
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 7 (2015) pp. 16491-16504
© Research India Publications
http://www.ripublication.com

Role of The Algorithm In Introductory Programming
Courses

Teodosi K. Teodosiev1 and Anatoli M. Nachev2
1Department of Mathematics and Computer science, Shumen University “Bishop K.

Preslavski”, Universitetska 115, Shumen, Bulgaria, e-mail: t.teodosiev@fmi.shu-
bg.net

2Cairnes Business School, National University of Ireland, Galway, Ireland, e-mail:
anatoli.nachev@nuigalway.ie

Abstract

This study explores introductory programming courses. We discuss the role of
careful algorithmization when presenting the teaching material. Due to the
nature of the tasks, which is training, is difficult to convince novice
programmers in the benefit of prior consideration of the approach to the
implementation and that process of reasoning carried out in the development
process of the algorithm serves as a logical basis of the final form of the
program. Therefore, an important methodological issue is using a careful
selection of tasks and examples, which stimulate students to approach to the
problems considering and estimating different algorithm alternatives, before
moving to coding. In order to illustrate our point, we provide teaching
example analysing the pedagogical outcomes. Reference is made between the
levels in Bloom's taxonomy and the student abilities in algorithmization and
programming. Even separate levels of the Bloom's pyramid can be discussed
in the context of algorithmization and algorithm implementation, which in fact
is the programming itself. From the comments made here, it becomes clear
that the main focus of the introductory programming course should be directed
towards the algorithmization, which requires logical and mathematical culture.

Keywords: introductory programming courses, algorithmization, Bloom's
taxonomy, style of programming

Introduction
Often we observe that students who are beginners in programming start entering code
straight after having the assignment, attempting and hoping to find a correct solution
immediately after that. They skip the algorithm analysis stage, which is important to
implement a 'good' algorithm (similar problems, but in other subjects have been

16492 Teodosi K. Teodosiev

discussed in [1, 2]). Students aim to put together just a working program, no matter it
is readable enough or whether it may become more efficient. These observations is
also valid with more advanced students taking place in programming contests - even
they rarely seek to ease their work by consideration of building an appropriate
algorithm first. Due to the nature of the tasks, which is training, is difficult to
convince novice programmers in the benefit of prior consideration of the approach to
the implementation and that process of reasoning carried out in the development
process of the algorithm serves as a logical basis of the final form of the program.
 The same phenomenon can be observed in math teaching. Years ago, the need of
intensive and heavy computations of algebraic expressions led to striving for
simplification of the expressions in order to minimize and optimize the calculations.
Today, this is not practiced often, because the dealing with complexity is not issue for
the modern computers and IT technologies. So, a point might be: once we have
computers, which are powerful enough, why should we care about the algorithm? The
new technologies, along with their many advantages have a significant disadvantage:
users’ behaviour becomes more consumption-driven, makes people lazier, and does
not encourage creative thinking and aspirations. Common IT activities tend to be
more focused to social networks and the phenomena and processes, which surround
us, including teaching materials subject to study, are taken at the consumer level,
which does not make the students to be active and thinking. But this is what the
education seeks, particularly training in programming.
 The set of tasks and examples used in an 'Introduction to Programming' course are
simple enough due the requirement to be introductory. In that sense they can't force
students to approach to the problem building effective solutions. Therefore, an
important methodological issue is using a careful selection of tasks and examples,
which stimulate students to approach to the problems considering and estimating
different algorithm alternatives, before moving to coding.
 The paper is organized as follows: Section 2 discusses the algorithmic culture.
Section 3 is dedicated to the specifics of teaching in programming. Section 4
discusses the role of a well considered algorithm by an indicative example. Section 5
provides a link between cognitive levels in the Bloom's taxonomy and levels of
implementation of the algorithm into a program. Section 6 provides conclusions.

Algorithmic Culture
Problem solving is a mandatory element of training in programming. In the process of
finding solutions, the students master the skills and habits for applying the theoretical
knowledge into practice. Moreover, the ability to solve problems is an indication that
the theoretical knowledge is well understood. In conditions of the so named ‘active
approach’ [3, 4, 5] to training, the core and the essence of the educational activity is
solving tasks [6]. The term ‘learning task’ should be interpreted in a broader meaning
- as any other - the solution is aims achieving specific goals in education. In practical
terms, the task is explicit or implicit question, the answer of which is not obvious and
should be found in stages.

