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Abstract 

 

In this paper, we have established an efficient Bernstein operational matrix 

algorithm (BOMA) for solving a few boundary value problems (BVPs) 

arising in science and engineering. The main idea for obtaining the 

numerical solutions for these equations is essentially developed by 

reducing the differential equations with their initial and boundary 

conditions to a system of linear or nonlinear algebraic equations in the 

unknown exponential coefficients. Some numerical examples are given to 

demonstrate the validity and applicability of the proposed method. 

Numerical results obtained are comparing favorably with the exact known 

solutions. The proposed method in general is easy to implement, and 

yields good results. The power of the manageable method is confirmed.   

 

Keywords: Bernstein operational matrices; differential equations; boundary 

value problems; collocation method 

 

 

1.Introduction 
In recent years, mathematical modeling of complex processes is a major challenge for 

contemporary scientists. In contrast to simple classical system, where the theory of  
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integer order differential equations is sufficient to describe their dynamics. Most 

realistic mathematical models cannot be solved through the traditional methods 

providing an excellent means to put across the underlying theory; instead, they must 

be dealt with the computational methods that produce approximate solutions. 

Polynomials are useful mathematical tools as they are pretty defined, fast calculation 

on a modern computer system and can represent a great variety of functions. Also 

differentiation and integration is very simle. In recent years Bernstein operational 

matrices of differentiation have attracted the attention of many researchers.  

     With the advent of computer graphics, Bernstein polynomial in the interval 

 1,0x  becomes an important in the form of Bezier curves [1,2]. Bernstein 

polynomials have many useful properties such as the positivity, the continuity, 

recursive relation, symmetry and unity partition of the basis set over the interval (0, 

1). For this reason, they have been studied in an enormous number of publications, 

and are frequently used both in approximation theory and computer aided geometric 

design [2]. Farouki [3] had introduced the Legendre-Bernstein basis transformations. 

Farouki and Goodman [4] had introduced the optimal stability of the Bernstein basis. 

Solving Fredholm integral equations [5,6],  Volterra integral equations [7], Bhatta and 

Bhatti [8] have been used modified Bernstein polynomials for solving KdV equation. 

Amit K. Singh et al. [9] established the B-polynomials have been first 

orthonormalized by using Gram-schmidt ortho normalization process and then the 

operational matrix of integration has been acquired. By the expansion of B-

polynomials in terms of Taylor basis and Yousefi and Behroozifar [10] found the 

operational matrices of integration and product of B-polynomials. The same author 

[11] implemented the Bernstein operational matrix method for solving the parabolic 

type PDEs. Bhatti and Bracken [12] have given solutions of linear and non-linear 

differential equations with linear combinations of Bernstein polynomials, and their 

coefficients have been determined by Galerkin method. Doha and et al. [13,14] have 

proved new formulas about derivatives and integrals of Bernstein polynomials, and 

have used the Galerkin and Petrov-Galerkin methods based on Bernstein polynomials 

for solving high even-order differential equations. Isık et al. [15,16] have introduced a 

new method to solve high order linear differential equations with initial and boundary 

conditions. The method is numerically based on rational interpolation and Bernstein 

series solution depending on collocation method. Ordokhani et al.[17] used Bernstein 

polynomial for solving differential equations. Integral equations [18], partial 

differential equations [19,20]. Yousefi et al. [21] implemented the Ritz-Galerkin 

method for solving an initial boundary value problem that combines Neumann and 

integral condition for the wave equation. Bhattacharya et al.[22]implemented the 

algorithm for integro differential equations. 

     Hariharan and his coworkers [23-25] established the Haar wavelet method (HWM) 

for solving a few partial differential equations arising in engineering. Recently, 

Saadatmandi [26], have developed the fractional order differential equations by the 

Bernstein operational matrix. Recently, Ahmed [27] established the numerical 

solutions of the 2nd-order linear differential equations subject to Dirichlet boundary 

conditions.  

https://www.google.co.in/search?biw=995&bih=602&q=define+acquire&sa=X&ei=US1fU_nQHsvGuATr14CwDg&ved=0CCkQ_SowAA
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     The aim of the present paper is to apply Bernstein operational matrix algorithm 

(BOMA) for a few boundary value problems. The main characteristic behind the 

approach using this technique is that it reduces these problems to those of solving a 

system of algebraic equations thus greatly simplifying the problem. By several 

nonlinear boundary value problems, it is clearly indicate that the Bernstein operational 

matrix Method show its validity and efficiency. 

