*Ht

kT+Qt 
9: endfor 
10: j(i) = argmax det(2πSt

k)-0.5 
 + exp{-0.5(zt

i-z*
t
k)[St

k]-1(zt
i-z*

t
k)} 

11: Kt
i = ∑t

*[Ht
j(i)]T(St

j(i))-1 
12: μt

’= μt
*+Kt

i(zt
i- z*

t
j(i)) 

13: ∑t
’= (I-Kt

iHt
j(i))∑t

* 
14: endfor 
15: μt = μt

’ 
16: ∑t =∑t

’ 
17: return μt,∑t 

 
Figure 2: The extended Kalman filter (EKF) localization algorithm with unknown 

correspondences. 
 
 
Feature Evaluation Method 
Almost all the line, point, and arc features can be generated at the position of real 
objects by using the FPA filtering and the LS fitting. However, there are unexpected 
features around a moving people or a complex environment due to wide beam width 
and specularity of sonar sensors. And the constructed features of the environment are 
hard to be flexible in changeable environment over time. In this paper, the feature 
evaluation method is developed by using the probabilistic association which uses the 
occupancy probabilities of grids in order to minimize phantom features and maintain 
dynamic features. For this association, the occupancy probability of grids is needed to 
associate the extracted feature with the weighted average probability of the grids that 
are located within the area of position uncertainty of the feature. The grid probability 
is calculated from the Bayesian updating model and the orientation probability model. 
 
Grid Mapping 
Bayesian probability map is composed of many grids that represent the robot’s 
workspace, and each grid has an occupancy probability of an object. The grids within 
thesonar footprint, that are to be updated, are rearranged according to the distance 
from the transducer location. These grids are divided into two regions. The occupancy 
probability for the grid in the empty region should go down, while that in the 
occupied region should go up. An updating quantity of the occupancy probability is 
determined by using Bayes conditional probability theory according to the distance or 
angle of the grid from the sensor [19]. 
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   Bayesian model can supports a sound theoretical basis of a probability map. In the 
real application, however, it has a critical problem that seriously deteriorates the 
quality of the constructed map [7]. That is, the Bayesian model does not consider the 
specular reflection and the multi-path effects that frequently return incorrect range 
data. 
   To solve this problem, Lim and Cho developed a mapping model with ability to 
detect an occurrence of the specular reflection effect by evaluating the orientation 
probability in each grid [3,7]. In this model, the orientation probability is updated by 
using the specular reflection effect conversely. As the information is accumulated, the 
probability of the orientation corresponding to real object surface is continuously 
increased, while those of the rest orientations will be decreased. An occurring 
possibility of the specular reflection and the multi-path effects for each sonar range 
data can be probabilistically considered by using the orientation probabilities. It has 
been shown that the orientation model can construct a good quality map despite of the 
specular reflection effect [3,7]. 
 
Probabilistic Association for Feature Evaluation 
The approach for the reliability evaluation of a feature is based on the occupancy 
probabilities of the grid map that is built using the hybrid map building model stated 
above. This approach can minimize the appearance of phantom features and maintain 
the dynamic features by using only sparse sonar data. Grid association is to associate 
the extracted feature with the weighted average probability of the grids that are 
located within the area of position uncertainty of the feature as shown in Fig. 3. The 
formula for the weighted average of the occupancy probability is written as: 
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   Where a is the weighted average of the probabilities of grids in the area of feature 
position uncertainty, N is the number of grids in the ellipse of the position uncertainty. 
POi is the occupancy probability of ithgrid,Pi is the probability of the Gaussian 
distribution of ith grid. The formula of Pi at (x,y) is as follows: 
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   whereσx and σy are the standard deviations of x and y respectively, ρ is the 
correlation coefficient for x and y. These variables can be obtained from the 
covariance matrix of the feature position uncertainty, and has of the form: 
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   For more details on the uncertainty estimation of the feature position, please refer 
to our paper [20]. 
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Figure 3: Ellipse of a point feature position uncertainty. The weighted average of the 
occupancy probability is found using grids in the area of feature position uncertainty. 