Role of The Algorithm In Introductory Programming Courses 16493

 In the context of the training process, a solution of a task is not really the goal; it is
just a mean to reach a broader objective of formation of action modes as part of the
programming skills. These models can be built by providing guidance and estimates
from the tutor, they could be a result of unguided trial-and-error activities followed by
estimation or self-estimation. The action models are the real value of the training
process, not finding the solution itself. Actually, the solution is only an indicator that
the action model has been developed properly.
 The foundation of solid mathematical skills combined with preliminary analysis of
the task is a key success factor and prerequisite for a correct action modelling process
modeling process, as opposed to attempting the task by direct coding in an integrated
development environment (IDE) of a programming language. Working on the
program, the programmer, especially beginners, should respect the fact that the
program they design is made not only for the user, but also help to the programmer
himself [7].
 Programmers must also be conscious, that in the context of the software
development methodologies, the change management and maintenance stage of the
software lifecycle, presume that other teams of programmers will review and possibly
modify their code in future. This is particularly important and relevant to the modern
trends of building reusable software units and libraries, which are usually involved in
integration and adaptation in various software projects. A mandatory feature of the
contemporary software, therefore, is readability, integrity, well defined interfaces,
input and outputs, eliminated side effects, rigorous encapsulation in the context of the
object-oriented (OO) programming paradigms, and efficient usage of the computing
resources. All these features require much thinking, much planning, careful decision
making, adoption of the best practices accumulated within software companies, expert
teams, and the community as a whole. At the bottom line, the introductory course in
programming should convince the students, that the bricks and mortar of those skills
are put together in a solid foundation right here and right now.
 In terms of readability, the programming is a process much closer to the
composition of a natural language text, than it might seem at first glance. Of course,
this is not about abstract literary texts, these are more informative texts. When
working on them, attracting the attention of readers just needed the quality of the
show. The natural languages can be used with variable accuracy towards expressing
thoughts - whether very successfully, or not too much - but precise expression of
thought is absolutely necessary when creating an algorithm or composing a program.
 This is the reason to consider who the readers of the program are. The most
obvious reader, which springs in mind first, is the machine itself. From machine's
point of view, efficiency is the most important quality criteria of the program text.
Addressing this quality requirement in the programming courses makes clear that
deeper we get into the subject of programming, the bigger this problem becomes. E.
Dijkstra [8] comments quality of computer programs: ‘on the one hand... programs
could have a compelling and deep logical beauty, on the other hand … forced to
admit that most programs are presented in a way fit for mechanical execution but,
even if of any beauty at all, totally unfit for human appreciation’.

16494 Teodosi K. Teodosiev

 There are more readers of the program, some of which will review it in future as
part of the change management (incl. the author himself), but in some circumstances,
a second reader may need to review the program at the moment of composition. An
interesting example is related to the modern agile software development
methodologies [9], particularly Extreme Programming (XP), where better efficiency
is achieved by 'pair programming'. XP requires that two programmers work at one
computer, where one composes the code, the other watches over and controls the first
one; they can switch their roles from time to time. The motivation for that approach is
'two heads better than one'.
 We should be conscious of the difference between the programs used for training
and programs designed in real software development environment. The tutor
composes programs for training; therefore they must be easy to understand.
 Scientists in education methodology from 1970s paid particular attention to the
influence of computers and programming on the educational content. They pointed
out that the algorithmization concept lies in the basis of programming, defined as a
process of developing and describing an algorithm by the means of a specific
language. Many human activities can be formalized and described as a process, which
follows a specific algorithm. There are, however, many areas where algorithmization
is not applicable, such as activities related to creativity and subjective decision
making (including the process of creating algorithms!). The notion of the learners
what an algorithm means is formed implicitly during study of various disciplines,
most important of which is math. However, with the advent of computers and
Information and Communications Technologies (ICT), that notion is becoming more
self-contained and influenced by the modern culture and the information age. Since
mid 1980s, the primary task of programming courses has been formation of
algorithmic culture of learners. Actually, the ability to define, put together, verify, and
execute correctly a mathematical algorithm always been a major component of the
mathematical culture of the student, although the term ’algorithm’ may not been
mentioned. In this context, lack of functional literacy, which is ability to extract and
interpret information from text, could make difficult building a correct algorithm and
program.
 In conclusion, we can summarize that the algorithmic culture is essential for skills
formation in students necessary to perform algorithmization, which entails well
structured and efficient computer programs.