     This paper is organized as follows. In section 2, the basic properties of Bernstein 

polynomials are presented. Function approximation is illustrated in section 3. Some 

numerical examples are explored in section 4. Concluding remarks are given in 

section 5. 

 

 

2. Properties of Bernstein Polynomials [26] 
The Bernstein basis polynomials of degree n are defined in [0,1] as [10,11] 
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     The dual basis is defined by the property  
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     A function )(xf , square integrable in [0,1] , may be expressed in terms of 

Bernstein basis [10,11]. In practice, only we choose the first (n + 1) term Bernstein 

polynomials are considered. 

     Therefore we can write, 
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     Where C is the Bernstein coefficient vector and B(x) is Bernstein vector 

     ,)](),...,(),([)(

],,...,,[

10

10

Tn

n

nn

n

T

xbxbxbxB

cccC





         (4) 



18694  Pandy Pirabaharan 

     Then 
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     Bernstein polynomials and Legendre polynomials both span the same spaces and 

the transformation between Legendre and Bernstein polynomials is comparatively 

well-conditioned. The Bernstein polynomials are advantageous for practical 

computations, on account of its intrinsic numerical stability [4]. One of the useful 

property of Bernstein basis polynomials is that they all vanish at end points of the 

interval, except the first and the last one, which are equal to one at x=0 and x=1 

respectively. This gives greater flexibility in which to impose boundary conditions at 

the end points of the interval [12]. Also, Bernstein polynomials have two main 

properties: their sum equals 1 and every )(xbn

i  is positive for all real x belonging to 

the interval  1,0x . Moreover, as pointed by [21], the Bernstein basis polynomials 

have the following properties: 

1. )(xbn

i  has a root with multiplicity i at a point x=0 (note if i is 0 there is no root 

at 0). 

2. )(xbn

i  has a root with multiplicity n-i at a point x=1 ( if n = i there is no root at 

1). 

     While for the Legendre polynomials, no explicit formula of the roots is known. 

 

2.1 The operational matrix of the derivative [26] 
The derivative of the vector B(x) can be expressed by 

     )(
)( )1( xBD

dx

xdB
           (6) 

     Where )1(D  is the (n+1) x (n+1) operational matrix of derivative and is given in 

[10] as  

     *)1( AVBD            (7) 

     Here               



An Efficient Bernstein Operational Matrix Based Algorithm For A Few et.al.  18695 

     

     

   

 
)1)(1(

0

0

010

10..0.0

....

....

..0.

1...10

0

0

0
1...

1

0

0
1

0
1














































































































 





















nn

in

n

n

n

in

in

i

n

i

n

n

nnnnn

A  

     

))(1(
...000

.....

.....

.....

0...020

0...001

0...000

nn
n

V































  , 

 

 

 

 
)1)((

1

1

3

1

2

1

1

.

.

.













































nn

nA

A

A

A

B  

     Where  
1

kA  is the k-th row of 1A  for k= 1,2,...,n 

     
    

nixBwwwxbD
n

j

n

j

njiji

n

j

ji

n

i ,...,1,0),(,...,,)( ,,1,,0,, 







  

   

     (8)

             

     This leads to the desired result. 

     Generalized Bernstein operational matrix of differentiation 
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     Similarly we can find  1D for any value of n. 

     By equation *)1( AVBD   , it is clear that  
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     Where n  and the superscript, in  1D  , denotes matrix powers. Thus  
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     Theorem 1. [26] Let B(x) be Bernstein vector defined in (4) and also suppose 

0  then  
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3.Function Approximation 
Consider the differential equation 
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4.Numerical Examples  
 

Example 4.1  

Consider the following boundary value problem 
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     Applying the method developed in section 2 and 3 for M=2 
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     By collocating Eq(20 ) at 
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     045556257 210  ccc                  (21) 

     Applying the boundary conditions from Eq.(19 ) we get 
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     Eqs.(21) – (23) can be solved for the unknown coefficients of the vector C ,we 
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     For M=3,  

     we have 10 c , 12334.21 c  , 89074.02 c  , 7183.23 c  

     then     137001.306781.74161.5)( 23  xxxxy  

     For M=4,       169448.15137.840976.173088.12)( 234  xxxxxy  

 