 
 
Experimental Results 
The methods as developed above have been implemented and tested in a real home 
environment with real robot. The robot is Pioneer 3-DX that has a ring of 8 Murata 
ultrasonic sensors with the height of 63cm. The transitional and rotation speeds of the 
robot are 0.2m/s and 15deg/s. 
   Fig. 4 shows a real home environment that is composed of fabric bed, table, 
clothes chest, bookshelf, and windows. The filtered sonar data around fabric bed is 
sparser than around other objects and the ultrasonic toward the bed can pass the bed 
because the height of the sensor is higher than it of the bed. The size of the room is 
6.8m×5.9m space. Thin lines are the environment shape. Thick lines are the selected 
line landmarks among the environment. Gray short lines are the visible direction of 
the line landmarks. Thick small circles are the selected point landmarks. Thick arc is 
the selected arc landmark. The numbers of line and point landmarks are 11 and 3, 
respectively. Thin small circle is the start station of the robot. Dotted lines are the 
odometry path of the robot. Medium lines are the estimated path of the robot by the 
EKF filter. The robot was run following the thick lines in Fig. 4 using a remote 
controller with the EKF localization. The total trajectory of the robot was around 
39.9m with 4031 steps, lasting around 6.7 minutes. 
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Figure 4: Real home environment and selected landmarks, odometry and estimated 
path of the robot during (a) 1.1, (b) 3.3, and (c) 6.7 minutes of the trajectory 

 
   During the robot motion, the sonar ring wasacquiring range scans at average 
frequency of 10 Hz. 3 line and 1 point landmarks are registered manually during 1.1 
minutes in Fig. 4(a). And 1 line and 2 point landmarks are registered additionally 
during 3.3 minutes in Fig. 4(b). In Fig. 4(c), 1 line landmark is registered during 6.7 
minutes, because the chair is located at the middle of low boundary. The number of 
data association times with 14 landmarks is 384. The pose error of x, y, and heading 
angle at final location are 8.8cm, 3.4cm, and 0.06rad, respectively. 
   Fig. 5 shows the extracted features and the grid map during the first 3.1 minutes of 
the trajectory. Gray grids are the occupancy probabilistic grid map by using the 
filtered sonar data and the size of cell is 15cm×15cm. Fig. 5(a) shows all extracted 
features by LS fitting before applying the probabilistic association and Fig. 5(b) 
shows the evaluated features by the probabilistic association with the grid map. 
Although the wrong features are generated at the free space due to moving people and 
sonar’s wide beam width and specularity in Fig. 5(a), the reliable features through the 
probabilistic association are remained at the position of real objectsand the features in 
free space are removed clearly in Fig. 5(b). 
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Figure 5: Occupancy grid map and features during the first 3.1 minutes of the 
trajectory (a) before applying the probabilistic association and (b) after applying the 

probabilistic association. 
 
   Fig. 6 shows the extracted features and the grid map during total minutes of the 
trajectory. Fig. 6(a) shows all extracted features by LS fitting and Fig. 6(b) shows the 
evaluated features by the probabilistic association with the grid map. In Fig. 6, the 
chair marked by dotted circle is located at the middle of low boundary after first 3.1 
minutes of the trajectory. The new features on the chair are generated and evaluated, 
although that position was empty region at the last state of Fig. 6. Using the technique 
described in section 4.2, the sonar features on new dynamic object can be generated. 
 

 
 

Figure 6: Occupancy grid map and features during the total minutes of the trajectory 
(a) before applying the probabilistic association and (b) after applying the 

probabilistic association 
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Conclusions 
In this paper, measurement noises of the sonar such as wide beam width and specular 
reflection phenomenon are overcome through the FPA model. And the problems 
caused by sonar specularity, moving people, and dynamic object are solved through 
the probabilistic association model. By using these techniques, the map configuration 
of given environment can be kept consistently. By using sonar features, the 
localization of the robot is executed successfully by the extended Kalman filter (EKF) 
with given minimum landmarks of the environment. The features resulted by the FPA 
and probabilistic methods can be very useful for the SLAMproblem with only sonar 
sensors. In the future, the algorithm of autonomous feature joining and landmark 
registration will be developed. 
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