Teaching Programming
Programming, considered as just act of coding of ready algorithms without paying
attention to their meaning and potential for enhancement, cannot be the goal of a
programming course, either general of specialised. The main objective of the teaching
should not be focused to the syntactic and semantic aspects of the programming
language, but to providing knowledge and skills for algorithmization. The ultimate
purpose of the course is developing skills for solving classes of tasks and problems,
given that this is doable by the means of the programming language. Abilities to
compose programs are related mostly with having knowledge in math and logic, not

Role of The Algorithm In Introductory Programming Courses 16495

mastering the syntax of the programming language, despite the language syntax and
semantics are also related to the logic.
 An important component of the algorithmic literacy is the ability to develop
algorithm fragments in the best way they should be developed, not in the way which
first springs in mind or being driven by sometimes vague task formulations and/or
user expectations. The task formulation is not always precise. Sometimes, real-life
software projects gather quite unclear or misleading user requirement, as the user is
not always aware of what they want from the outset. The problems of which emerge
on the surface at a later stage, when much time effort, and resources have been spent
in vain. In summary, the teaching in programming should encourage the domination
of the driven-by-purpose approach over the driven-by-expectations one, in situations
where the two collide for the task in question.
 A practical tool that might be found useful for building algorithmization skills is
utilizing debugging techniques in integrated development environment (IDE),
particularly the step-by-step tracing of the algorithm executions. This allows the
developer to better understand the algorithm, detect flaws and logical errors, and
ultimately, building experience in algorithmization.
 Introductory programming courses aim to give students a basic knowledge in
programming, but at the same time they place a ground for more advanced skills and
knowledge. In these courses, paying attention to a good programming style is
particularly important for the process of building solid programming skills.
 The emphasis should be placed on building skills to solve problems, not learning
the specifics of the programming language. The aim is to focus on the thinking
process, shaping a thinking discipline, which helps avoid unnecessary complications
in the training process. N. Wirth [10] says that programming presents as a discipline
with its own qualities as a methodology for constructive considerations, applicable to
any problem amenable to algorithmic solution.
 Planning an introductory programming course should not strive to teach the
programming language in its fullness. We need to bear in mind that the primary
objective of the study of the course is the acquisition of knowledge and skills for
algorithmization and learning methods and approaches to solutions of classes of
problems. As Nicklaus Wirth states in [10] ’... an academic institution’s ultimate goal
must be much wider than the mastery of a language. It must be nothing less than the
art of designing artefacts to solve intricate problems. Some call it the art of
constructive thinking.’
 Students are expected to understand and know the basic concepts of programming,
but they also have to understand the algorithmic approach to solving problems. By
itself, this task is too complex [11, 12] and often leads beginners to misunderstandings
and disillusioned. Learning programming requires from students certain mental effort,
concentration, attention, logic, and imagination. The primary requirement, however, is
having algorithmic thinking. In a programming course, the students should learn
clearly and accurately how to implement the algorithm of their actions, to be able to
record it correctly on paper and then enter the code to the computer. This would
gradually discourage students to take wrong moves, inaccurate or improper decisions
while creating an algorithm.

16496 Teodosi K. Teodosiev

 Basic concepts in programming, particularly control structures (such as sequence,
selection, and iteration), mechanisms for aggregation (array, structure, union),
pointers, functions, etc. can be discussed in their abstraction in parallel with the
studying the formal syntax of a programming language [13]. Learning a programming
language should be in the context of the problem solved, therefore new stuff should
be taught as soon as it is needed for that particular task. Ultimately, the goal of
teaching is to make students to learn basic programming principles and concepts,
regardless of the programming language taught.
 The logical sequence of presenting the course material and level of difficulty of the
topics suggest that teaching should start with a discussion about models first, followed
by algorithms, and then basics of programming. Algorithmization as part of
programming is a central element of the course. After building some basic skills of
structural algorithmization, teaching should move on to the language specifics.
According to Van Tassel [14], the solutions of many problems have roots in some
mathematical models. The teaching should not spare time discussing the math model
in depth. This would help for better understanding the problem and to find a natural
approach to its solution. The algorithmization includes a careful determination of the
algorithm as per the math model, determining performance requirements, and
designing the data structures required for that solution.