 
 

Figure 1: Numerical Solutions of Example 4.1 For Various Values of M 

 

Table 1: Comparison Between The Exact and BOM For Example 4.1 

 

x Exact BOM M=2 BOM M=3 BOM M=4 

0.1 1.001000500 1.215057 1.2717390 0.89951012 

0.2 1.008032086 1.420508 1.4346184 0.88206800 

0.3 1.027367803 1.616353 1.5211348 0.88752676 

0.4 1.066092399 1.802592 1.5637848 0.88528064 

0.5 1.133148453 1.979225 1.5950650 0.87426500 

0.6 1.241102379 2.146252 1.6474720 0.88295632 

0.7 1.409168762 2.303673 1.7535024 0.96937220 

0.8 1.668625110 2.451488 1.9456528 1.22107136 

0.9 2.073006564 2.589697 2.2564198 1.75515364 

1 2.718281828 2.718300 2.7183000 2.71826000 
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Table 2: Errors Between The Exact and BOM For Example 4.1 

 

x BOM M=2 BOM M=3 BOM M=4 

0.1 0.214056500 0.270738500 0.101490380 

0.2 0.412475914 0.426586314 0.125964086 

0.3 0.588985197 0.493766997 0.139841043 

0.4 0.736499601 0.497692401 0.180811759 

0.5 0.846076547 0.461916547 0.258883453 

0.6 0.905149621 0.406369621 0.358146059 

0.7 0.894504238 0.344333638 0.439796562 

0.8 0.782862890 0.277027690 0.447553750 

0.9 0.516690436 0.183413236 0.317852924 

1 1.81715E-05 1.81715E-05 2.18285E-05 

 

Example 4.2 

Consider the above boundary value problem with 5,5.0    

        012'''   yxxy
x

y  


                (24) 

     with boundary conditions 

     eyy  )1(,1)0(                    (25) 

     Eq.(24 ) has the exact solution of the initial value problem for 5,5.0    is 

.)(
5xx eexy 



         

     Boundary value problem by applying the method described in section 2 and 3 with 

M=2, 

     We approximate solution as        xBCxbcxbcxbcxy T 2

22

2

11

2

00)(  

     By collocating Eq(24 ) at 
2

1
1 x  we obtain 

     048563.352874.451437.0 210  ccc                (26) 

     Applying the boundary conditions from Eq.(25) we get 

     10 c                     (27) 

     7183.21 c                    (28) 

     Eqs.(26) – (28) can be solved for the unknown coefficients of the vector C ,we 

obtain  

     10 c , 97861.11 c , 7183.22 c  

     Thus       9999.095742.123902.0 2  xxxy  

     For M=3,  
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         113214.362192.620808.5)( 23  xxxxy   

 

 
 

Figure 2: Numerical Solutions of Example4.2 For Various Values of M 

 

Table 3: Comparison Between The Exact and BOM For Example 4.2 

 

x 

 

Exact BOM M=2 BOM M=3 

0 1.000000000 0.9999999 1.00000000 

0.1 1.000010000 1.1933418 1.25220288 

0.2 1.000320051 1.3819132 1.40321584 

0.3 1.002432955 1.5657042 1.48428736 

0.4 1.010292608 1.7447148 1.52666592 

0.5 1.031743407 1.9189450 1.56160000 

0.6 1.080863220 2.0883948 1.62033808 

0.7 1.183019419 2.2530642 1.73412864 

0.8 1.387744823 2.4129532 1.93422016 

0.9 1.804872586 2.5680618 2.25186112 

1.0 2.718281828 2.7183900 2.71830000 
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Table 4: Errors Between The Exact and BOM For Example 4.2 

 

x  BOM M=2 BOM M=3 

0 0.00001000 0 

0.1 0.19333180 0.25219288 

0.2 0.38159314 0.40289578 

0.3 0.56327124 0.48185440 

0.4 0.73442219 0.51637331 

0.5 0.88720159 0.52985659 

0.6 1.00753158 0.53947486 

0.7 1.07004478 0.55110922 

0.8 1.02520837 0.54647533 

0.9 0.76318921 0.44698853 

1 0.00010817 1.81715E-05 

 