Example
As noted in the introduction, due to the nature of the training examples of an
introductory programming course, it is difficult to convince students to approach to a
problem by a well-considered solution. Gal-Ezer et al. [15] describe an interesting
approach to this educational problem - they introduce the concept of complexity of
the algorithm in a 3-rd level college course 'Introduction to Programming'. Relatively
early introduction of that concept encourages students to consider alternative
algorithms, to analyze them and formulate them correctly. Of course, such an early
introduction of complexity can cause problems - tasks in the first intro classes are
very simple and easy and do not contribute to convincing students that the more
efficient the algorithm is the better. Furthermore, analysis of efficiency requires
certain knowledge in math, which students don't always have.
 It is also the case that wrong skills and habits that students may have acquired are
difficult to be changed post-factum. This justifies the importance of a careful selection
of the training examples, which can avoid the aforementioned problem regardless of
their low complexity. Let's consider an example, which illustrates recommendations
for improving efficiency of a program, and finally convincingly shows the benefit of a
well-considered algorithm.
 Example: Create a program that inputs two integers a and b, and displays the
average of all integers belonging to the interval [a, b].
 Here we illustrate four versions of the program, each of which improves the
previous one from point of view of efficiency, simplicity, and readability. Also, the
first two versions allow discussion on loops optimization.

Role of The Algorithm In Introductory Programming Courses 16497

 The authors' observations show that nearly 90% of the students approach to the
problem straight, attempting to put code together and relying on their background of
what average is.
 By definition, the average of a list of numbers is the sum of the numbers divided
by the size of the list, in other words the arithmetic mean. This definition contains an
embedded algorithm, which is common and can be applied to other tasks related to
finding average. For this task, one need to find the sum of the integers in the interval
[a, b] and the number of integers in that interval. A straight solution is to accumulate
iteratively the sum of integers and to count the integers, similarly. The
implementation requires two loops and a parameter, which continuously passes
through the numbers of the interval in order to find the sum and the size.
 Finding the quotient of two numbers deserves a discussion about features of the
operation division with integer operands in C ++ and also type conversion
mechanism, both implicit and explicit (casting).
 //Version 1 C++
 void main()
 {
 int sum=0, count=0, i, a, b;
 cin>>a>>b;
 for (i=a; i<=b; i++)
 sum+=i;
 for (i=a; i<=b; i++)
 count++;
 double avg=(double) sum/br;
 cout<<avg<<endl;
 }
 Loops are one of the most important factors, which affect the algorithm efficiency,
complexity, and execution time. This is because the body statements iterate and
execute many times and any reduction of calculations, even a minimal, multiplies the
effect of reduction many times. Minimization of the calculation in the body of a loop
should be an objective.
 One way to reduce the number of loops to merge two or more cycles in one. Thus
reduce execution time and memory needed. This is often possible if students carefully
analyze the task before coding.
 Considering the code above, it can be noticed that version 1 uses two loops with
same parameters and header lines. Joining the bodies of those loops into one loop
improves the effectiveness of the program and shortens the code, as illustrated below.
 // Version 2
 void main()
 {
 int sum=0, count=0, i, a, b;
 cin>>a>>b;
 for (i=a; i<=b; i++)
 {
 sum+=i;

16498 Teodosi K. Teodosiev

 count++;
 }
 double avg=(double) sum/br;
 cout<<avg<<endl;
 }
 Further analysis of the algorithm above shows that the numbers in the interval [a,
b] are consecutive, which allows calculation of the number by the formula (b-a+1)/2.
The analysis also shows that the sum of the numbers is actually sum of a finite
arithmetic progression. Making this conclusion is possible only if the students’ math
background is present and solid. If that knowledge is missing, the teacher's analysis
may encourage students to get a hold of that fact by observation and logic. Indeed, the
sums of each pair of numbers which are symmetrical to the middle of the list are
same. Therefore, the sum of the numbers in the interval [a, b] is equal to the sum of a
pair of numbers multiplied by the number of pairs. The approach is applicable to the
calculation of other Gaussian sums. Version 3 below illustrates these considerations.
 // Version 3
 void main()
 {
 int sum, count, a, b;
 cin>>a>>b;
 sum=(a+b)*(b–a+1)/2;
 count=(b–a+1);
 double avg=(double)sum/count;
 cout<<avg<<endl;
 }
 Improved efficiency in Version 3 is obtained by careful analysis and evaluation of
the algorithm. An alternative approach to reaching those conclusions in class and
obtaining the simple formula embedded in the algorithm is by detailed recording of
the mean expression, followed by its simplification while paying attention to equal
terms.
 Same conclusion can be made if the discussion moves one step further to
considering the fact that if the sum of each symmetrical pair is the same, then the
average of each pair (sum divided by 2) is the same. This entails the next version of
the program:
 // Version 4
 void main()
 {
 int a,b;
 cin>>a>>b;
 double avg= (double) (a + b)/2;
 cout<<avg<<endl;
 }
 Apparently, each version of the solution improves the efficiency of the previous
one, at the same time getting shorter. Teachers and students must pay attention to not
only correctness of the programs, but their quality, as well. As Skupiene [16] says, in

Role of The Algorithm In Introductory Programming Courses 16499

education, different qualities and styles of programs should be treated differently. A
responsible attitude to the style of programming is very important for those who will
participate in future programming contests, particularly in their first stages of study.
 Let's consider one more example very briefly:
 Example: Write a program that finds the number of even digits in the record of a
given natural number.
 Here are two possible solutions:

A. Check if the number is even (that is its last digit is even) and if yes, add 1 to
the counter of even digits, and then repeat the same for the number without its
last digit. This process continues until the number remaining hits 0.

 //Version A in C++
 void main()
 {
 int a, br = 0;
 cin >> a;
 while (a)
 {
 if (!(a % 2)) br++;
 a /= 10;
 }
 cout << br << endl;
 }

B. Extracting and storing the digits of the number in an array and counting the
even elements of that array.

 // Version B
 void main()
 {
 int a, i = 0, ch[10] = {0}, br = 0;
 cin >> a;
 while (a)
 {
 ch[i] = a % 10; i++; a /= 10;
 }
 for (int k =0; k < i; k++)
 {
 if(!(ch[k] % 2))br++;
 }
 cout << br << endl;
 }
 Obviously both solutions are correct, but the second one is unnecessary
complicated. A question arises here: should both solutions be assessed equally, or the
first one should be given a bonus for better efficiency? But bear in mind that the
second solution shows a bit more advanced programming skills.

16500 Teodosi K. Teodosiev

 The task above is a good example that supports Dijkstra, who says in [8] that it is
imperative for a programmer, especially beginners, to spend sufficient time on
developing algorithm with pen and paper, before entering code in computer.

Bloom's Taxonomy
Purpose of pedagogical taxonomies is to identify and position the educational goals of
training, so that when implemented, they lead to a high-level thinking (higher rank).
When a person has skills to think at a high level, he not only understands the nature of
the studied objects and phenomena, but also discovers laws, principles and rules,
reveals trends and future behaviour, participates in constructive, creative and artistic
activities, consciously and wisely manages and controls their own individual and
social behaviour.
 Cognitive Bloom's taxonomy [17] is built as a hierarchy of six levels from
memorizing and reproduction of the studied material to solving problems. Passing
through those levels is necessary to re-evaluate the existing knowledge in order to
build new combinations of pre-learned concepts, methods, procedures (courses of
action), including proceeding to finding a new solution. The domain of this taxonomy
is formation of intellectual skills. Originally, Bloom classified intellectual behaviours
in six major categories: Knowledge, Comprehension, Application, Analysis,
Synthesis, and Evaluation.
 Since the original publication of this taxonomy to nowadays, a number of
weaknesses and practical constraints have been found [18, 19]. In 2000 a group of
researchers led by Anderson, published a revised version of Bloom's taxonomy [20].
In the revised version, knowledge is not one-dimensional, but has two: knowledge
and cognitive process. Knowledge is the subject content and the cognitive process
shows what should be done with the subject content. The cognitive processes reflect
different forms of thinking and since thinking is an active process, it uses verb forms.
This dimension has six categories, and in the original taxonomy, but they have been
renamed and transformed [19]. Since knowledge can be the result or product of
thinking, not a form of thinking, the original category Knowledge is replaced by
Remember. The categories Comprehension, Application, Analysis and Evaluation are
preserved, but in their verb forms: Understand, Apply, Analyze, Evaluate. According
to Anderson et al. [20], in the process of creation, induction is more complex process
than deduction. This is why the authors change the order of categories: from
Synthesis – Evaluation to Evaluate – Create.
 In introductory programming courses, the first three levels can be implemented by
imperative rules. We should be aware that students do not develop skills to think at a
high level if they: only memorize and reproduce information; or understand and
explain the generally concepts and ideas; or apply information and rules in familiar
situations only. At these levels even weaker students do well.
 The last three, however, require active and conscious students’ participation. A
higher level thinking skills to a higher level develop when students are actively
engaged in the process, analyze information in order to capture knowledge and
relationships; evaluate their own decisions and the way they operate; create new