Example 4.3 

Consider the non-linear boundary value problem 

     
32

'
'' 94)(

)(
)( xxxxy

x

xy
xy                   (29) 

     with boundary conditions 

     0)1(,0)0(  yy                    (30) 

     The exact solution for Eq.(29) is 32)( xxxy   

     By applying the method described in the section 2 and 3, the solution for various 

values of m are given below  

     M=2 the solution is xxxy 25.025.0)( 2   

 

 
 

Figure 3: Numerical Solutions of Example 4.3 For Various Values Of M 
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Table 5: Comparison between the exact and BOM for Example 4.3 

 

x Exact BOM M=2 

0 0 0 

0.1 0.0090 0.0225 

0.2 0.0320 0.0400 

0.3 0.0630 0.0525 

0.4 0.0960 0.0600 

0.5 0.1250 0.0625 

0.6 0.1440 0.0600 

0.7 0.1470 0.0525 

0.8 0.1280 0.0400 

0.9 0.0810 0.0225 

1 0 0 

 

Table 6: Errors Between The Exact and BOM For Example 4.3 

 

x BOM M=2 

0 0 

0.1 0.0135 

0.2 0.0080 

0.3 0.0105 

0.4 0.0360 

0.5 0.0625 

0.6 0.0840 

0.7 0.0945 

0.8 0.0880 

0.9 0.0585 

1 0 

 

Example 4.4 

     Consider the following initial value problem 024
2'"  yyy               (31) 

     Subject to the initial conditions y(0)= -1 and y
’
(0)=-1               (32) 

     which has the following analytical solution 1
8

)(
2


x

xy  

     We solve this initial value problem Eq.(31) by applying the method described in 

Section 2 and 3 using Bernstein operational matrices of derivatives with M=2 we have  

     875.0,1,1 210  ccc  and get 
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     1
8

)(
2


x

xBcy T  which is the exact solution. 

     It is clear that in Example 4.4, our proposed algorithm is rapidly convergent to the 

exact value. 

     For a small value of M=2, we reach the exact solution .  

 

 
 

Figure 4: Numerical Solutions of Example-4 For Value Of M=2 

 

Table 7: Comparison Between The Exact and BOM For Example 4.4 

 

x Exact BOM M=2 

0 -1 -1 

0.1 -0.99875 -0.99875 

0.2 -0.99500 -0.99500 

0.3 -0.98875 -0.98875 

0.4 -0.98000 -0.98000 

0.5 -0.96875 -0.96875 

0.6 -0.95500 -0.95500 

0.7 -0.93875 -0.93875 

0.8 -0.92000 -0.92000 

0.9 -0.89875 -0.89875 

1 -0.87500 -0.87500 
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Table 8: Errors between the exact and BOM for Example 4.4 

 

x BOM M=2 

0 0 

0.1 0 

0.2 0 

0.3 0 

0.4 0 

0.5 0 

0.6 0 

0.7 0 

0.8 0 

0.9 0 

1 0 

 

     The accuracy of the results is estimated by error function
exact BOME y y  . The 

results are shown in Tables (See Tables 1-8). In order to assess the advantages, 

efficiency and the accuracy of the BOM for solving the nonlinear differential 

equations, we use our method to solve another nonlinear differential equation, whose 

exact solutions are known. Results in the Tables 1-8 show that the BOM agrees with 

the exact solutions. When solving the non-periodic problems, the proposed method 

has the superiorities (the calculation is easy implementation, and the approximation 

effect is better) which the CAS wavelet cannot be compared with it. For larger M, the 

numerical results have good agreement with the exact solutions. 

     All the numerical experiments presented in this section were computed in double 

precision with some MATLAB codes on a personal computer System Vostro 1400 

Processor x86 Family 6 Model 15 Stepping 13 Genuine Intel ~1596 Mhz. 

 

 

5.Conclusion 
We conferred a general formulation for the Bernstein operational matrix algorithm 

(BOMA) for solving boundary value problems arising in science and engineering. The 

numerical results given in the previous section demonstrate the good accuracy of 

these algorithms. For smaller m, we get the numerical results closer to the real values. 

The power of the manageable technique is confirmed. The obtained numerical values 

are comparing favorably with the analytic ones. It provides more realistic series 

solutions that converge very speedily in real physical problems. 
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