Role of The Algorithm In Introductory Programming Courses 16501

ideas, products, and points of view. Thus, the high levels of thinking are related to the
three categories of the cognitive process: Analyze, Evaluate and Create as per the
revised Bloom's taxonomy (Figure 1).

Figure 1: Revised Bloom's Taxonomy

 It could be claimed that the Bloom's taxonomy describes well studying of
programming. Indeed, we begin with composing source code, then go through
correction of bugs, and finally we get correct programs. Following a certain style of
programming, students could avoid some difficulties, which arise during development
and modification of programs. The examples discussed in the previous section and
their versions can be mapped easily to the levels of the revised Bloom's taxonomy.
Even separate levels of the Bloom's pyramid can be discussed in the context of
algorithmization and algorithm implementation, which in fact is the programming
itself.
 There is an inverse relationship between the level reached (effort made) with
respect to the algorithmization and the level of mastering in programming, i.e.,
reaching a higher level in algorithmization allows a lower level of effort in
programming.
 Starting from level Remember (the definition of arithmetic mean) in
algorithmization, which however requires level Create of the programming phase
(implementation of loops) (see Version 1).

16502 Teodosi K. Teodosiev

 Continuing with the Apply level, which requires level Evaluate (optimization of
loops) in the algorithm implementation (see Version 2).
 Next follows level Analyze (formulas) requiring levels Analyze and Apply
(removal of loop) in programming (see Version 3).
 Finally it comes to Evaluate and Create levels of an algorithm that requires levels
Remember (simple assignment operator) and Understand (explicit/implicit type
conversion) of the stage of algorithm implementation (see Version 4).
 Apparently, a common algorithm can solve a wide range of tasks, but getting in
depth of the task in question, reveals that another algorithm, not that common,
appears to be simpler and more effective
 From the comments made here, it becomes clear that the main focus of the
introductory programming course should be directed towards the algorithmization,
which requires logical and mathematical culture. Based on a good algorithmization, it
is easier to achieve good results in the implementation.

Conclusion
Studying Informatics requires development of methodic that not only helps students
to grasp a large amount of knowledge, but also equip them with skills needed to
master that knowledge, skills for independent acquisition of new knowledge and its
critical understanding.
 A methodical approach to building skills for critical thinking in the teaching
programming is the implementation of various methods and approaches to solve a
specific problem. Purposeful training for critical thinking allows students to overcome
the reproduction level of understanding the course material, allows for getting deeper
into the essence of emerging problems, and equip them with unconventional
approaches to solve those problems.
 Beginners in programming often underestimate role of the programming style and
neglect it as something useless, which does not help solving problems. They often
misunderstand the meaning of the teacher guidance for that while trying to focus on
creating programs as soon as possible. As noted by Schorsch) [21], students often
perceive the style of programming as something of secondary importance, non-
integrated in the developing process of a program. They also easily forget the issue of
programming style in their coursework.
 The style of programming is one of the factors for creating qualitative software.
According to Mohan and Gold [22], style of programming is one of the major
problems in software maintenance. In software engineering, maintenance plays an
important component of the software life cycle. The style of programming is part of
maintenance, because a well-structured code helps maintainers to understand it easily.
In contrast to that, beginners do a lot of mistakes and often write unreadable code,
which is difficult to maintain. The personal teaching experience of the authors show
that it is much easier to teach good style to students who have no prior programming
experience and hopelessly hard to get students to adopt good programming style after
they have adopted a bad one over years [16].

Role of The Algorithm In Introductory Programming Courses 16503

 A simple program can work properly, even if it is written without style. The
problems of bad programming skills emerge in larger programs or in situations, where
the program need maintenance by another person, or migrated to another
environment. Reusable software is an example of that.

References

[1] Sahoo N. C. & Chin J. G. W., 2010, “An elaborate education of basic
genetic programming using C++”, Computer Applications in Engineering
Education, 18 (3), pp. 434–448.

[2] Chakraborty, P., Saxena, P. C. & Katti C. P., 2013, “A compiler-based
toolkit to teach and learn finite automata”, Computer Applications in
Engineering Education, 21(3), pp. 467–474.

[3] Deek, F., Kimmel, H. & McHugh, J. A., 1998, “Pedagogical Changes in
the Delivery of the First-Course in Computer Science: Problem Solving,
Then Programming”, Journal of Engineering Education, 87 (3), pp. 313–
320.

[4] Gunther, J., Eames, B., & Nelson, D., 2011, “Description of EduCOM: A
graphical modeling and programming language for teaching and learning
digital communication systems”, Computer Applications in Engineering
Education, 19 (4), pp. 697–707.

[5] Fernández Leiva, A. J. & Civila Salas, A. C., 2013, “Practices of
advanced programming: Tradition versus innovation”, Computer
Applications in Engineering Education, 21 (2), pp. 237–244.

[6] Atanov, G. A., 2004, How to learn to use the knowledge, or Introduction
to practice the activity of learning, Donetsk (in Russian).

[7] Kalogeropoulos, N., Tzigounakis, I., Pavlatou, E. A. and Boudouvis, A.
G., 2013, “Computer-based assessment of student performance in
programming courses”, Computer Applications in Engineering Education,
21 (4), pp. 671–683.

[8] Dijkstra, E. W., 1976, A Discipline of Programming, Prentice-Hall, Series
in Automatic Computation.

[9] Beck, K. et al., 2001, Manifesto for agile software development.
[10] Wirth, N., 2002, Computing Science Education: The Road not Taken,

ITiCSE Conference, Aarhus, Denmark, http://www.inr.ac.ru/~info21/
texts/2002-06-Aarhus/en.htm (6/01/15).

[11] Govender, I., 2006, Learning to Program, Learning to Teach
Programming: Pre- and In-service Teachers’ Experiences of an Object-
oriented Language, University of South Africa.

[12] Van Diepen, N., 2005, “Elf redenen waarom programmeren zo moeilijk is
(in English: Eleven reasons why programming is so difficult)”, Tinfon, 14,
pp. 105–107.

16504 Teodosi K. Teodosiev

[13] Radošević, D., Orehovački, T. & Lovrenčić A., 2009, “Verificator:
Educational Tool for Learning Programming”, Informatics in Education,
8 (2), pp. 261–280.

[14] Van Tassel, D., 1978, Program Style, Design, Efficiency, Debugging, and
Testing, 2 edition, Prentice Hall.

[15] Gal-Ezer, J. Vilner, T. & Zur, E., 2010, Teaching Algorithm Efficiency at
CS1 Level: A Different Approach, The Open University of Israel, Tel-
Aviv, Israel.

[16] Skūpienė, J., 2006, “Programming Style – Part of Grading Scheme”, In
Informatics Olympiads: Lithuanian Experience, ISSEP, pp. 545-552.

[17] Bloom, B., Engelhart, M., Furst, E., Hill, W. & Krathwohl D., 1956,
Taxonomy of educational objectives: the classification of educational
goals, Handbook I: Cognitive domain, New York: David McKay.

[18] Amer, A., 2006, “Reflections on Bloom‘s revised taxonomy”, Electronic J.
Res. Educ. Psychology, 4, pp. 213– 230.

[19] Krathwohl, D., 2002, A revision of Bloom’s taxonomy: an overview,
Theory into Practice, 41, pp. 212-218.

[20] Anderson, L. W., Krathwohl, D. R., Airasian, P.W., Cruikshank, K. A.,
Mayer, R.E., Pintrich, P.R., Raths, J. & Wittrock, M.C., 2000, A taxonomy
for learning teaching, Boston, Allyn & Bacon.

[21] Schorsch, T., 1995, “CAP: An automatic self-assessment tool to check
Pascal programs for syntax, logic and style errors”,. Proceedings of the
26th SIGCSE technical symposium on Computer science education, USA,
pp. 168-172.

[22] Mohan A., & Gold, N., 2004, “Programming Style Changes in Evolving
Source Code”, IEEE Proceedings of the 12th International Workshop on
Program Comprehension, Bari, Italy, pp. 236–240.

